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Abstract

Previous work on minimizing weighted finite-state automata
(including transducers) is limited to particular types of weights.
We present efficient new minimization algorithms that apply
much more generally, while being simpler and about as fast.

We also point out theoretical limits on minimization algo-
rithms. We characterize the kind of “well-behaved” weight
semirings where our methods work. Outside these semirings,
minimization is not well-defined (in the sense of producing a
unique minimal automaton), and even finding the minimum
number of states is in general NP-complete and inapproximable.

1 Introduction

It is well known how to efficiently minimize a determin-
istic finite-state automaton (DFA), in the sense of con-
structing another DFA that recognizes the same language
as the original but with as few states as possible (Aho et
al., 1974). This DFA also has as few arcs as possible.

Minimization is useful for saving memory, as when
building very large automata or deploying NLP systems
on small hand-held devices. When automata are built up
through complex regular expressions, the savings from
minimization can be considerable, especially when ap-
plied at intermediate stages of the construction, since (for
example) smaller automata can be intersected faster.

Recently the computational linguistics community has
turned its attention toweightedautomata that compute
interestingfunctionsof their input strings. A traditional
automaton only returns an boolean from the setK =
{true, false}, which indicates whether it has accepted
the input. But a probabilistic automaton returns a prob-
ability in K = [0, 1], or equivalently, a negated log-
probability inK = [0,∞]. A transducer returns an output
string fromK = ∆∗ (for some alphabet∆).

Celebrated algorithms by Mohri (1997; 2000) have
recently made it possible to minimize deterministic au-
tomata whose weights (outputs) are log-probabilities or
strings. These cases are of central interest in language
and speech processing.

However, automata with other kinds of weights can
also be defined. The general formulation of weighted
automata (Berstel and Reutenauer, 1988) permitsany
weight setK, if appropriate operations⊕ and⊗ are pro-
vided for combining weights from the different arcs of
the automaton. The triple(K,⊕,⊗) is called aweight

semiring and will be explained below.K-valued func-
tions that can be computed by finite-state automata are
calledrational functions.

How does minimization generalize to arbitrary weight
semirings? The question is of practical as well as theoret-
ical interest. Some NLP automata use thereal semiring
(R,+,×), or its log equivalent, to compute unnormalized
probabilities or other scores outside the range[0, 1] (Laf-
ferty et al., 2001; Cortes et al., 2002).Expectation semir-
ings(Eisner, 2002) are used to handle bookkeeping when
training the parameters of a probabilistic transducer. A
byproduct of this paper is a minimization algorithm that
works fully with those semirings, a new result permitting
more efficient automaton processing in those situations.

Surprisingly, we will see that minimization is not
even well-defined for all weight semirings! We will
then (nearly) characterize the semirings where itis well-
defined, and give a recipe for constructing minimization
algorithms similar to Mohri’s in such semirings.

Finally, we follow this recipe to obtain a specific, sim-
ple and practical algorithm that works for alldivision
semirings. All the cases above either fall within this
framework or can be forced into it by adding multiplica-
tive inverses to the semiring. The new algorithm provides
arguably simpler minimization for the cases that Mohri
has already treated, and also handles additional cases.

2 Weights and Minimization

We introduce weighted automata by example. The trans-
ducer below describes a partial function from strings to
strings. It mapsaab 7→ xyz andbab 7→ wwyz. Why?
Since the transducer is deterministic, each input (such as
aab ) is accepted along at most one path; the correspond-
ing output (such asxyz ) is found by concatenating the
output strings found along the path.ε denotes the empty
string.

0

1a:x

3
b:     ε

2

a:y

b:zz

a:wwy

4

b:wwzzz
5

b:z

b:     ε

δ andσ standardly denote the automaton’stransition and
output functions: δ(3, a) = 2 is the state reached by the
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a arc from state 3, andσ(3, a) = wwy is that arc’s output.
In an automaton whose outputs (weights) were num-

bers rather than strings likewwy, concatenating them
would not be sensible; instead we would want to add or
multiply the weights along the path. In general⊗ denotes
the chosen operation for combining weights along a path.

The ⊗ operation need not be commutative—indeed
concatenation is not—but it must be associative.K must
contain (necessarily unique) weights, denoted1 and 0,
such that1⊗ k = k ⊗ 1 = k and0⊗ k = k ⊗ 0 = 0 for
all k ∈ K. An unaccepted input (e.g.,aba ) is assigned
the output0. When⊗ is string concatenation,1 = ε, and
0 is a special object∅ defined to satisfy the axioms.

If an input such asaa were accepted along multiple
paths, we would have to use another operation⊕ to com-
bine those paths’ weights into a single output foraa .
But that cannot happen with thedeterministicautomata
treated by this paper. So we omit discussion of the prop-
erties that⊕ should have, and do not trouble to spell out
its definition for the semirings(K,⊕,⊗) discussed in this
paper.1 We are only concerned with the monoid(K,⊗).

The following automaton is equivalent to the previous
one since it computes the same function:

0

1a:x

3
b:ww

2

a:yz

b:zzz

a:yz

4

b:zzz
5

b:     ε

b:     ε

However, it distributes weights differently along the arcs,
and states 1 and 3 can now obviously be merged (as can 2
and 4, yielding theminimalequivalent automaton). For-
mally we know that states 1 and 3 areequivalentbecause
F1 = F3, whereFq denotes thesuffix function of state
q—the function defined by the automaton if the start state
is taken to beq rather than 0. (Thus,F3(ab) = yz.)
Equivalent states can safely be merged, by deleting one
and rerouting its incoming arcs to the other.

