Proceedi ngs of HLT- NAACL 2003
Mai n Papers , pp. 64-71
Edrmont on, May-June 2003

Simpler and More General Minimization
for Weighted Finite-State Automata

Jason Eisner
Department of Computer Science
Johns Hopkins University
Baltimore, MD, USA 21218-2691
jason@cs.jhu.edu

Abstract semiring and will be explained belowK -valued func-
tions that can be computed by finite-state automata are

Previous work on minimizing weighted finite-state automata

(including transducers) is limited to particular types of weightscalledrational functions.

We present efficient new minimization algorithms that apply How does minimization generalize to arbitrary weight
much more generally, while being simpler and about as fast. semirings? The question is of practical as well as theoret-
We also point out theoretical limits on minimization algo-jcal interest. Some NLP automata use tbal semiring

rithms. We characterize the kind of “well-behaved” weight ; ; ;
semirings where our methods work. Outside these semiringgR’ +, x), oritslog equivalent, to compute unnormalized

minimization is not well-defined (in the sense of producing Probabilities or other scores outside the raftge] (Laf-
unique minimal automaton), and even finding the minimunferty et al., 2001; Cortes et al., 200Bxpectation semir-
number of states is in general NP-complete and inapproximablggs (Eisner, 2002) are used to handle bookkeeping when
training the parameters of a probabilistic transducer. A
1 Introduction byproduct of this paper is a minimization algorithm that
works fully with those semirings, a new result permitting
It is well known how to efficiently minimize a determin- more efficient automaton processing in those situations.
istic finite-state automaton (DFA), in the sense of con- Surprisingly, we will see that minimization is not
structing another DFA that recognizes the same languag@en well-defined for all weight semirings! We will
as the original but with as few states as possible (Aho @hen (nearly) characterize the semirings wheis itell-
al., 1974). This DFA also has as few arcs as possible. defined, and give a recipe for constructing minimization
Minimization is useful for saving memory, as whenalgorithms similar to Mohri’s in such semirings.
building very large automata or deploying NLP systems Finally, we follow this recipe to obtain a specific, sim-
on small hand-held devices. When automata are built Usle and practical algorithm that works for alivision
through complex regular expressions, the savings frogemirings All the cases above either fall within this
minimization can be considerable, especially when agramework or can be forced into it by adding multiplica-
plied at intermediate stages of the construction, since (f@ive inverses to the semiring. The new algorithm provides
example) smaller automata can be intersected faster. arguably simpler minimization for the cases that Mohri
Recently the computational linguistics community hasas already treated, and also handles additional cases.
turned its attention taveightedautomata that compute
interestingfunctionsof their input strings. A traditional 2 Weights and Minimization
automaton only returns an boolean from the Bet=
{true, false}, which indicates whether it has accepte
the input. But a probabilistic automaton returns a pro
ability in K = [0,1], or equivalently, a negated log-

&Ne introduce weighted automata by example. The trans-
b(;Iucer below describes a partial function from strings to
strings. It mapsab — xyz andbab — wwyz. Why?
probability ink = [0, 0. A transducer returns an output Since. the transducer is deterministic, each input (such as
string fromK = A* &for some alphabed). aab) is accepted along at most one path; the correspond—
Jng output (such agyz) is found by concatenating the

Celebrated algorithms by Mohri (1997; 2000) hav Ut stri found al th thdenotes th ¢
recently made it possible to minimize deterministic auutput strings found along the pathdenotes the empty

tomata whose weights (outputs) are log-probabilities O§tr|ng. ay
strings. These cases are of central interest in language
and speech processing.

However, automata with other kinds of weights can
also be defined. The general formulation of weighted
automata (Berstel and Reutenauer, 1988) perauitp
weight setK, if appropriate operations and® are pro-
vided for combining weights from the different arcs of§ ando standardly denote the automatom&nsition and
the automaton. The tripleK, @, ®) is called aweight output functions: 4(3,a) = 2 is the state reached by the

a arc from state 3, andl(3, a) = wwy is that arc’s output. Mohri (2000) proves that this technique finds the minimal
In an automaton whose outputs (weights) were numautomaton, which he shows to be unique up to placement
bers rather than strings likewy, concatenating them of weights along path$.
would not be sensible; instead we would want to add or We will only have to modify step 1, generalizing push-
multiply the weights along the path. In generatlenotes ing to other semirings. Pushing makes heavy uslefbf
the chosen operation for combining weights along a patlguotients: we adopt the notatiok\m for an element of
The ® operation need not be commutative—indeeds such that: ® (k\m) = m. This differs from the nota-
concatenation is not—but it must be associatifemust tion k~! ® m (in which k~! denotes an actual element of
contain (necessarily unique) weights, denotednd0, K) becausé:\m need not exist nor be unique. For exam-
suchthal @ k =k®1l=kand0®k=k®0=0for ple,ww\wwzzz = zzz (a fact used above) butry\wwzzz
all k € K. An unaccepted input (e.gapa) is assigned does not exist sincewzzz does not begin witkwy.
the outpu. Wheng is string concatenation, = ¢, and If Fis a function,« is a string, and: is a weight, we
0 is a special objedt defined to satisfy the axioms. use some natural notation for functions related’to
If an input such ama were accepted along multiplek @ F: (k® F)(y) < k® (F(7))
paths, we would have to use another operafidio com- £\ F : a function (if one exists) with @ (k\F) = F'
bine those paths’ weights_ into a singlg qutput & ip. (a1F)(7) def F(a) (standard notation)
But that cannot happen with thdeterministicautomata
treated by this paper. So we omit discussion of the progn effect,k\ F anda~* F drop output and input prefixes.
erties thatp should have, and do not trouble to spell out . o
its definition for the semiringgk, @, @) discussed inthis 3 Pushing and Its Limitations

