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Abstract

We present a neural network method for induc-
ing representations of parse histories and us-
ing these history representations to estimate the
probabilities needed by a statistical left-corner
parser. The resulting statistical parser achieves
performance (89.1% F-measure) on the Penn
Treebank which is only 0.6% below the best
current parser for this task, despite using a
smaller vocabulary size and less prior linguistic
knowledge. Crucial to this success is the use of
structurally determined soft biases in inducing
the representation of the parse history, and no
use of hard independence assumptions.

1 Introduction

Unlike most problems addressed with machine learning,
parsing natural language sentences requires choosing be-
tween an unbounded (or even infinite) number of possi-
ble phrase structure trees. The standard approach to this
problem is to decompose this choice into an unbounded
sequence of choices between a finite number of possible
parser actions. This sequence is the parse for the phrase
structure tree. We can then define a probabilistic model of
phrase structure trees by defining a probabilistic model of
each parser action in its parse context, and apply machine
learning techniques to learn this model of parser actions.

Many statistical parsers (Ratnaparkhi, 1999; Collins,
1999; Charniak, 2000) are based on a history-based
model of parser actions. In these models, the probabil-
ity of each parser action is conditioned on the history of
previous actions in the parse. But here again we are faced
with an unusual situation for machine learning problems,
conditioning on an unbounded amount of information.
A major challenge in designing a history-based statisti-
cal parser is choosing a finite representation of the un-
bounded parse history from which the probability of the

next parser action can be accurately estimated. Previ-
ous approaches have used a hand-crafted finite set of fea-
tures to represent the parse history (Ratnaparkhi, 1999;
Collins, 1999; Charniak, 2000). In the work presented
here, we automatically induce a finite set of real valued
features to represent the parse history.

We perform the induction of a history representation
using an artificial neural network architecture, called
Simple Synchrony Networks (SSNs) (Lane and Hen-
derson, 2001; Henderson, 2000). This machine learn-
ing method is specifically designed for processing un-
bounded structures. It allows us to avoid making a priori
independence assumptions, unlike with hand-crafted his-
tory features. But it also allows us to make use of our a
priori knowledge by imposing structurally specified and
linguistically appropriate biases on the search for a good
history representation.

The combination of automatic feature induction and
linguistically appropriate biases results in a history-based
parser with state-of-the-art performance. When trained
on just part-of-speech tags, the resulting parser achieves
the best current performance of a non-lexicalized parser
on the Penn Treebank. When a relatively small vocab-
ulary of words is used, performance is only marginally
below the best current parser accuracy. If either the bi-
ases are reduced or the induced history representations
are replaced with hand-crafted features, performance de-
grades.

2 Estimating the Parameters of the
Probability Model

The parsing system we propose consists of two compo-
nents, one which estimates the parameters of a proba-
bility model for phrase structure trees, and one which
searches for the most probable phrase structure tree given
these parameters. The probability model we use is gen-
erative and history-based. At each step, the model’s
stochastic process generates a characteristic of the tree
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or a word of the sentence. This sequence of decisions is
the derivation of the tree, which we will denote

���������������
	
.

Because there is a one-to-one mapping from phrase struc-
ture trees to our derivations, we can use the chain rule
for conditional probabilities to derive the probability of
a tree as the multiplication of the probabilities of each
derivation decision

���
conditional on that decision’s prior

derivation history
���
������� ��� ��� �

.
���

tree
� � � ����������� 	���������� � � ����������� 	������ � ��� ���� � � �������!���
��� ���

The neural network is used to estimate the parameters��� ���" � � �������!�����#� �$�
of this probability model.