We will follow Mohri’s minimization strategy:

1. Turn the first automaton above into the second. This
operation is calledpushing (or quasi-determinization).
Here, for instance, it “pushedwwback” through state 3.
2. Merge equivalent states of the second automaton, by
applying ordinaryunweightedDFA minimization (Aho et
al., 1974, section 4.13) as if each weighted arc label such
asa:yz were simply a letter in a large alphabet.
3. Trim the result, removing useless states and arcs that
are not on any accepting path (defined as a path whose
weight is non-0 because it has no missing arcs and its last
state is final).

1Though appropriate definitions do exist for our examples.
For example, take the⊕ of two strings to be the shorter of the
two, breaking ties by a lexicographic ordering.

Mohri (2000) proves that this technique finds the minimal
automaton, which he shows to be unique up to placement
of weights along paths.2

We will only have to modify step 1, generalizing push-
ing to other semirings. Pushing makes heavy use ofleft
quotients: we adopt the notationk\m for an element of
K such thatk ⊗ (k\m) = m. This differs from the nota-
tion k−1⊗m (in whichk−1 denotes an actual element of
K) becausek\m need not exist nor be unique. For exam-
ple,ww\wwzzz = zzz (a fact used above) butwwy\wwzzz
does not exist sincewwzzz does not begin withwwy.

If F is a function,α is a string, andk is a weight, we
use some natural notation for functions related toF :
k ⊗ F : (k ⊗ F )(γ) def= k ⊗ (F (γ))

k\F : a function (if one exists) withk ⊗ (k\F ) = F

α−1F : (α−1F )(γ) def= F (αγ) (standard notation)

In effect,k\F andα−1F drop output and input prefixes.

3 Pushing and Its Limitations

The intuition behind pushing is to canonicalize states’
suffix functions. This increases the chance that two states
will have the same suffix function. In the example of the
previous section, we were able to replaceF3 with ww\F3

(pushing theww backwards onto state 3’s incoming arc),
making it equal toF1 so{1, 3} could merge.

Since canonicalization was also performed at states 2
and 4, F1 and F3 ended up with identical representa-
tions: arc weights were distributed identically along cor-
responding paths from 1 and 3. Hence unweighted mini-
mization coulddiscoverthatF1 = F3 and merge{1, 3}.

Mohri’s pushing strategy—we will see others—is al-
ways to extract some sort of “maximum left factor” from
each suffix functionFq and push it backwards. That is,
he expressesFq = k ⊗ G for as “large” ak ∈ K as
possible—a maximal common prefix—then pushes fac-
tor k back out of the suffix function so that it is counted
earlier on paths throughq (i.e., beforereachingq). q’s
suffix function now has canonical formG (i.e.,k\Fq).

How does Mohri’s strategy reduce to practice? For
transducers, where(K,⊗) = (∆∗, concat), the maxi-
mum left factor ofFq is the longest common prefix of
the strings inrange(Fq).3 Thus we hadrange(F3) =
{wwyz, wwzzz} above with longest common prefixww.
For thetropical semiring(R≥0 ∪ {∞},min,+), where
k\m = m − k is defined only ifk ≤ m, the maximum
left factork is the minimum ofrange(Fq).

But “maximum left factor” is not an obvious notion
for all semirings. If we extended the tropical semir-

2That is, any other solution is isomorphic to the one found
here if output weights are ignored.

3In general we treatFq as a partial function, so that
range(Fq) excludes0 (the weight of unaccepted strings). Left
factors are unaffected, asanythingcan divide0.



ing with negative numbers, or substituted the semiring
(R≥0,+,×), keeping the usual definition of “maximum,”
then any function would have arbitrarily large left factors.

A more fundamentally problematic example is the
semiringZ[

√
−5]. It is defined as({m+n

√
−5 : m,n ∈

Z},+,×) where Z denotes the integers. It is a stan-
dard example of a commutative algebra in which fac-
torization is not unique. For example,6 = 2 ⊗ 3 =
(1 +

√
−5) ⊗ (1 −

√
−5) and these 4 factors cannot be

factored further. This makes it impossible to canonicalize
F2 below:

0

1

a:1

2
b:1

3

c:1

4

a:3

b:(1+sqrt(-5))

a:6

b:(2+2*sqrt(-5))

a:(1-sqrt(-5))

b:2

What is the best left factor to extract fromF2? We could
left-divideF2 by either 2 or1 +

√
−5. The former action

allows us to merge{1, 2} and the latter to merge{2, 3};
but we cannot have it both ways. So this automaton has
no unique minimization! The minimum of 4 states is
achieved by two distinct answers (contrast footnote 2).

It follows thatknown minimization techniques will not
work in general semirings, as they assume state merge-
ability to be transitive.4 In general the result of mini-
mization is not even well-defined (i.e., unique).

Of course, given a deterministic automatonM , one
may still seek an equivalent̄M with as few states as pos-
sible. But we will now see that evenfinding the minimum
number of states is NP-complete, and inapproximable.

The NP-hardness proof [which may be skipped on a
first reading] is by reduction from Minimum Clique Par-
tition. Given a graph with vertex setV = {1, 2, . . . n}
and edge setE, we wish to partitionV into as few cliques
as possible. (S ⊆ V is aclique of the graph iffij ∈ E
for all pairsi, j ∈ S.) Determining the minimum num-
ber of cliques is NP-complete and inapproximable: that
is, unless P=NP, we cannot even find it within a factor of
2 or 3 or any other constant factor in polynomial time.5

Given such a graph, we reduce the clique problem to
our problem. Consider the “bitwise boolean” semiring
({0, 1}n, OR, AND). Each weightk is a string ofn bits,

4A further wrinkle lies in deciding what and how to push; in
general semirings, it can be necessary to shift weights forward
as well as backward along paths. Modify the example above by
pushing a factor of 2 backwards through state 2. MakingF2 =
F3 in this modified example now requires pushing 2 forward
and then1 +

√
−5 backward through state 2.