4 . :
paper: We are only concerned with the mondiff,). The intuition behind pushing is to canonicalize states’

The following automaton is equivalent to the previousyfix functions. This increases the chance that two states
one since it computes thi?fme function: will have the same suffix function. In the example of the
previous section, we were able to repldgewith ww\ F3
(pushing thesw backwards onto state 3's incoming arc),

o (DY om0
Qwe be making it equal taF} so{1,3} could merge.
e @ Since canonicalization was also performed at states 2

and 4, F; and F3 ended up with identical representa-
tions: arc weights were distributed identically along cor-

However, it distributes weights differently along the arcsi€sponding paths from 1 and 3. Hence unweighted mini-
and states 1 and 3 can now obviously be merged (as caffpzation coulddiscoverthat /y = F; and merge{1, 3}.

and 4, yielding theninimal equivalent automaton). For- Mohri's pushing strategy—we will see others—is al-
mally we know that states 1 and 3 @guivalentbecause Ways to extract some sort of “maximum left factor” from
F, = Fs, whereF, denotes theuffix function of state €ach suffix function¥; and push it backwards. That is,
q—the function defined by the automaton if the start statBe expresse$, = k @ G for as “large” ak € K as

is taken to bey rather than 0. (ThusFi(ab) = yz.) possible—a maximal common prefix—then pushes fac-
Equivalent states can safely be merged, by deleting of@" & back out of the suffix function so that it is counted
and rerouting its incoming arcs to the other. earlier on paths through (i.e., beforereachingg). ¢’s

We will follow Mohri’s minimization strategy: suffix function now has canonical fori (i.e., K\ Fy).

.) ~ How does Mohri's strategy reduce to practice? For
1. Turn the first automaton above into the second. Thigsnsducers wherék,®) = (A*, concaj, the maxi-

operation is calleghushing (or quasi-determinization). ym Jeft factor of F, is the longest common prefix of
Here, for instance, it “pushesiwback” through state 3. {he sirings inrange(F,).2 Thus we hadange(Fs) =
2. Merge equivalent states of the second automaton, b{/wwyz,wwzzz} above with longest common prefixw
applying ordinaryjunweightedFA minimization (Aho et For thetropical semiring(Rso U {co}, min, +), where
al., 1974, section 4.13) as if each weighted arc label squ\m = m — k is defined only ifk < m, the maximum
asa:yz were simply a letter in a large alphabet. left factork is the minimum ofrange(F,).

3. Trim the result, removing useless states and arcs thatBut “maximum left factor” is not an obvious notion

are not on any accepting path (defined as a path whogs all semirings. If we extended the tropical semir-
weight is nong because it has no missing arcs and its last————
state is final). 2That is, any other solution is isomorphic to the one found
here if output weights are ignored.
Though appropriate definitions do exist for our examples. °In general we treatF, as a partial function, so that
For example, take the of two strings to be the shorter of the range(F;,) exclude9) (the weight of unaccepted strings). Left
two, breaking ties by a lexicographic ordering. factors are unaffected, asythingcan divideQ.

ing with negative numbers, or substituted the semirindenotedk,, . ..%,. For eachi € V, definef?, k', m’ €
(R>0, +, x), keeping the usual definition of “maximum,” K as follows: f; = 0iff ij € E; ki = 1iff i = j; m’ =
then any function would have arbitrarily large left factors 0 iff either ij € E ori = j. Now consider the following
A more fundamentally problematic example is theautomatonM over the alphabeE = {a,b,cy,...c,}.
semiringZ[y/—5]. Itis defined ag{m +n+/—5:m,n € The states ar€), 1,...n,n+1}; 0 is the initial state and
Z},+,x) whereZ denotes the integers. It is a stan-n + 1 is the only final state. For eacghe V, there is an

dard example of a commutative algebra in which facy,co 1" and arcg 2~ (n+1) ands b (n+1).

torization is not unique. For examplé, = 2 ® 3 = A minimum-state automaton equivalent fd must
(1++/=5) ® (1 — v=5) and these 4 factors cannot bepaye a topology obtained by merging some state¥ of
factored further. This makes it impossible to canonicalizgyiper topologies that could accept the same language
F, below: a3 (ci|ca| - -+ |ca)(alb) are clearly not minimal (they can be
improved by merging final states or by trimming).