To define the parameters
��� ���" � � ��������������� �%�

we need to
choose the ordering of the decisions in a derivation, such
as a top-down or shift-reduce ordering. The ordering
which we use here is that of a form of left-corner parser
(Rosenkrantz and Lewis, 1970). A left-corner parser de-
cides to introduced a node into the parse tree after the sub-
tree rooted at the node’s first child has been fully parsed.
Then the subtrees for the node’s remaining children are
parsed in their left-to-right order. We use a version of
left-corner parsing which first applies right-binarization
to the grammar, as is done in (Manning and Carpenter,
1997) except that we binarize down to nullary rules rather
than to binary rules. This allows the choice of the chil-
dren for a node to be done incrementally, rather than all
the children having to be chosen when the node is first in-
troduced. We also extended the parsing strategy slightly
to handle Chomsky adjunction structures (i.e. structures
of the form [X [X &'&'& ] [Y &'&%& ]]) as a special case. The
Chomsky adjunction is removed and replaced with a spe-
cial “modifier” link in the tree (becoming [X &'&%& [

	)(�*
Y

&'&%& ]]). We also compiled some frequent chains of non-
branching nodes (such as [S [VP &'&'& ]]) into a single node
with a new label (becoming [S-VP &%&'& ]). All these gram-
mar transforms are undone before any evaluation of the
output trees is performed.

An example of the ordering of the decisions in a deriva-
tion is shown by the numbering on the left in figure 1. To
precisely specify this ordering, it is sufficient to charac-
terize the state of the parser as a stack of nodes which are
in the process of being parsed, as illustrated on the right in
figure 1. The parsing strategy starts with a stack that con-
tains a node labeled ROOT (step 0) and must end in the
same configuration (step 9). Each parser action changes
the stack and makes an associated specification of a char-
acteristic of the parse tree. The possible parser actions
are the following, where + is a tag-word pair, , ��-

are
nonterminal labels, and . is a stack of zero or more node
labels.

shift(w) map stack . to . � + and specify that + is the
next word in the sentence (steps 1, 4, and 6)

project(Y) map stack . � , to . � - and specify that
-

is
the parent of , in the tree (steps 2, 3, and 5)

  0: ROOT

Stacks:

  2: ROOT, NP

  9: ROOT

  8: ROOT, S

  7: ROOT, S, VP

  1: ROOT, NNP

  3: ROOT, S

  4: ROOT, S, VBZ

  5: ROOT, S, VP

  6: ROOT, S, VP, RB

S

NP

3

ROOT
9

RB/oftenVBZ/runs

5 VP
7

8

2

NNP/Mary 641

0

Figure 1: The decomposition of a parse tree into deriva-
tion decisions (left) and the stack after each decision
(right). The derivation is shift(NNP/Mary), project(NP),
project(S), shift(VBZ/runs), project(VP), shift(RB/often),
attach, attach, attach.

attach map stack . � -�� , to . � - and specify that
-

is the
parent of , in the tree (steps 7, 8, and 9)

modify map stack . � -�� , to . � - and specify that
-

is
the modifier parent of , in the tree (i.e. , is Chom-
sky adjoined to

-
) (not illustrated)

Any valid sequence of these parser actions is a derivation�/�
�������!����	
for a phrase structure tree.

The neural network estimates the parameters��� ���" � � �������!�����#� �$�
in two stages, first computing a

representation of the derivation history 0 � � � ��������������� �%�
and then computing a probability distribution over the
possible decisions given that history.

1 *"2 � 0 � ��������������� ��� � ���435��� � �  �/�
����������� �#� � �
For the second stage, computing 1 *"2 , we use stan-

dard neural network methods for probability estimation
(Bishop, 1995). A log-linear model (also known as a
maximum entropy model, and as the normalized expo-
nential output function) is used to estimate the probabil-
ity distribution over the four types of decisions, shift-
ing, projecting, attaching, and modifying. A sepa-
rate log-linear model is used to estimate the probabil-
ity distribution over node labels given that projecting
is chosen

���
project

� , �  
project

� . � , which is multiplied
by the probability estimate for projecting

���
project

 . �
to get the probability estimates for that set of decisions���

project
� , �  . � .���

project
� , �  . �������

project
� , �  

project
� . �����

project
 . �

Similarly, the probability estimate for shifting the word
which is actually observed in the sentence

���
shift

� + �  . �
is computed with log-linear models. This means that val-
ues for all possible words need to be computed, to do the
normalization. The high cost of this computation is re-
duced by splitting the computation of

���
shift

� + �  shift
� . �

into multiple stages, first estimating a distribution over
all possible tags

���
shift

�#6!7��  
shift

� . � , and then estimating
a distribution over the possible tag-word pairs given the
correct tag

���
shift

�#6!7 + �  shift
��6!7�� � . � .