5This problem is just the dual of Graph Coloring. For de-
tailed approximability results see (Crescenzi and Kann, 1998).

denotedk1, . . . kn. For eachi ∈ V , definef i, ki,mi ∈
K as follows:f i

j = 0 iff ij ∈ E; ki
j = 1 iff i = j; mi

j =
0 iff either ij ∈ E or i = j. Now consider the following
automatonM over the alphabetΣ = {a, b, c1, . . . cn}.
The states are{0, 1, . . . n, n+1}; 0 is the initial state and
n + 1 is the only final state. For eachi ∈ V , there is an

arc0 ci:1
n

−−→i and arcsi a:ki

−−→(n + 1) andi b:mi

−−→(n + 1).
A minimum-state automaton equivalent toM must

have a topology obtained by merging some states ofV .
Other topologies that could accept the same language
(c1|c2| · · · |cn)(a|b) are clearly not minimal (they can be
improved by merging final states or by trimming).

We claim that forS ⊆ {1, 2, . . . n}, it is possible to
merge all states inS into a single state (in the automaton)
if and only if S is a clique (in the graph):

• If S is a clique, then definek, m ∈ K by ki = 1 iff
i ∈ S, andmi = 1 iff i 6∈ S. Observe that for every
i ∈ S, we haveki = f i ⊗ k, mi = f i ⊗ m. So by
pushing back a factor off i at eachi ∈ S, one can make
all i ∈ S share a suffix function and then merge them.
• If S is not a clique, then choosei, j ∈ S so that
ij 6∈ E. Considering only biti, there exists no bit
pair (ki,mi) ∈ {0, 1}2 of which (ki

i,m
i
i) = (1, 0)

and(kj
i ,m

j
i ) = (0, 1) are both left-multiples. So there

can exist no weight pair(k, m) of which (ki,mi) and
(kj ,mj) are both left-multiples. It is therefore not pos-
sible to equalize the suffix functionsFi andFj by left-
dividing each of them.6 i andj cannot be merged.

Thus, the partitions ofV into cliques are identical to
the partitions ofV into sets of mergeable states, which are
in 1-1 correspondence with the topologies of automata
equivalent toM and derived from it by merging. There is
anN -clique partition ofV iff there is an(N+2)-state au-
tomaton. It follows that finding theminimumnumber of
states is as hard, and as hard to approximate within a con-
stant factor, as finding the minimum number of cliques.

4 When Is Minimization Unique?

The previous section demonstrated the existence of
pathological weight semirings. We now partially charac-
terize the “well-behaved” semirings(K,⊕,⊗) in which
all automatadohave unique minimizations. Except when
otherwise stated,lowercase variables are weights∈ K
and uppercase ones areK-valued rational functions.
[This section may be skipped, except the last paragraph.]

A crucial necessary condition is that(K,⊗) allow
what we will call greedy factorization, meaning that
givenf⊗F = g⊗G 6= 0, it is always possible to express

6This argument only shows that pushing backward cannot
give them the same suffix function. But pushing forward cannot
help either, despite footnote 4, since1n on the arc toi has no
right factors other than itself (the identity) to push forward.



F = f ′ ⊗H andG = g′ ⊗H. This condition holds for
many practically useful semirings, commutative or other-
wise. It says, roughly, that the order in which left factors
are removed from a suffix function does not matter. We
can reach the same canonicalH regardless of whether we
left-divide first byf or g.

Given a counterexample to this condition, one can con-
struct an automaton with no unique minimization. Sim-
ply follow the plan of theZ[

√
−5] example, putting

F1 = F , F2 = f ⊗ F = g ⊗ G, F3 = G.7 For ex-
ample, in semiring(K,⊗) = ({xn : n 6= 1}, concat), put
F2 = x2⊗{(a, x3), (b, x4)} = x3⊗{(a, x2), (b, x3)}.

Some useful semirings do fail the condition. One
is the “bitwise boolean” semiring that checks a string’s
membership intwo languages at once:(K,⊕,⊗) =
({00, 01, 10, 11}, OR, AND). (Let F2 = 01 ⊗
{(a, 11), (b, 00)} = 01 ⊗ {(a, 01), (b, 10)}.) R2 under
pointwise× (which computes a string’s probability under
two models) fails similarly. So does(sets,∩,∪) (which
collects features found along the accepting path).

We call H a residue of F iff F = f ′ ⊗ H for some
f ′. Write F ' G iff F , G have acommonresidue. In
these terms,(K,⊗) allows greedy factorization iffF '
G whenF , G are residues of the same nonzero function.
More perspicuously, one can show that this holds iff' is
an equivalence relation on nonzero,K-valued functions.

So in semirings where minimization is uniquely de-
fined,' is necessarily an equivalence relation. Given an
automatonM for function F , we may regard' as an
equivalence relation on the states of a trimmed version
of M :8 q ' r iff Fq ' Fr. Let [r] = {r1, . . . , rm}
be the (finite) equivalence class ofr: we can inductively
find at least one functionF[r] that is a common residue
of Fr1 , . . . , Frm

. The idea behind minimization is to
construct a machinēM whose states correspond to these
equivalence classes, and where each[r] has suffix func-
tion F[r]. The Appendix shows that̄M is then minimal.

If M has an arcq a:k−→r, M̄ needs an arc[q]a:k′

−→[r], where
k′ is such thata−1F[q] = k′ ⊗ F[r].