° b:(1+sqrt(-5)) We claim that forS C {1,2,...n}, it is possible to
merge all states i into a single state (in the automaton)
if and only if S is a clique (in the graph):

al
- o If S is a clique, then definé,m € K by k; = 1 iff
o cl e i € S,andm; = 1iff ¢ ¢ S. Observe that for every
a(L-srt(-5)) i e S, we havek! = fi®k, m' = fi ® m. So by
o pushing back a factor of’ at eachi € S, one can make
all i € S share a suffix function and then merge them.
What is the best left factor to extract from? We could o If S is not a clique, then choosej € S so that
left-divide F}, by either 2 orl +/=5. The former action j; ¢ E. Considering only biti, there exists no bit
allows us to mergg 1,2} and the latter to merg€2, 3}, pair (k;,m;) € {0,1}2 of which (ki,mi) = (1,0)
but we cannot have it both ways. So this automaton hag,q (k{,mf) = (0,1) are both left-multiples. So there
no unique minimization! The minimum of 4 states iScan exist no weight paitk, m) of which (k,m¢) and
achieved by two distinct answers (contrast footnote 2). (i i) are both left-multiples. It is therefore not pos-
It follows thatknown minimization techniques will not gjpje to equalize the suffix functions; and F; by left-

work in general semiringsas they assume state mergeyividing each of thenf.i and; cannot be merged.
ability to be transitivé’. In general the result of mini-

mization is not even well-defined (i.e., unique). Thus, the partitions of into cliques are identical to

Of course, given a deterministic automatdn, one the partitions ol into sets of mergeable states, which are
may still seek an equivaledt’ with as few states as pos- in 1-1 correspondence with the topologies of automata
sible. But we will now see that evdimding the minimum equivalent taV/ and derived from it by merging. There is
number of states is NP-complete, and inapproximable anN-clique partition ofl iff there is an(V +2)-state au-

The NP-hardness proof [which may be skipped on ¢gmaton. It follows that finding theninimumnumber of
first reading] is by reduction from Minimum Clique Par-states is as hard, and as hard to approximate within a con-
tition. Given a graph with vertex sét = {1,2,...n} stantfactor, as finding the minimum number of cliques.
and edge sel, we wish to partitiorl into as few cliques L .
as possible. § C V is aclique of the graph iffij ¢ £ 4 When Is Minimization Unique?

for all pairss, j € S.) Determining the minimum num- The previous section demonstrated the existence of

per of cliqutis is NP-complete anq ine}pproximable: thaEgathological weight semirings. We now patrtially charac-
is, unless P=NP, we cannot even find it within a factor of,i,a the “well-behaved” semiringsk, @, ©) in which

2 or.3 or anyhother cohnstant fadctor |nhpol)|/.nom|al t'gre' all automatalo have unique minimizations. Except when
Given such a grapn, we relz‘ uce the c |que”pro eM Biherwise statedpwercase variables are weights K

our problem. Consider the_b|tW|_se boqlean SEMINNG, g uppercase ones arf&-valued rational functions

({0,1}", OR, AND). Each weighti: is a string ofn bits, 1pig section may be skipped, except the last paragraph.]

“A further wrinkle lies in deciding what and how to push; in A crucial necessary condition is thaf,) allow
general semirings, it can be necessary to shift weights forwanthat we will call greedy factorization, meaning that
as well as backward along paths. Modify the example above yiven f @ F' = g G # 0, itis always possible to express
pushing a factor of 2 backwards through state 2. Madihg=
F3 in this modified example now requires pushing 2 forward ®This argument only shows that pushing backward cannot
and thenl + /=5 backward through state 2. give them the same suffix function. But pushing forward cannot
5This problem is just the dual of Graph Coloring. For de-help either, despite footnote 4, sint& on the arc ta has no
tailed approximability results see (Crescenzi and Kann, 1998)right factors other than itself (the identity) to push forward.

F = f'® H andG = ¢’ ® H. This condition holds for essary condition (greedy factorization), and we now give

many practically useful semirings, commutative or othera useful sufficient condition. Say that is aminimum

wise. It says, roughly, that the order in which left factorgesidue of G # 0 if it is a residue of every residue of.

are removed from a suffix function does not matter. WEIf G has several minimum residues, they are all residues

can reach the same canoni¢afegardless of whether we of one another.) If K, ®) is such thaeveryG has a min-

left-divide first by f or g. imum residue—a strictly stronger condition than greedy
Given a counterexample to this condition, one can corfactorization—then it can be shown th@thas the same

struct an automaton with no unique minimization. Simminimum residues as anif ~ G. In such a(K, ®),

ply follow the plan of theZ[,/—5] example, putting M can be constructed by choosing the suffix functions

Fi,=F,F=f®F =g®G, F3 = G.” Forex- F,independently. Justldt,) = Fy,, . 1 beamini-

ample, in semiring K, ®) = ({x" : n # 1}, conca}, put mum residue of’,,. Now consider agaif/’s arcq-=*.r:

B =x2@{(a,x?),(b,x)} =x*@{(a,x?),(0,x*)}. sincea'Fy ~ a~'F, ~ F, ~ F,,, we seeF,; is a
Some useful semirings do fail the condition. One (minimum) residue ofi ! F}, so that a weight’ can be

is the “b|tV\{|se_ boolean” semiring that checks a strmg’schOsen for[q]a:_k/)[ﬂ.

membership intwo languages at once(K,®,®) =

({00,01,10,11}, OR, AND). (Let F, = 01 ®

{(a,11),(b,00)} = 01 ® {(a,01),(b,10)}.) R? under

pointwisex (which computes a string’s probability under

two models) fails similarly. So doegsetsn, U) (which from the start state O to a final statés now defined to

collects features found along the accepting path). be.(0) @ (weights of arcs along the patty ¢(r). In M,
We call /- aresidueof F'iff F' = f' @ H for some o e, ((0]) to somek such thatFy — k & Fy), and set

f'. Write F ~ G iff F, G have acommonresidue. In .}y — F,(¢). The mathematical construction is done.
these terms(K, ®) allows greedy factorization iff" ~