���
shift

�#6!7 + �  . ������
shift

�#6!7 + �  shift
�#6!7 � � . �����

shift
�#6!7��  

shift
� . � ���

shift
 . �

This means that only estimates for the tag-word pairs with
the correct tag need to be computed. We also reduced the
computational cost of terminal prediction by replacing
the very large number of lower frequency tag-word pairs
with tag-“unknown-word” pairs, which are also used for
tag-word pairs which were not in the training set. We
do not do any morphological analysis of unknown words,
although we would expect some improvement in perfor-
mance if we did. A variety of frequency thresholds were
tried, as reported in section 6.

3 Inducing a Representation of the
Derivation History

The most novel aspect of our parsing model is the way
in which the representation of the derivation history
0 � �/� ����������� �#� � � is computed. Choosing this representation
is a challenge for any history-based statistical parser, be-
cause the history

� � ����������� �#� �
is of unbounded size. Log-

linear models, as with most probability estimation meth-
ods, require that there be a finite set of features on which
the probability is conditioned. The standard way to han-
dle this problem is to hand-craft a finite set of features
which provides a sufficient summary of the history (Rat-
naparkhi, 1999; Collins, 1999; Charniak, 2000). The
probabilities are then assumed to be independent of all
the information about the history which is not captured
by the chosen features. The difficulty with this approach
is that the choice of features can have a large impact on
the performance of the system, but it is not feasible to
search the space of possible feature sets by hand.

In this work we use a method for automatically in-
ducing a finite representation of the derivation history.
The method is a form of multi-layered neural network
called Simple Synchrony Networks (Lane and Hender-
son, 2001; Henderson, 2000). The output layer of this
network is the log-linear model which computes the func-
tion 1 , discussed above. In addition the SSN has a hidden
layer, which computes a finite vector of real valued fea-
tures from a sequence of inputs specifying the derivation
history

�/� ����������� ��� �
. This hidden layer vector is the history

representation 0 � � � ����������� �#� � � . It is analogous to the hid-
den state of a Hidden Markov Model (HMM), in that it
represents the state of the underlying generative process
and in that it is not explicitly specified in the output of the
generative process.

The mapping 0 from the derivation history to the his-
tory representation is computed with the recursive ap-
plication of a function � . As will be discussed in
the next section, � maps previous history representa-
tions 0 � �/� � &'&%& ��� ����� � � � plus pre-defined features of the
derivation history � � ���
������� ��� ��� � � to a real-valued vector

0 � �/� � &'&'& ��� �#� � � . Because the function � is nonlinear, the
induction of this history representation allows the train-
ing process to explore a much more general set of esti-
mators 1 � 0 ��� ��� than would be possible with a log-linear
model alone (i.e. 1 ��� � ).1 This generality makes this es-
timation method less dependent on the choice of input
representation

�
. In addition, because the inputs to � in-

clude previous history representations, the mapping 0 is
defined recursively. This recursion allows the input to 0
to be unbounded, because an unbounded derivation his-
tory can be successively compressed into a fixed-length
vector of history features.

Training a Simple Synchrony Network (SSN) is sim-
ilar to training a log-linear model. First an appropriate
error function is defined for the network’s outputs, and
then some form of gradient descent learning is applied to
search for a minimum of this error function.2 This learn-
ing simultaneously tries to optimize the parameters of the
output computation 1 and the parameters of the mapping
0 from the derivation history to the history representation.
With multi-layered networks such as SSNs, this training
is not guaranteed to converge to a global optimum, but
in practice a set of parameters whose error is close to the
optimum can be found. The reason no global optimum
can be found is that it is intractable to find the optimal
mapping 0 from the derivation history to the history rep-
resentation. Given this difficulty, it is important to impose
appropriate biases on the search for a good history repre-
sentation.