The main difficulty in completing the construction of
M̄ is to ensure each weightk′ exists. That is,F[r] must be
carefully chosen to be a residue not only ofFr1 , . . . , Frm

(which ultimately does not matter, as long asF[0] is a
residue ofF0, where 0 is the start state) but also of
a−1F[q]. If M is cyclic, this imposes cyclic dependen-
cies on the choices of the variousF[q] andF[r] functions.

We have found no simple necessary and sufficient con-
dition on(K,⊗) that guarantees a globally consistent set
of choices to exist. However, we have given a useful nec-

7Then factoringF2 allows state 2 to merge with either 1 or
3; but all three states cannot merge, since any suffix function
that could be shared by 1 and 3 could serve asH.

8Trimming ensures that suffix functions are nonzero.

essary condition (greedy factorization), and we now give
a useful sufficient condition. Say thatH is a minimum
residueof G 6= 0 if it is a residue of every residue ofG.
(If G has several minimum residues, they are all residues
of one another.) If(K,⊗) is such thateveryG has a min-
imum residue—a strictly stronger condition than greedy
factorization—then it can be shown thatG has the same
minimum residues as anyH ' G. In such a(K,⊗),
M̄ can be constructed by choosing the suffix functions
F[r] independently. Just letF[r] = F{r1,...,rm} be a mini-

mum residue ofFr1 . Now consider againM ’s arcq a:k−→r:
sincea−1F[q] ' a−1Fq ' Fr ' Fr1 , we seeF[r] is a
(minimum) residue ofa−1F[q], so that a weightk′ can be

chosen for[q]a:k′

−→[r].
A final step ensures that̄M defines the functionF . To

describe it, we must augment the formalism to allow an
initial weight ι(0) ∈ K, and afinal weight φ(r) ∈ K
for each final stater. The weight of an accepting path
from the start state 0 to a final stater is now defined to
beι(0)⊗ (weights of arcs along the path)⊗ φ(r). In M̄ ,
we setι([0]) to somek such thatF0 = k ⊗ F[0], and set
φ([r]) = F[r](ε). The mathematical construction is done.

5 A Simple Minimization Recipe

We now give an effective algorithm for minimization in
the semiring(K,⊗). The algorithmic recipe has one in-
gredient: along with(K,⊗), the user must give us aleft-
factor functional λ that can choose a left factorλ(F ) of
any functionF . Formally, ifΣ is the input alphabet, then
we requireλ : (Σ∗ → K) → K to have the following
properties for any rationalF : Σ∗ → K and anyk ∈ K:

• Shifting: λ(k ⊗ F ) = k ⊗ λ(F ).
• Quotient: λ(F )\λ(a−1F ) exists inK for anya ∈ Σ.

• Final-quotient: λ(F )\F (ε) exists inK.9

The algorithm generalizes Mohri’s strategy as outlined
in section 2. We just useλ to pick the left factors during
pushing. Theλ’s used by Mohri for two semirings were
mentioned in section 3. We will define anotherλ in sec-
tion 6. Naturally, it can be shown that noλ can exist in a
semiring that lacks greedy factorization, such asZ[

√
−5].

The 3 properties above are needed for the strategy to
work. The strategy also requires(K,⊗) to be left can-
cellative, i.e., k ⊗ m = k ⊗ m′ implies m = m′ (if
k 6= 0). In other words, left quotients byk are unique
when they exist (except for0\0). This relieves us from
having to make arbitrary choices of weight during push-
ing. Incompatible choices might prevent arc labels from
matching as desired during the merging step of section 2.

9To show the final-quotient property given the other two, it
suffices to show thatλ(G) ∈ K has a right inverse inK, where
G is the function mappingε to 1 and everything else to0.



Given an input DFA. At each stateq, simultaneously,
we will push backλ(Fq). This pushing construction
is trivial once theλ(Fq) values are computed. An

arc q a:k−→r should have its weight changed fromk to
λ(Fq)\λ(a−1Fq) = λ(Fq)\λ(k ⊗ Fr), which is well-
defined (by the quotient property and left cancellativity)10

and can be computed asλ(Fq)\(k⊗λ(Fr)) (by the shift-

ing property). Thus a subpathq a:k−→r b:`−→s, with weight

k ⊗ `, will becomeq a:k′

−→r b:`′

−→s, with weightk′ ⊗ `′ =
(λ(Fq)\(k ⊗ λ(Fr))) ⊗ (λ(Fr)\(` ⊗ λ(Fs))). In this
way the factorλ(Fr) is removed from the start of all paths
from r, and is pushed backwards throughr onto the end
of all pathsto r. It is possible for this factor (or part of
it) to travel back through multiple arcs and around cycles,
sincek′ is found by removing aλ(Fq) factor from all of
k ⊗ λ(Fr) and not merely fromk.

As it replaces the arc weights, pushing also replaces
the initial weightι(0) with ι(0) ⊗ λ(F0), and replaces
each final weightφ(r) with λ(Fr)\φ(r) (which is well-
defined, by the final-quotient property). Altogether, push-
ing leaves path weights unchanged (by easy induction).11

After pushing, we finish with merging and trimming as
in section 2. While merging via unweighted DFA mini-
mization treatsarc weights as part of the input symbols,
what should it do with any initial and final weights? The
start state’s initial weight should be preserved. The merg-
ing algorithm can and should be initialized with a multi-
way partition of states by final weight, instead of just a
2-way partition into final vs. non-final.12

The Appendix shows that this strategy indeed finds the
unique minimal automaton.