G whenF', G are residues of the same nonzero fupctiorg A Simple Minimization Recipe
More perspicuously, one can show that this holds-iff _ _ _ S
an equivalence relation on nonzefo;valued functions. We now give an effective algorithm for minimization in
So in semirings where minimization is uniquely de-the semiring(K’, ©). The algorithmic recipe has one in-
fined,~ is necessarily an equivalence relation. Given agredient: along with{ K, ©), the user must give usleft-
automaton) for function F, we may regard~ as an factor functional A that can choose a left facta(") of
equivalence relation on the states of a trimmed versiodny functionf’. Formally, if 32 is the input alphabet, then
of M:® ¢ ~ riff F, ~ F,. Let[r] = {ri,...,r,,} Werequire : (X* — K) — K to have the following
be the (finite) equivalence classafwe can inductively Properties for any rationaf’ : ¥* — K and anyk € K:
find at least one functiot,; that is a common residue ——
of F.,...,F.,. The idea behind minimization is to ¢ Sh|ft|.ng. Alk ® F) :_f:@)‘@)')
construct a maching/ whose states correspond to thes@ Quotient: A(F)\A(a™"F') exists inK for anya € .
equivalence classes, and where e@gthas suffix func- e Final-quotient: A(F")\F () exists inK.°
tion F},;. The Appendix shows that/ is then minimal.

A final step ensures that/ defines the functiod. To
describe it, we must augment the formalism to allow an
initial weight +(0) € K, and afinal weight ¢(r) € K
for each final state. The weight of an accepting path

ko ack’ The algorithm generalizes Mohri’s strategy as outlined
If, M has an arg—r, M /needs an arfy] ==[r], where j, saction 2. We just usk to pick the left factors during
k" is such Fha@] g - k' ® Fiyy :) pushing. The\'s used by Mohri for two semirings were
_The main difficulty in completing the construction of mentioned in section 3. We will define anothein sec-
M is to ensure each weight exists. ThatisF,) mustbe {ion . Naturally, it can be shown that nocan exist in a
carefully chosen to be a residue notonly/of, ..., K., semiring that lacks greedy factorization, suctZag—5).
(which ultimately does not matter, as long Bg) is a The 3 properties above are needed for the strategy to
residue of Fy, where O is the start state) but also ofqk. The strategy also requirés’, ®) to beleft can-
a*lF[q]. If M is cyclic, this imposes cyclic depe”de”'cellative, e k®@m = ko m' impliesm = m' (if
cies on the choices of the vario&§; and Fj,; functions. ;. £ 0). In other words, left quotients by are unique

We have found no simple necessary and sufficient CoRghen they exist (except fa1\0). This relieves us from
dition on (K, ®) that guarantees a globally consistent sefaying to make arbitrary choices of weight during push-
of choices to exist. However, we have given a useful neGng. |ncompatible choices might prevent arc labels from

_ matching as desired during the merging step of section 2.
"Then factoringF; allows state 2 to merge with either 1 or

3; but all three states cannot merge, since any suffix function °To show the final-quotient property given the other two, it

that could be shared by 1 and 3 could servéias suffices to show thaX(G) € K has a right inverse i, where
8Trimming ensures that suffix functions are nonzero. G is the function mapping to 1 and everything else to.

Given an input DFA. At each statg simultaneously, that it is a minimum residue af,.1* In short, if the con-
we will push backA(F,). This pushing construction ditions of this section are satisfied, so are the conditions
is trivial once the\(F,) values are computed. An of section 4, and the construction is the same.
arc ¢%*,r should have its weight changed fromto The converse is true as well, at least for right cancella-
MF)\Ma™F,) = MF,)\\k @ F,.), which is well- tive semirings. If such a semiring satisfies the conditions
defined (by the quotient property and left cancellatiily) Of section 4 (every function has a minimum residue), then
and can be computed asF,)\ (k ® A\(F.)) (by the shift- the requirements of this section can be met to obtain an
ing property). Thus a subpa @k b with weight effectivz_a alsgorithm: ther(_e _exi;ts)asatisfying our three

. k! bl o properties;® and the semiring is left cancellativé.

k ® ¢, will becomeqg®=r 22,5, with weightk! ® ¢/ =

AF\(F @ A(F))) @ (AN @ A(F)). Inthis g Minimization in Division Semirings

way the facton\(F).) is removed from the start of all paths

fromr, and is pushed backwards througlnto the end For the most important idea of this paper, we turn to a
of all pathsto r. It is possible for this factor (or part of common special case. Suppose the semi(ifig®, ®)

it) to travel back through multiple arcs and around cyclesiefinesk\m for all m, k # 0 € K. Equivalently'’ sup-
sincek’ is found by removing a(Fy,) factor from all of pose everk # 0 € K has a unique two-sided inverse
k ® A(F,) and not merely front. k~! € K. Useful cases of suctlivision semiringsin-

As it replaces the arc weights, pushing also replacegdude the real semiringR, +, x), the tropical semiring
the initial weight.(0) with +(0) ® \(F}), and replaces extended with negative numbgi8 U {co}, min, +), and
each final weights(r) with A(F}.)\¢(r) (which is well- expectation semirings (Eisner, 2002). Minimization has
defined, by the final-quotient property). Altogether, pushnot previously been available in these.
ing leaves path weights unchanged (by easy inductibn). We propose a new left-factor functional that is fast to