4 The Inductive Bias on History
Representations

When researchers choose a hand-crafted set of features
to represent the derivation history, they are imposing a
domain-dependent bias on the learning process through
the independence assumptions which are implied by this
choice. In this work we do not make any independence
assumptions, but instead impose soft biases to empha-
size some features of the derivation history over oth-
ers. This is achieved through the choice of what features
� � �/�
�������!��� ��� � � are input explicitly to the computation �
of 0 � �/������������� ��� � � and what other history representations

1As is standard, � is the sigmoid activation function applied
to a weighted sum of its inputs. Multi-layered neural networks
of this form can approximate arbitrary mappings from inputs to
outputs (Hornik et al., 1989), whereas a log-linear model alone
can only estimate probabilities where the category-conditioned
probability distributions �
	���
 ����� of the pre-defined inputs � are
in a restricted form of the exponential family (Bishop, 1995).

2We use the cross-entropy error function, which ensures that
the minimum of the error function converges to the desired
probabilities as the amount of training data increases (Bishop,
1995). This implies that the minimum for any given dataset is
an estimate of the true probabilities. We use the on-line version
of Backpropagation to perform the gradient descent.



0 � �/� ����������� �#��� � � � are also input. If the explicit features
include the previous decision

� ��� �
and the other history

representations include the previous history representa-
tion 0 � � � �������������#��� � , then (by induction) any information
about the derivation history

� � �������!���
��� �
could conceiv-

ably be included in 0 � � � ��������������� �%� . Thus such a model is
making no a priori independence assumptions. However,
some of this information is more likely to be included
than other of this information, which is the source of the
model’s soft biases.

The bias towards including certain information in the
history representation arises from the recency bias in
training recursively defined neural networks. The only
trained parameters of the mapping 0 are the parameters of
the function � , which selects a subset of the information
from a set of previous history representations and records
it in a new history representation. The training process
automatically chooses the parameters of � based on what
information needs to be recorded. The recorded informa-
tion may be needed to compute the output for the current
step, or it may need to be passed on to future history rep-
resentations to compute a future output. However, the
more history representations intervene between the place
where the information is input and the place where the in-
formation is needed, the less likely the training is to learn
to record this information. We can exploit this recency
bias in inducing history representations by ensuring that
information which is known to be important at a given
step in the derivation is input directly to that step’s his-
tory representation, and that as information becomes less
relevant it has increasing numbers of history representa-
tions to pass through before reaching the step’s history
representation. The principle we apply when designing
the inputs to each history representation is that we want
recency in this flow of information to match a linguisti-
cally appropriate notion of structural locality.

To achieve this structurally-determined inductive bias,
we use Simple Synchrony Networks, which are specifi-
cally designed for processing structures. A SSN divides
the processing of a structure into a set of sub-processes,
with one sub-process for each node of the structure. For
phrase structure tree derivations, we divide a derivation
into a set of sub-derivations by assigning a derivation step�

to the sub-derivation for the node top
�

which is on the
top of the stack prior to that step. The SSN network then
performs the same computation at each position in each
sub-derivation. The unbounded nature of phrase structure
trees does not pose a problem for this approach, because
increasing the number of nodes only increases the num-
ber of times the SSN network needs to perform a compu-
tation, and not the number of parameters in the computa-
tion which need to be trained.

For each position
�

in the sub-derivation for a node
top

�
, the SSN computes two real-valued vectors, namely

0 � �/� ����������� �#� � � and 1 � 0 � ����������� ��� ��� � ��� . 0 � �/�
�������!��� �#� � � is
computed by applying the function � to a set of pre-
defined features � � � � �������!���
��� �'� of the derivation history
plus a small set of previous history representations.

0 � ����������� ��� ��� � �4�
� � � � � � �������������#� �'� ��� rep

�#� � ���'�  ���
	 �
top

� ��� �
where rep

��� � �
�'�
is the most recent previous history rep-

resentation for a node
�
.

rep� ���'��� 0 � � � ������������������� ��� ��� ��� top ��� �"! �	 �
top

� �
is a small set of nodes which are particularly

relevant to decisions involving top
�
. This set always in-

cludes top
�

itself, but the remaining nodes in
	 �

top
� �

and
the features in � � �/� �������!��� ��� � � need to be chosen by the
system designer. These choices determine how informa-
tion flows from one history representation to another, and
thus determines the inductive bias of the system.