It is worth clarifying how this section’s effective al-
gorithm implements the mathematical construction from
the end of section 4. At each stateq, pushing replaces the
suffix functionFq with λ(Fq)\Fq. The quotient proper-
ties of λ are designed to guarantee that this quotient is
defined,13 and the shifting property is designed to ensure

10Except in the case0\0, which is not uniquely defined. This
arises only ifFq = 0, i.e.,q is a dead state that will be trimmed
later, so any value will do for0\0: arcs fromq are irrelevant.

11One may prefer a formalism without initial or final weights.
If the original automaton is free of final weights (other than1),
so is the pushed automaton—provided thatλ(F ) = 1 whenever
F (ε) = 1, as is true for allλ’s in this paper. Initial weights can
be eliminated at the cost of duplicating state 0 (details omitted).

12Alternatively, Mohri (2000,§4.5) explains how to tem-
porarily eliminate final weights before the merging step.

13That is,λ(Fq)\Fq(γ) exists for eachγ ∈ Σ∗. One may
show by induction on|γ| that the left quotientsλ(F )\F (γ) ex-
ist for all F . When|γ| = 0 this is the final-quotient property.
For |γ| > 0 we can writeγ asaγ′, and thenλ(F )\F (γ) =
λ(F )\F (aγ′) = λ(F )\(a−1F )(γ′) = (λ(F )\λ(a−1F )) ⊗
(λ(a−1F )\(a−1F )(γ′)), where the first factor exists by the
quotient property and the second factor exists by inductive hy-
pothesis.

that it is a minimum residue ofFq.14 In short, if the con-
ditions of this section are satisfied, so are the conditions
of section 4, and the construction is the same.

The converse is true as well, at least for right cancella-
tive semirings. If such a semiring satisfies the conditions
of section 4 (every function has a minimum residue), then
the requirements of this section can be met to obtain an
effective algorithm: there exists aλ satisfying our three
properties,15 and the semiring is left cancellative.16

6 Minimization in Division Semirings

For the most important idea of this paper, we turn to a
common special case. Suppose the semiring(K,⊕,⊗)
definesk\m for all m, k 6= 0 ∈ K. Equivalently,17 sup-
pose everyk 6= 0 ∈ K has a unique two-sided inverse
k−1 ∈ K. Useful cases of suchdivision semirings in-
clude the real semiring(R,+,×), the tropical semiring
extended with negative numbers(R∪{∞},min,+), and
expectation semirings (Eisner, 2002). Minimization has
not previously been available in these.

We propose a new left-factor functional that is fast to
compute and works inarbitrary division semirings. We
avoid the temptation to defineλ(F ) as

⊕
range(F ): this

definition has the right properties, but in some semirings
including(R≥0,+,×) the infinite summation is quite ex-
pensive to compute and may even diverge. Instead (un-
like Mohri) we will permit ourλ(F ) to depend on more
than justrange(F ).

Order the space of input stringsΣ∗ by length, breaking
ties lexicographically. For example,ε < bb < aab <
aba < abb. Now define

14SupposeX is any residue ofFq, i.e., we can writeFq =
x ⊗ X. Then we can rewrite the identityFq = λ(Fq) ⊗
(λ(Fq)\Fq), using the shifting property, asx ⊗ X = x ⊗
λ(X)⊗(λ(Fq)\Fq). As we have separately required the semir-
ing to be left cancellative, this implies thatX = λ(X) ⊗
(λ(Fq)\Fq). So(λ(Fq)\Fq) is a residue of any residueX of
Fq, as claimed.

15Defineλ(0) = 0. From each equivalence class of nonzero
functions under', pick a single minimum residue (axiom of
choice). GivenF , let [F ] denote the minimum residue from its
class. Observe thatF = f⊗[F ] for somef ; right cancellativity
implies f is unique. So defineλ(F ) = f . Shifting property:
λ(k ⊗ F ) = λ(k ⊗ f ⊗ [F ]) = k ⊗ f = k ⊗ λ(f ⊗ [F ]) =
k⊗ λ(F ). Quotient property:λ(a−1F )⊗ [a−1F ] = a−1F =
a−1(λ(F )⊗ [F ]) = λ(F )⊗ a−1[F ] = λ(F )⊗ λ(a−1[F ])⊗
[a−1[F ]] = λ(F ) ⊗ λ(a−1[F ]) ⊗ [a−1F ] (the last step since
a−1[F ] ' a−1F ). Applying right cancellativity,λ(a−1F ) =
λ(F )⊗λ(a−1[F ]), showing thatλ(F )\λ(a−1F ) exists.Final-
quotient property:Quotient exists sinceF (ε) = λ(F )⊗[F ](ε).

16Let 〈x, y〉 denote the function mappinga to x, b to y, and
everything else to0. Givenkm = km′, we havek ⊗ 〈m, 1〉 =
k⊗〈m′, 1〉. Since the minimum residue property implies greedy
factorization, we can write〈m, 1〉 = f ⊗ 〈a, b〉, 〈m′, 1〉 =
g ⊗ 〈a, b〉. Thenf ⊗ b = g ⊗ b, so by right cancellativity
f = g, whencem = f ⊗ a = g ⊗ a = m′.

17The equivalence is a standard exercise, though not obvious.



λ(F ) def=
{

F (min support(F )) ∈ K if F 6= 0
0 if F = 0

where support(F ) denotes the set of input strings to
which F assigns a non-0 weight. Thisλ clearly has the
shifting property needed by section 5. The quotient and
final-quotient properties come for free because we are in
a division semiring and becauseλ(F ) = 0 iff F = 0.