After pushing, we finish with merging and trimming ascompute and works iarbitrary division semirings. We
in section 2. While merging via unweighted DFA mini- avoid the temptation to defing /') as@D range(F): this
mization treatsarc weights as part of the input symbols, definition has the right properties, but in some semirings
what should it do with any initial and final weights? Theincluding(R>, +, x) the infinite summation is quite ex-
start state’s initial weight should be preserved. The mergpensive to compute and may even diverge. Instead (un-
ing algorithm can and should be initialized with a multi-like Mohri) we will permit our \(F") to depend on more
way partition of states by final weight, instead of just &han justrange(F’).

2-way partition into final vs. non-finaf Order the space of input strings' by length, breaking
The Appendix shows that this strategy indeed finds thées lexicographically. For example, < bb < aab <
unigue minimal automaton. aba < abb. Now define

It is worth clarifying how this section’s effective al- L4SupposeX is any residue of,, i.e., we can writef, —
gorithm implements the mathematical construction from: @ X. Then we can rewrite the identitf, = \(F,) ®
the end of section 4. At each statepushing replaces the (\(F,)\Fy), using the shifting property, a8 ® X = z ®

suffix function F,, with \(F,)\F,. The quotient proper- A(X)®(A(Fy)\Fy). As we have separately required the semir-
g to be left cancellative, this implies th&f = \(X) ®

ties of \ are designed to guarantee that this quotient i ; X .
defined!® and the shifting property is designed to ensur q(vlg"s)éf;‘}r)ﬁesd?()‘(F")\F") 's a residue of any residug of

- ®Define\(0) = 0. From each equivalence class of nonzero
1%Except in the cas@\0, which is not uniquely defined. This functions under~, pick a single minimum residue (axiom of

arises only iff, = 0, i.e.,q is a dead state that will be trimmed choice). GivenF, let [F] denote the minimum residue from its

later, so any value will do fob\0: arcs fromg are irrelevant. class. Observe thdt = f®[F] for somef; right cancellativity
10One may prefer a formalism without initial or final weights. implies f is unique. So defind(F) = f. Shifting property:

If the original automaton is free of final weights (othertign Al Q@ F) = AEkQ fQ[F]) = k@ f =k ANf Q@ [F]) =

so is the pushed automaton—provided th@¥) = 1 whenever & ® A(F). Quotient propertyA(a 'F)® [a ' F] = a ' F =

F(¢) = 1, as s true for al\’s in this paper. Initial weights can « ' (A\(F) ® [F]) = M(F) @ a ! [F] = M(F) ® A(a™[F]) ®

be eliminated at the cost of duplicating state 0 (details omitted)a ™ [F]] = A(F) ® A(a™'[F]) ® [a~ ' F] (the last step since
2 ternatively, Mohri (2000,§4.5) explains how to tem- a™'[F] =~ a ' F). Applying right cancellativity\(a™'F) =

porarily eliminate final weights before the merging step. MF)®@A(a™'[F]), showing that(F)\A(a™' F) exists.Final-
BThat is, A\(F,)\F,(7) exists for eachy € ©*. One may quotient propertyQuotient exists sincé'(e) = A(F)®[F](e).

show by induction ory| that the left quotienta(F)\ F(v) ex- '®Let (z, y) denote the function mappingto z, b to y, and

ist for all F. When|y| = 0 this is the final-quotient property. everything else td. Givenkm = km’, we havek ® (m,1) =

For |y| > 0 we can writey asay’, and then\(F)\F(y) = k®(m’,1). Since the minimum residue property implies greedy

AMENF(ay) = AF)\ (e 'F)(7) = WF)\Ma'F)) ® factorization, we can writdm, 1) = f ® (a,b), (m',1) =

Ma *F)\(a"1F)(v")), where the first factor exists by the g ® (a,b). Thenf ® b = g ® b, so by right cancellativity

quotient property and the second factor exists by inductive hyf = g, whencen = f ® a=g®a =m'.

pothesis. "The equivalence is a standard exercise, though not obvious.

A(F) %! F(minsupport(F)) € K if F'#0 After thus computing\(F,), we simply proceed with

0 if F'=0 pushing, merging, and trimming as in sectiof’Fush-
where support(F) denotes the set of input strings toind runs intimeO(¢-|arcs) and trimming inO(|states+
which F assigns a nof-weight. This) clearly has the [a7c8)- Merging is worse, with timé(|arcg log [states).

shifting property needed by section 5. The quotient an?I . S ..
final-quotient properties come for free because we are i A Bonus: Non-Division Semirings

a division semiring and becauser’) = 0iff F' = 0. The trouble withZ[/=5] was that it “lacked” needed

Under this definition, what is\(F;) for a suffix func- quotients. The example on p. 3 can easily be minimized
tion F,? Consider all paths of nonzero weigfhfrom (down to 3 states) if we regard it instead as defined over
Stateq to a final state. If none eXiSR(Fq) = 0. Oth- (C) +, x)_|ett|ng us usanyweights inC. S|mp|y use
erwise,min support(F,) is the input string on the short- gection 6's algorithm.
est such path, breaking ties lexicographic&lij(F,) is This new change-of-semiring trick can be used for
simply the weight of that shortest path other non-division semirings as well. One @aendthe