We have designed
	 �

top
� �

and � � ��� �������!��� ��� � � so that
the inductive bias reflects structural locality. Thus,	 �

top
� �

includes nodes which are structurally local to
top

�
. These nodes are the left-corner ancestor of top

�
(which is below top

�
on the stack), top

�
’s left-corner child

(its leftmost child, if any), and top
�
’s most recent child

(which is top
�#� �

, if any). For right-branching structures,
the left-corner ancestor is the parent, conditioning on
which has been found to be beneficial (Johnson, 1998),
as has conditioning on the left-corner child (Roark and
Johnson, 1999). Because these inputs include the history
representations of both the left-corner ancestor and the
most recent child, a derivation step

�
always has access

to the history representation from the previous derivation
step

�$#&%
, and thus (by induction) any information from

the entire previous derivation history could in principle
be stored in the history representation. Thus this model is
making no a priori hard independence assumptions, just
a priori soft biases.

As mentioned above,
	 �

top
� �

also includes top
�

itself,
which means that the inputs to � always include the his-
tory representation for the most recent derivation step as-
signed to top

�
. This input imposes an appropriate bias

because the induced history features which are relevant
to previous derivation decisions involving top

�
are likely

to be relevant to the decision at step
�

as well. As a sim-
ple example, in figure 1, the prediction of the left corner
terminal of the VP node (step 4) and the decision that the
S node is the root of the whole sentence (step 9) are both
dependent on the fact that the node on the top of the stack
in each case has the label S (chosen in step 3).

The pre-defined features of the derivation history
� � � � �������!������� �$� which are input to � for node top

�
at step

�
are chosen to reflect the information which is directly rel-
evant to choosing the next decision

�/�
. In the parser pre-

sented here, these inputs are the last decision
� ��� �

in the
derivation, the label or tag of the sub-derivation’s node



top
�
, the tag-word pair for the most recently predicted

terminal, and the tag-word pair for top
�
’s left-corner ter-

minal (the leftmost terminal it dominates). Inputting the
last decision

����� �
is sufficient to provide the SSN with a

complete specification of the derivation history. The re-
maining features were chosen so that the inductive bias
would emphasize these pieces of information.

5 Searching for the Best Parse

Once we have trained the SSN to estimate the param-
eters of our probability model, we use these estimates
to search the space of possible derivations to try to find
the most probable derivation. Because we do not make a
priori independence assumptions, searching the space of
all possible derivations has exponential complexity, so it
is important to be able to prune the search space if this
computation is to be tractable. The left-corner ordering
for derivations allows very severe pruning without signif-
icant loss in accuracy, which is crucial to the success of
our parser due to the relatively high computational cost
of computing probability estimates with a neural network
rather than with the simpler methods typically employed
in NLP. Our pruning strategy is designed specifically for
left-corner parsing.

We prune the search space in two different ways, the
first applying fixed beam pruning at certain derivation
steps and the second restricting the branching factor at
all derivation steps. The most important pruning occurs
after each word has been shifted onto the stack. When a
partial derivation reaches this position it is stopped to see
if it is one of the best 100 partial derivations which end
in shifting that word. Only a fixed beam of the best 100
derivations are allowed to continue to the next word. Ex-
periments with a variety of post-prediction beam widths
confirms that very small validation performance gains are
achieved with widths larger than 100. To search the space
of derivations in between two words we do a best-first
search. This search is not restricted by a beam width,
but a limit is placed on the search’s branching factor. At
each point in a partial derivation which is being pursued
by the search, only the 10 best alternative decisions are
considered for continuing that derivation. This was done
because we found that the best-first search tended to pur-
sue a large number of alternative labels for a nonterminal
before pursuing subsequent derivation steps, even though
only the most probable labels ended up being used in the
best derivations. We found that a branching factor of 10
was large enough that it had virtually no effect on the val-
idation accuracy.