Under this definition, what isλ(Fq) for a suffix func-
tion Fq? Consider all paths of nonzero weight18 from
stateq to a final state. If none exist,λ(Fq) = 0. Oth-
erwise,min support(Fq) is the input string on the short-
est such path, breaking ties lexicographically.19 λ(Fq) is
simply the weight of that shortest path.

To push, we must computeλ(Fq) for each stateq. This
is easy becauseλ(Fq) is the weight of a single, minimum-
length and hence acyclic path fromq. (Previous meth-
ods combined the weights ofall paths fromq, even if
infinitely many.) It also helps that the left factors at dif-
ferent states are related: if the minimum path fromq be-
gins with a weight-k arc tor, then it continues along the
minimum path fromr, soλ(Fq) = k ⊗ λ(Fr).

Below is a trivial linear-time algorithm for computing
λ(Fq) at everyq. Each state and arc is considered once
in a breadth-first search back from the final states.len(q)
andfirst(q) store the string length and first letter of a run-
ning minimum ofsupport(Fq) ∈ Σ∗.
1. foreachstateq
2. if q is final then
3. len(q) := 0 (* min support(Fq) is ε for final q *)

4. λ(Fq) := φ(q) (* Fq(ε) is just the final weight, φ(q) *)
5. enqueueq on a FIFO queue
6. else
7. len(q) := ∞ (* not yet discovered *)
8. λ(Fq) := 0 (* assume Fq = 0 until we discover q *)
9. until the FIFO queue is empty
10. dequeue a stater
11. foreacharcq a:k−→r enteringr such thatk 6= 0
12. if len(q) = ∞ then enqueueq (* breadth-first search *)
13. if len(q) = ∞ or (len(q) = len(r) + 1

and a < first(q)) then
14. first(q) := a (* reduce min support(Fq) *)
15. len(q) := len(r) + 1
16. λ(Fq) := k ⊗ λ(Fr)

The runtime isO(|states|+t · |arcs|) if ⊗ has runtimet.
If ⊗ is slow, this can be reduced toO(t · |states|+ |arcs|)
by removing line 16 and waiting until the end, when the
minimum path from each non-final stateq is fully known,
to compute the weightλ(Fq) of that path. Simply finish
up by calling FIND-λ on each stateq:

FIND-λ(stateq):
1. if λ(Fq) = 0 andlen(q) < ∞ then
2. λ(Fq) := σ(q, first(q))⊗ FIND-λ(δ(q, first(q)))
3. return λ(Fq)

18In a division semiring, these are paths free of0-weight arcs.
19Themin exists since< is a well-ordering. In a purely lex-

icographic ordering,a∗b ⊆ Σ∗ would have no min.

After thus computingλ(Fq), we simply proceed with
pushing, merging, and trimming as in section 5.20 Push-
ing runs in timeO(t · |arcs|) and trimming inO(|states|+
|arcs|). Merging is worse, with timeO(|arcs| log |states|).

7 A Bonus: Non-Division Semirings

The trouble withZ[
√
−5] was that it “lacked” needed

quotients. The example on p. 3 can easily be minimized
(down to 3 states) if we regard it instead as defined over
(C,+,×)—letting us useanyweights inC. Simply use
section 6’s algorithm.

This new change-of-semiring trick can be used for
other non-division semirings as well. One canextendthe
original weight semiring(K,⊕,⊗) to a division semiring
by adding⊗-inverses.21

In this way, the tropical semiring(R≥0 ∪ {∞},
min,+) can be augmented with thenegativereals to ob-
tain (R ∪ {∞},min,+). And the transducer semiring
(∆∗ ∪ {∅},min, concat)22 can be augmented by extend-
ing the alphabet∆ = {x, y, . . .} with inverse letters
{x−1, y−1, . . .}.

The minimized DFA we obtain may have “weird” arc
weights drawn from the extended semiring. But the arc
weights combine along paths to produce the original au-
tomaton’s outputs, which fall in the original semiring.

Let us apply this trick to the example of section 2,
yielding the following pushed automaton in whichF1 =
F3 as desired. (x−1, y−1, . . . are written asX, Y, . . ., and
λ(Fq) is displayed at eachq.)

0
xyz

1
yza:     ε

3
wwyz

b:ZYXwwyz
2
z

a:     ε
b:ZYzzz

a:     ε

4
εb:ZYzzz

5
ε

b:     ε
b:     ε

:xyz

For example, thez−1y−1zzz output on the3→4 arc was
computed asλ(F3)−1 ⊗ wwzzz ⊗ λ(F4) = (wwyz)−1 ⊗
wwzzz⊗ ε = z−1y−1w−1w−1wwzzz.

This trick yields new algorithms for the tropical semir-
ing and sequential transducers, which is interesting and
perhaps worthwhile. How do they compare with previ-
ous work?

Over the tropical semiring, our linear-time pushing al-
gorithm is simpler than (Mohri, 1997), and faster by a

20It is also permissible to trim the input automaton at the start,
or right after computingλ (note thatλ(Fq) = 0 iff we should
trim q). This simplifies pushing and merging. No trimming is
then needed at the end, except to remove the one dead state that
the merging step may have added to complete the automaton.

21This is often possible but not always; the semiring must be
cancellative, and there are other conditions. Even disregarding
⊕ because we are minimizing a deterministic automaton, it is
not simple to characterize when the monoid(K,⊗) can be em-
bedded into a group (Clifford and Preston, 1967, chapter 12).

22Wheremin can be defined as in section 6 and footnote 1.



log factor, because it does not require a priority queue.
(Though this does not help the overall complexity of min-
imization, which is dominated by the merging step.) We
also have no need to implement faster algorithms for spe-
cial cases, as Mohri proposes, because our basic algo-
rithm is already linear. Finally, our algorithm generalizes
better, as it can handle negative weight cycles in the input.
These are useful in (e.g.) conditional random fields.