To push, we must compute F;) for each state. This original weight semirind K, @, ®) to a division semiring
is easy becaus¥(I,) is the weight of a single, minimum- py addinge-inverses!
length and hence acyclic path from (Previous meth- |n this way, the tropical semiringRso U {cc},
ods combined the weights alll paths fromg, even if iy +) can be augmented with tmegativereals to ob-
infinitely many.) It also helps that the left factors at dif-tajn (R U {o0}, min, +). And the transducer semiring
ferent states are related: if the minimum path froiee- (A= U {}, min, concaj?? can be augmented by extend-
gins with a weightk arc tor, then it continues along the ing the alphabet\ = {x,y,...} with inverse letters
minimum path fromr, SON(F,) = k @ A(F}). {x1y L.}

Below is a trivial linear-time algorithm for computing The minimized DFA we obtain may have “weird” arc
A(Fy) at everyg. Each state and arc is considered onc@eights drawn from the extended semiring. But the arc
in a breadth-first search back from the final stakes(q) weights combine along paths to produce the original au-
andfirst(q) store the string length and first letter of a runtomaton’s outputs, which fall in the original semiring.

ning minimum ofsupport(F;,) € X*. Let us apply this trick to the example of section 2,
1. foreachstateq yielding the following pushed automaton in whi¢h =
z ifq |IZ,JE2?|,Teon - i support(F) i for final Fs as desired.x~ ',y ', ... are written ax, v, ..., and
4)\(Fq) = ¢(q) (* Fy(¢) is just the ﬁqnal weight, ¢(q) *))\(Fq) IS dlsplayed at eaCJ]L)
5. enqueugy on a FIFO queue
6 else
7 Ien(q) =00 (* not yet discovered *)
8)\(Fq) =0 (* assume F; = 0 until we discover q *)
9. until the FIFO queue is empty
10. dequeue a state
a:k H
1 foreacharcq==r enteringr such that: 3 0 Forexample, the 'y~ 'zzz output on thed — 4 arc was
12. if len(q) = oo then enqueuey (* breadth-first scarch *) 1 1
13, if len(q) = oo or (len(q) = len(r) + 1 Computed aQ(Fg) ® WwzzZz &)\(F4) = (wwyz) ®
and a < first(q)) then WWZZZ ® € = zflyflwflwflwwzzz.
14. first(q) :==a (* reduce min support(Fy) *) This trick yields new algorithms for the tropical semir-
15. len(q) := len(r) +1 ing and sequential transducers, which is interesting and
16. A(Fq) =k @ M(Fr) perhaps worthwhile. How do they compare with previ-
The runtime i9D(|state$+¢-|arcg) if ® has runtime. ous work?
If ® is slow, this can be reduced (¢ - |state$+ |arcg) Over the tropical semiring, our linear-time pushing al-

by removing line 16 and waiting until the end, when thegorithm is simpler than (Mohri, 1997), and faster by a
minimum path from each non-final statés fully known,
to compute the weighk(F,) of that path. Simply finish
up by calling FND-X on each state:

21t is also permissible to trim the input automaton at the start,
or right after computing\ (note that\(F;) = 0 iff we should
trim ¢). This simplifies pushing and merging. No trimming is

FIND-\(stateg): then needed at the end, except to remove the one dead state that
1. if A(F,) = 0 andlen(q) < oo then the merging step may have added to complete the automaton.
2, AFy) == o(g,first(q)) ® FIND-A(6(g, first(q))) ZThis is often possible but not always; the semiring must be

3. return A(Fg) cancellative, and there are other conditions. Even disregarding

- & because we are minimizing a deterministic automaton, it is
18n a division semiring, these are paths fre@afeightarcs. not simple to characterize when the mon(id, ®) can be em-
Themin exists since< is a well-ordering. In a purely lex- bedded into a group (Clifford and Preston, 1967, chapter 12).

icographic orderingg™b C 3* would have no min. 2Wheremin can be defined as in section 6 and footnote 1.

log factor, because it does not require a priority queuén A*. Fortunately this is not hard. If statg of the
(Though this does not help the overall complexity of mintesult was formed by merging states, ...q;, define
imization, which is dominated by the merging step.) Wep(q) = LCS{\(F},) : ¢ = 1,...j} € A* (whereLCcs =
also have no need to implement faster algorithms for spé&ngest common suffix). Now push the minimized trans-
cial cases, as Mohri proposes, because our basic alghicer using(q)~! in place ofA\(F,) for all g. This cor-
rithm is already linear. Finally, our algorithm generalizegects for “overpushing”: any letteyg¢) that were unnec-
better, as it can handle negative weight cycles in the inputssarily pushed back before minimization are pushed for-
These are useful in (e.g.) conditional random fields. ward again, cancelling the inverse letters. In our running
On the other hand, Mohri’s algorithm guarantees a paexample, state 0 will pusfxyz) ' back and the merged
tentially useful property that we do not: that the weighstate{1,3} will push (yz)~! back. This is equivalent to
of the prefix path reading € X* is the minimum weight pushingp(0) = xyz forward through state 0 and tlye
of all paths with prefixx. Commonly this approximates part of it forward througH 1,3}, canceling the='y~! at
— log(p(most probable string with prefix)), perhaps a the start of one of the next arcs.
useful value to look up for pruning. We must show that the resulting labels really are free
As for transducers, how does our minimization algoof inverse letters. Their values are as if the original push-
rithm (above) compare with previous ones? Followingng had pushed back natF,,) € A* but only its shorter

earlier work by Choffrut and others, Mohri (2000) de-prefix \(q;) <" A(F,,)/p(g:) € A* (note theright quo-

finesA(F;) as the longest common prefix @inge(Fy). tient). In other words, an arc from to r;, with weight