6 The Experimental Results

We used the Penn Treebank (Marcus et al., 1993) to per-
form empirical experiments on this parsing model. To

Length � 40 All
LR LP LR LP

Costa-et-al01 NA NA 57.8 64.9
Manning&Carpenter97 77.6 79.9 NA NA

Charniak97(PCFG) 71.2 75.3 70.1 74.3
SSN-Tags 83.9 84.9 83.3 84.3

Ratnaparkhi99 NA NA 86.3 87.5
Collins99 88.5 88.7 88.1 88.3
Charniak00 90.1 90.1 89.6 89.5
Collins00 90.1 90.4 89.6 89.9
Bod01 90.8 90.6 89.7 89.7
SSN-Freq � 200 88.8 89.6 88.3 89.2
SSN-Freq � 20 89.3 89.9 88.8 89.5

Table 1: Percentage labeled constituent recall and preci-
sion on the testing set.

test the effects of varying vocabulary sizes on perfor-
mance and tractability, we trained three different mod-
els. The simplest model (“SSN-Tags”) includes no words
in the vocabulary, relying completely on the informa-
tion provided by the part-of-speech tags of the words.
The second model (“SSN-Freq � 200”) uses all tag-word
pairs which occur at least 200 times in the training set.
The remaining words were all treated as instances of the
unknown-word. This resulted in a vocabulary size of
512 tag-word pairs. The third model (“SSN-Freq � 20”)
thresholds the vocabulary at 20 instances in the training
set, resulting in 4242 tag-word pairs. 3

We determined appropriate training parameters and
network size based on intermediate validation results and
our previous experience with networks similar to the
models SSN-Tags and SSN-Freq � 200. We trained two
or three networks for each of the three vocabulary sizes
and chose the best ones based on their validation perfor-
mance. Training times vary but are long, being around 4
days for a SSN-Tags model, 6 days for a SSN-Freq � 200
model, and 10 days for a SSN-Freq � 20 model (on a 502
MHz Sun Blade computer). We then tested the best mod-
els for each vocabulary size on the testing set.4 Standard
measures of performance are shown in table 1.5

3We used a publicly available tagger (Ratnaparkhi, 1996) to
provide the tags used in these experiments, rather than the hand-
corrected tags which come with the corpus.

4All the best networks had 80 hidden units. Weight decay
regularization was applied at the beginning of training but re-
duced to 0 by the end of training. Training was stopped when
maximum performance was reached on the validation set, using
a post-word beam width of 5.

5All our results are computed with the evalb program fol-
lowing the standard criteria in (Collins, 1999), and using the
standard training (sections 2–22, 39,832 sentences), validation
(section 24, 1346 sentence), and testing (section 23, 2416 sen-
tences) sets (Collins, 1999).



The top panel of table 1 lists the results for the non-
lexicalized model (SSN-Tags) and the available results
for three other models which only use part-of-speech tags
as inputs, another neural network parser (Costa et al.,
2001), an earlier statistical left-corner parser (Manning
and Carpenter, 1997), and a PCFG (Charniak, 1997). The
SSN-Tags model achieves performance which is much
better than the only other broad coverage neural network
parser (Costa et al., 2001). The SSN-Tags model also
does better than any other published results on parsing
with just part-of-speech tags, as exemplified by the re-
sults for (Manning and Carpenter, 1997) and (Charniak,
1997).

The bottom panel of table 1 lists the results for the two
lexicalized models (SSN-Freq � 200 and SSN-Freq � 20)
and five recent statistical parsers (Ratnaparkhi, 1999;
Collins, 1999; Charniak, 2000; Collins, 2000; Bod,
2001). On the complete testing set, the performance of
our lexicalized models is very close to the three best cur-
rent parsers, which all achieve equivalent performance.
The performance of the best current parser (Collins,
2000) represents only a 4% reduction in precision error
and only a 7% reduction in recall error over the SSN-
Freq � 20 model. The SSN parser achieves this result us-
ing much less lexical knowledge than other approaches,
which all minimally use the words which occur at least
5 times, plus morphological features of the remaining
words.