On the other hand, Mohri’s algorithm guarantees a po-
tentially useful property that we do not: that the weight
of the prefix path readingα ∈ Σ∗ is the minimum weight
of all paths with prefixα. Commonly this approximates
− log(p(most probable string with prefixα)), perhaps a
useful value to look up for pruning.

As for transducers, how does our minimization algo-
rithm (above) compare with previous ones? Following
earlier work by Choffrut and others, Mohri (2000) de-
finesλ(Fq) as the longest common prefix ofrange(Fq).
He constrains these values with a set of simultaneous
equations, and solves them by repeated changes of vari-
able using a complex relaxation algorithm. His imple-
mentation uses various techniques (including a trie and
a graph decomposition) to make pushing run in time
O(|states| + |arcs| · maxq |λ(Fq)|).23 Breslauer (1996)
gives a different computation of the same result.

To implement our simpler algorithm, we represent
strings in∆∗ as pointers into a global trie that extends
upon lookup. The strings are actually stored reversed in
the trie so that it is fast to add and remove short pre-
fixes. Over the extended alphabet, we use the pointer
pair (k, m) to represent the stringk−1m wherek, m ∈
∆∗ have no common prefix. Such pointer pairs can
be equality-tested inO(1) time during merging. For
k,m ∈ ∆∗, k ⊗m is computed in timeO(|k|), andk\m
in time O(|LCP(k, m)|) or more looselyO(|k|) (where
LCP = longest common prefix).

The total time to compute ourλ(Fq) values is therefore
O(|states|+ t · |arcs|), wheret is the maximum length of
any arc’s weight. For each arc we then compute a new
weight as a left-quotient by aλ value. So our total run-
time for pushing isO(|states| + |arcs| · maxq |λ(Fq)|).
This may appear identical to Mohri’s runtime, but in fact
our |λ(Fq)| ≥ Mohri’s, though the two definitions share
a worst case oft · |states|.24

Inverse letters must be eliminated from the minimized
transducer if one wishes to pass it to any specialized al-
gorithms (composition, inversion) that assume weights

23We define|ε| = 1 to simplify theO(· · ·) expressions.
24The |λ(Fq)| term contributed by a given arc fromq is a

bound on the length of theLCP of the outputs of certain paths
from q. Mohri uses all paths fromq and we use just two, so our
LCP is sometimes longer. However, bothLCPs probably tend to
be short in practice, especially if one bypassesLCP(k, k) with
special handling fork\k = ε.

in ∆∗. Fortunately this is not hard. If stateq of the
result was formed by merging statesq1, . . . qj , define
ρ(q) = LCS{λ(Fqi

) : i = 1, . . . j} ∈ ∆∗ (whereLCS =
longest common suffix). Now push the minimized trans-
ducer usingρ(q)−1 in place ofλ(Fq) for all q. This cor-
rects for “overpushing”: any lettersρ(q) that were unnec-
essarily pushed back before minimization are pushed for-
ward again, cancelling the inverse letters. In our running
example, state 0 will push(xyz)−1 back and the merged
state{1,3} will push (yz)−1 back. This is equivalent to
pushingρ(0) = xyz forward through state 0 and theyz
part of it forward through{1,3}, canceling thez−1y−1 at
the start of one of the next arcs.

We must show that the resulting labels really are free
of inverse letters. Their values are as if the original push-
ing had pushed back notλ(Fqi) ∈ ∆∗ but only its shorter

prefix λ̂(qi)
def= λ(Fqi

)/ρ(qi) ∈ ∆∗ (note theright quo-
tient). In other words, an arc fromqi to ri′ with weight
k ∈ ∆∗ was reweighted aŝλ(qi)\(k ⊗ λ̂(ri′)). Any in-
verse letters in such new weights clearly fall at the left.
So suppose the new weight on the arc fromq to r begins
with an inverse letterz−1. Thenλ̂(qi) must have ended
with z for eachi = 1, . . . j. But thenρ(qi) was not the
longest common suffix:zρ(qi) is a longer one, a contra-
diction (Q.E.D.).

Negative weights can be similarly eliminated after
minimization over the tropical semiring, if desired, by
substitutingmin for LCS.

The optional elimination of inverse letters or nega-
tive weights does not affect the asymptotic runtime. A
caveat here is that the resulting automaton no longer has
a canonical form. Consider a straight-line automaton:
pushing yields a canonical form as always, but inverse-
letter elimination completely undoes pushing (λ̂(qi) =
ε). This is not an issue in Mohri’s approach.

8 Conclusion and Final Remarks

We have characterized the semirings over which
weighted deterministic automata can be minimized (sec-
tion 4), and shown how to perform such minimization in
both general and specific cases (sections 5, 6, 7). Our
technique for division semirings and their subsemirings
pushes back, at each stateq, the output of asingle, easily
found, shortest accepting path fromq. This is simpler and
more general than previous approaches that aggregateall
accepting paths fromq.

Our new algorithm (section 6) is most important for
previously unminimizable, practically needed division
semirings:real (e.g., for probabilities),expectation(for
learning (Eisner, 2002)), andadditive with negative
weights (for conditional random fields (Lafferty et al.,
2001)). It can also be used in non-division semirings,
as for transducers. It is unpatented, easy to implement,



comparable or faster in asymptotic runtime, and perhaps
faster in practice (especially for the tropical semiring,
where it seems preferable in most respects).

Our approach applies also toR-weighted sequential
transducers as in (Cortes et al., 2002). Such automata
can be regarded as weighted by the product semiring
(R × ∆∗, (+,min), (×, concat)). Equivalently, one can
push the numeric and string components independently.