He constrains these values with a set of simultaneoysc A* was reweighted a&(g;)\(k ® A(r)). Any in-

equations, and solves them by repeated changes of vajirse letters in such new weights clearly fall at the left.

able USing a Complex relaxation algorithm. His |mp|e'SO suppose the new We|ght on the arc fr@m r begins
mentation uses various techniques (including a trie anglith an inverse letter . Then(¢;) must have ended

a graph decomposition) to make pushing run in timgith ~ for eachi = 1,...;. But thenp(g;) was not the

O(|state$ + |arcg - max, |A(F,)|).*® Breslauer (1996) |ongest common suffixzp(q;) is a longer one, a contra-

gives a different computation of the same result. diction (Q.E.D.).

To implement our simpler algorithm, we represent Negative weights can be similarly eliminated after
strings inA* as pointers into a global trie that extendsminimization over the tropical semiring, if desired, by
upon lookup. The strings are actually stored reversed &ubstitutingmin for Lcs.
the trie so that it is fast to add and remove short pre- The optional elimination of inverse letters or nega-
fixes. Over the extended alphabet, we use the pointgye weights does not affect the asymptotic runtime. A
pair (k,m) to represent the string™'m wherek,m € caveat here is that the resulting automaton no longer has
A* have no common prefix. Such pointer pairs cam canonical form. Consider a straight-line automaton:
be equality-tested irO(1) time during merging. For pyshing yields a canonical form as always, but inverse-
k,m € A,k ® mis computed in tim&(|k|), andk\m |etter elimination completely undoes pushiny(¢;) =
in time O(|LcP(k,m)|) or more looselyO(|k|) (where ;) This is not an issue in Mohri's approach.

LCP = longest common prefix).

The total time to compute oW(F) values is therefore 8 Conclusion and Final Remarks
O(|state$+ ¢ - |arcg), wheret is the maximum length of
any arc’s weight. For each arc we then compute a neWe have characterized the semirings over which
weight as a left-quotient by a value. So our total run- weighted deterministic automata can be minimized (sec-
time for pushing isO(|state$ + |arcs - max, [A(F,)|). tion 4), and shown how to perform such minimization in
This may appear identical to Mohri’s runtime, but in factboth general and specific cases (sections 5, 6, 7). Our
our |\(F,)| > Mobhri’s, though the two definitions share technique for division semirings and their subsemirings
a worst case of - [states?* pushes back, at each statehe output of &single easily

Inverse letters must be eliminated from the minimizedound, shortest accepting path frgmThis is simpler and
transducer if one wishes to pass it to any specialized atore general than previous approaches that aggratiate
gorithms (composition, inversion) that assume weightsccepting paths from.

- Our new algorithm (section 6) is most important for
BWe defingle| = 1 to simplify theO(- - -) expressions. previously unminimizable, practically needed division
*The |A(F,)| term contributed by a given arc fromis a semirings:real (e.g., for probabilities)expectation (for

bound on the length of thecp of the outputs of certain paths learning (Eisner, 2002)), anddditive with negative

from ¢q. Mohri uses all paths from and we use just two, so our . . .
LCP is sometimes longer. However, batbps probably tend to weights (for conditional random fields (Lafferty et al.,

be short in practice, especially if one bypasses(k, k) with 2001)). It can also be used in non-division semirings,
special handling fok\k = ¢. as for transducers. It is unpatented, easy to implement,

comparable or faster in asymptotic runtime, and perhaps Let M’ be any automaton that compute’s Fora, 8 € D,
faster in practice (especiglly for the tropical semiringye saya M Biff 61/(0,) = 6200 (0, 3), €., the prefixes
where it seems preferable in most respects). o andg lead from the start state O to the same staie M.
Our approach applies also f-weighted sequential |t o ¥ 3, thena £ 8, sincea™'F = 0(0,0) ® F, =~
transducers as in (Cortes et al., 2002). Such automai®, 3) ® F, = 8~ 'F.
can be regarded as weighted by the product semiring it o £ g, thena 'F ~ g7'F, SOFs,, (0.0) ~ a 'F =~
(R x A%, (+,min), (x, concaj). Equivalently, one can ., _ Fyp(0,) S061(0,0) =~ (0, 8), soa ~ 3 by
push the numeric and string components independently, . ction oft7
_ Our new pushmg algorithm qnab_les notonly_m|n|m|z§1— In short,a M’ Boalg=a M 3. So each of the three
tion but also equivalence-testing in more weight semifpartitions of D into equivalence classes is a refinement of the
ings. Equivalence is efficiently tested by pushing the (derext. Henceny;r > nr > ny;, where these are the respective
terministic) automata to canonicalize their arc labels angumbers of equivalence classes.