Another diffference between the three best parsers and
ours is that we parse incrementally using a beam search.
This allows use to trade off parsing accuracy for pars-
ing speed, which is a much more important issue than
training time. Running times to achieve the above lev-
els of performance on the testing set averaged around 30
seconds per sentence for SSN-Tags, 1 minute per sen-
tence for SSN-Freq � 200, and 2 minutes per sentence for
SSN-Freq � 20 (on a 502 MHz Sun Blade computer, aver-
age 22.5 words per sentence). But by reducing the num-
ber of alternatives considered in the search for the most
probable parse, we can greatly increase parsing speed
without much loss in accuracy. With the SSN-Freq � 200
model, accuracy slightly better than (Collins, 1999) can
be achieved at 2.7 seconds per sentence, and accuracy
slightly better than (Ratnaparkhi, 1999) can be achieved
at 0.5 seconds per sentence (Henderson, 2003) (on val-
idation sentences at most 100 words long, average 23.3
words per sentence).

7 Discussion and Further Analysis

To investigate the role which induced history representa-
tions are playing in this parser, we trained a number of

Validation, Length � 100
LR LP F � � �

SSN-Freq � 200 88.0 89.5 88.8

ancestor label 82.6 85.4 84.0
child label 85.1 86.5 85.8
lc-child label 86.1 87.8 86.9
self label 86.8 88.1 87.4
all labels 78.8 82.2 80.5

head identification 87.1 88.6 87.9
head word 87.6 89.0 88.3
head word and child 87.1 88.7 87.9

Table 2: Percentage labeled constituent recall, precision,
and F-measure on the validation set for different versions
of the SSN-Freq � 200 model.

additional SSNs and tested them on the validation set.6

The middle panel of table 2 shows the performance when
some of the induced history representations are replaced
with the label of their associated node. The first four
lines show the performance when this replacement is per-
formed individually for each of the history representa-
tions input to the computation of a new history represen-
tation, namely that for the node’s left-corner ancestor, its
most recent child, its left-corner child, and the previous
parser action at the node itself, respectively. The final line
shows the performance when all these replacements are
done. In the first two models this replacement has the ef-
fect of imposing a hard independence assumption in place
of the soft biases towards ignoring structurally more dis-
tant information. This is because there is no other series
of history representations through which the removed in-
formation could pass. In the second two models this re-
placement simply removes the bias towards paying atten-
tion to more structurally local information, without im-
posing any independence assumptions.

In each modified model there is a reduction in perfor-
mance, as compared to the case where all these history
representations are used (SSN-Freq � 200). The biggest
decrease in performance occurs when the left-corner an-
cestor is represented with just its label (ancestor label).
This implies that more distant top-down constraints and
constraints from the left context are playing a big role in
the success of the SSN parser, and suggests that parsers
which do not include information about this context in
their history features will not do well. Another big de-
crease in performance occurs when the most recent child
is represented with just its label (child label). This im-
plies that more distant bottom-up constraints are also
playing a big role, probably including some information

6The validation set is used to avoid repeated testing on the
standard testing set. Sentences of length greater than 100 were
excluded.



about lexical heads. There is also a decrease in perfor-
mance when the left-corner child is represented with just
its label (lc-child label). This implies that the first child
does tend to carry information which is relevant through-
out the sub-derivation for the node, and suggests that this
child deserves a special status in a history representa-
tion. Interestingly, a smaller, although still substantial,
degradation occurs when the previous history represen-
tation for the same node is replaced with its node label.
We suspect that this is because the same information can
be passed via its children’s history representations. Fi-
nally, not using any of these sources of induced history
features (all labels) results in dramatically worse perfor-
mance, with a 58% increase in F-measure error over us-
ing all three.

One bias which is conspicuously absent from our
parser design is a bias towards paying particular attention
to lexical heads. The concept of lexical head is central to
theories of syntax, and has often been used in designing
hand-crafted history features (Collins, 1999; Charniak,
2000). Thus it is reasonable to suppose that the incorpo-
ration of this bias would improve performance. On the
other hand, the SSN may have no trouble in discovering
the concept of lexical head itself, in which case incorpo-
rating this bias would have little effect.