Our new pushing algorithm enables not only minimiza-
tion but also equivalence-testing in more weight semir-
ings. Equivalence is efficiently tested by pushing the (de-
terministic) automata to canonicalize their arc labels and
then testing unweighted equivalence (Mohri, 1997).
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Appendix: Remaining Proofs
Let M be an automaton to minimize andF : Σ∗ → K be the
function it defines. We assume(K,⊗) allows greedy factoriza-
tion, so' is an equivalence relation on nonzero functions. We
first prove thatM̄ with the properties of section 4 is the minimal
automaton computingF . We will then show, following Mohri,
that the algorithm of section 5 finds such an̄M . (Section 6 is a
special case of section 5.)

We chose in advance a desired suffix functionF[r] for each
state[r] of M̄ , and used these to determine the weights ofM̄ .
To show that the weights were determined correctly, letF̃[r] be
the actual suffix function of[r]. Claim that for allα and r,
F̃[r](α) = F[r](α). This is easily proved by induction on|α|.
Our choice of initial weight then ensures thatM̄ computesF .

We must now prove minimality. Forα, β ∈ Σ∗, sayα
F∼ β

iff α−1F ' β−1F . Note that
F∼ is an equivalence relation on

D
def
= {α ∈ Σ∗ : α−1F 6= 0}.25

25It is not an equivalence relation on all ofΣ∗, sinceα 6∈ D is

Let M ′ be any automaton that computesF . For α, β ∈ D,

we sayα
M′
∼ β iff δM′(0, α) = δM′<(0, β), i.e., the prefixes

α andβ lead from the start state 0 to the same stateq in M ′.

If α
M′
∼ β, thenα

F∼ β, sinceα−1F = σ(0, α) ⊗ Fq '
σ(0, β)⊗ Fq = β−1F .

If α
F∼ β, thenα−1F ' β−1F , soFδM (0,α) ' α−1F '

β−1F ' FδM (0,β), so δM (0, α) ' δM (0, β), soα
M̄∼ β by

construction ofM̄ .
In short,α

M′
∼ β ⇒ α

F∼ β ⇒ α
M̄∼ β. So each of the three

partitions ofD into equivalence classes is a refinement of the
next. HencenM′ ≥ nF ≥ nM̄ , where these are the respective
numbers of equivalence classes.

Since
M′
∼ has one equivalence class per useful state ofM ′ (as

defined in section 2),nM′ is the number of states in a trimmed
version ofM ′. SimilarlynM̄ is the number of states of̄M (after
trimming). SinceM ′ was arbitrary,M̄ is minimal.

Uniqueness: IfM ′ has the same number of states asM̄ , then
the two partitions must be equal. So two prefixes reach the same
state inM ′ iff they do so inM̄ . This gives aδ-preserving iso-
morphism betweenM ′ andM̄ . It follows that the minimal ma-
chine is unique, except for the distribution of output labels along
paths (which may depend on arbitrary choices of residuesF[r]).

Now we turn to section 5’s effective construction, usingλ,
of a pushed machinêM and a merged version̄M . The proof
of minimality is essentially the same as in (Mohri, 2000). We
know thatM̄ computes the same function asM (since pushing,
merging, and trimming preserve this). So it suffices to show

α
F∼ β ⇒ α

M̄∼ β. The above proof of minimality will then go
through as before.

M and M̂ have the same states and transition functionδ;
denote their emission functions byσ and σ̂. Fq refers to suf-

fix functions in M . Given α
F∼ β (so α, β ∈ D), use the

definition of
F∼ to write α−1F = kα ⊗ F ′ and β−1F =

kβ ⊗ F ′. Let q = δ(0, α), r = δ(0, β), k = σ(0, α).
For anya ∈ Σ, write σ̂(q, a) = λ(Fq)\λ(a−1Fq) = (k ⊗
λ(Fq))\(k ⊗ λ(a−1Fq)) = λ(k ⊗ Fq)\λ(k ⊗ a−1Fq) =
λ(α−1F )\λ(a−1(α−1F )) = λ(kα⊗F ′)\λ(a−1(kα⊗F ′)) =
λ(F ′)\λ(a−1F ′). By symmetry,σ̂(r, a) = λ(F ′)\λ(a−1F ′)
as well. Thanks to left cancellativity, left quotients are unique,
soσ̂(q, a) = σ̂(r, a).26

Soα
F∼ β ⇒ corresponding arcs fromq andr in M̂ output

identical weights. Sinceαa
F∼ βa as well, the same holds at

δ(q, a) and δ(r, a). So by induction, regardinĝM as an un-
weighted automaton, exactly the same strings in(Σ×K)∗ are
accepted fromq and fromr. So merging will mergeq andr,

andα
M̄∼ β as claimed.

related by
F∼ to everyβ. This corresponds to the fact that a dead

state can be made to merge with any state by pushing0 back
from it, so that the arcs to it have weight0 and the arcs from
it have arbitrary weights. Our construction of̄M only creates
states for the equivalence classes ofD; δ(0, α) for α 6∈ D is
undefined, not a dead state.

26We must check that we did not divide by0 and obtain a
false equation. It suffices to show thatk 6= 0 andλ(Fq) 6=
0. Fortunately,α ∈ D implies both. (It impliesFq 6= 0, so
(γ−1Fq)(ε) = Fq(γ) 6= 0 for someγ. Henceλ(Fq) 6= 0
since otherwiseλ(γ−1Fq) = 0 andλ(γ−1Fq)\(γ−1Fq)(ε) is
undefined, contradicting the final-quotient property.)