then testing unweighted equivalence (Mohri, 1997). since’ has one equivalence class per useful stafe/btas
defined in section 2);,,/ is the number of states in a trimmed
References version ofM’. Similarly n;; is the number of states @’ (after

trimming). SinceM’ was arbitraryM is minimal. _
Uniqueness: I/’ has the same number of states\ésthen
.) . the two partitions must be equal. So two prefixes reach the same
Jean Berstel and Christophe Reutenauer. 18&8ional Series giate inps iff they do so in}M. This gives a-preserving iso-
and their LanguagesSpringer-Verlag. .. morphism between/’ and M. It follows that the minimal ma-
Dany Breslauer. 1996. The suffix tree of a tree and minimizingpine is unique, except for the distribution of output labels along
sequential transducersecture Notes in Computer Science paths (which may depend on arbitrary choices of residugs
1075-_ _ Now we turn to section 5's effective construction, usikhg
A. I—;.SChffprd and G. B. Preston. 1967he Algebraic Theory of a pushed machin&/ and a merged versiofd. The proof
of Semigroups . . of minimality is essentially the same as in (Mohri, 2000). We
Corinna Cortes, Patrick Haffner, and Mehryar Mohri. 2002knOW thath/ computes the same function & (since pushing,

Rational kernels. IfProceedings of NIP®ecember. ; . : : '
Lo ; . ! . merging, and trimming preserve this). So it suffices to show
Pierluigi Crescenzi and Viggo Kann. 1998. How to find the best Fg g o gp)

approximation results—a follow-up to Garey and Johnsor ~ 3 = « ~ j. The above proof of minimality will then go
ACM SIGACT New=9(4):90-97, December. through as before.
Jason Eisner. 2002. Parameter estimation for probabilistic // and M have the same states and transition functipn
finite-state transducers. Proc. of ACL, Philadelphia, July. ~denote their emission functions lyandé. F, refers to suf-
John Lafferty, Andrew McCallum, and Fernando Pereira. 200%ix functions in M. Givena %~ B8 (soa,B € D), use the
Conditional random fields: Probabilistic models for seg-, F S R / IR
menting and labeling sequence data.Phoceedings of the Zeflnltlop of ~ 1o ivrlte o F 77]6” ® F aniﬁ =
International Conference on Machine Learning s @ F. letq = §(0,a), v = 5(0,8),k = o(0,a).
. g : For anya € X, write 6(¢g,a) = AMF)\Ma " Fy) = (k®
Mehryar Mohri. 1997. Finite-state transducers in language an FO\k @ Ma 'F,) = Ak @ F)\Ak @ a~'F,) —
speech processin@omputational Linguistic23(2). >\(O[q_1F)\)\ a (a_qu)) — Ak ®F’3\>\(a_l(k: ®F7) =
Mehryar Mohri. 2000. Minimization algorithms for sequential)\(F/)\A(AF/ < e N 7? /
. ; . a). By symmetry,g(r,a) = AM(F')\A(a™ " F")
transducersTheoretical Computer Scienca24:177-201. as well. Thanks to left cancellativity, left quotients are unique,
. - s06(q, a) = 5(r, a).%°
Appendlx. Remalnlng Proofs Soa X 8 = corresponding arcs fromandr in M output

Let M be an automaton to minimize add: ¥* — K be the identical weights. Sincew X Ba as well, the same holds at
f_unctlon |t_def|nes. We assunfé’, @) allows greedy fac_torlza- 6(¢,a) andé(r,a). So by induction, regarding/ as an un-
tion, so~ Is anﬁequwalence relation on nonzero functions. WQvelghted automaton, exacﬂy the same String@nx K)* are

first prove that\/ with the properties of section 4 is the minimal accepted fromy and fromr. So merging will merge; andr,
automaton computing’. We will then show, following Mohri, 7

that the algorithm of section 5 finds such &h (Section 6 is a
special case of section 5.)

We chose in advance a desired suffix functign for each o0 10 16 every. This corresponds to the fact that a dead
state[r] of M, and u.sed these to deter.mlne the weightdof giate can be made to merge with any state by pushibgck
To show that the weights were determined correctlyFigtbe from it, so that the arcs to it have weightand the arcs from
the actual suffix function ofr]. Claim that for alla andr, it have arbitrary weights. Our construction &f only creates
Fj(o) = Fyy(). This is easily proved by induction dn|. states for the equivalence classesnfd(0,) for o & D is
Our choice of initial weight then ensures thdt computesF. ungeefined, not a dead state.

We must now prove minimality. Fax, 3 € *, saya &~ We must check that we did not divide lfyand obtain a
o . P r .y ﬂ_ ya) h false equation. It suffices to show that# 0 and A(F;;) #
iff ?f F ~ 37" F. Note that~ is an equivalence relation on 0. Fortunatelya € D implies both. (It impliesF, # 0, so
D= {aey :a 'F#£0}7 (Y 'F)(e) = Fq(72 # 0 for some-. Hence)\qu) # 0
R since otherwise\(y ™' F,) = 0 andA(y ' F)\(y ' F,)(e) is

Bt is not an equivalence relation on allBf, sincea ¢ Dis undefined, contradicting the final-quotient property.)

A. V. Aho, J. E. Hopcroft, and J. D. Ullman. 197%he Design
and Analysis of Computer Algorithmaddison-Wesley.

M .
anda ~ (3 as claimed.