To investigate this issue, we trained several SSN
parsers with an explicit representation of phrasal head.
Results are shown in the lower panel of table 2. The
first model (head identification) includes a fifth type of
parser action, head attach, which is used to identify the
head child of each node in the tree. Although incorrectly
identifying the head child does not effect the performance
for these evaluation measures, forcing the parser to learn
this identification results in some loss in performance,
as compared to the SSN-Freq � 200 model. This is to
be expected, since we have made the task harder with-
out changing the inductive bias to exploit the notion of
head. The second model (head word) uses the identifica-
tion of the head child to determine the lexical head of the
phrase.7 After the head child is attached to a node, the
node’s lexical head is identified and that word is added
to the set of features � � � � �������������#� �'� input directly to the
node’s subsequent history representations. This adds an
inductive bias towards treating the lexical head as impor-
tant for post-head parsing decisions. The results show
that this inductive bias does improve performance, but not
enough to compensate for the degradation caused by hav-
ing to learn to identify head children. The lack of a large
improvement suggests that the SSN-Freq � 200 model al-
ready learns the significance of lexical heads, but perhaps
a different method for incorporating the bias towards con-

7If a node’s head child is a word, then that word is the node’s
lexical head. If a node’s head child is a nonterminal, then the
lexical head of the head child is the node’s lexical head.

ditioning on lexical heads could improve performance a
little. The third model (head word and child) extends
the head word model by adding the head child to the set
of structurally local nodes

	 �
top

� �
. This addition does

not result in an improvement, suggesting that the induced
history representations can identify the significance of
the head child without the need for additional bias. The
degradation appears to be caused by increased problems
with overtraining, due to the large number of additional
weights.

8 Related Work

Most previous work on statistical parsing has used a
history-based probability model with a hand-crafted set
of features to represent the derivation history (Ratna-
parkhi, 1999; Collins, 1999; Charniak, 2000). Ratna-
parkhi (1999) defines a very general set of features for
the histories of a shift-reduce parsing model, but the re-
sults are not as good as models which use a more linguis-
tically informed set of features for a top-down parsing
model (Collins, 1999; Charniak, 2000). In addition to
the method proposed in this paper, another alternative to
choosing a finite set of features is to use kernel methods,
which can handle unbounded feature sets. However, this
causes efficiency problems. Collins and Duffy (2002) de-
fine a kernel over parse trees and apply it to re-ranking
the output of a parser, but the resulting feature space is
restricted by the need to compute the kernel efficiently,
and the results are not as good as Collins’ previous work
on re-ranking using a finite set of features (Collins, 2000).
Future work could use the induced history representations
from our work to define efficiently computable tree ker-
nels.

The only other broad coverage neural network parser
(Costa et al., 2001) also uses a neural network architec-
ture which is specifically designed for processing struc-
tures. We believe that their poor performance is due to
a network design which does not take into consideration
the recency bias discussed in section 4. Ratnaparkhi’s
parser (1999) can also be considered a form of neural
network, but with only a single layer, since it uses a log-
linear model to estimate its probabilities. Previous work
on applying SSNs to natural language parsing (Hender-
son, 2000) has not been general enough to be applied to
the Penn Treebank, so it is not possible to compare results
directly to this work.

9 Conclusions

This paper has presented a method for estimating the pa-
rameters of a history-based statistical parser which does
not require any a priori independence assumptions. A
neural network is trained simultaneously to estimate the
probabilities of parser actions and to induce a finite repre-



sentation of the unbounded parse history. The probabili-
ties of parser actions are conditioned on this induced his-
tory representation, rather than being conditioned on a set
of hand-crafted history features chosen a priori. A beam
search is used to search for the most probable parse given
the neural network’s probability estimates. When trained
and tested on the standard Penn Treebank datasets, the
parser’s performance (89.1% F-measure) is only 0.6%
below the best current parsers for this task, despite using
a smaller vocabulary and less prior linguistic knowledge.

The neural network architecture we use, Simple Syn-
chrony Networks, not only allows us to avoid imposing
hard independence assumptions, it also allows us to im-
pose linguistically appropriate soft biases on the learn-
ing process. SSNs are specifically designed for process-
ing structures, which allows us to design the SSN so
that the induced representations of the parse history are
biased towards recording structurally local information
about the parse. When we modify these biases so that
some structurally local information tends to be ignored,
performance degrades. When we introduce independence
assumptions by cutting off access to information from
more distant parts of the structure, performance degrades
dramatically. On the other hand, we find that biasing the
learning to pay more attention to lexical heads does not
improve performance.
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