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Abstract

This paper describes a method for utterance
classification that does not require manual
transcription of training data. The method
combines domain independent acoustic models
with off-the-shelf classifiers to give utterance
classification performance that is surprisingly
close to what can be achieved using conven-
tional word-trigram recognition requiring man-
ual transcription. In our method, unsupervised
training is first used to train a phone n-gram
model for a particular domain; the output of
recognition with this model is then passed to
a phone-string classifier. The classification ac-
curacy of the method is evaluated on three dif-
ferent spoken language system domains.

1 Introduction

A major bottleneck in building data-driven speech pro-
cessing applications is the need to manually transcribe
training utterances into words. The resulting corpus of
transcribed word strings is then used to train application-
specific language models for speech recognition, and in
some cases also to train the natural language components
of the application. Some of these speech processing ap-
plications make use of utterance classification, for exam-
ple when assigning a call destination to naturally spoken
user utterances (Gorin et al., 1997; Carpenter and Chu-
Carroll, 1998), or as an initial step in converting speech
to actions in spoken interfaces (Alshawi and Douglas,
2001).

In this paper we present an approach to utterance clas-
sification that avoids the manual effort of transcribing
training utterances into word strings. Instead, only the
desired utterance class needs to be associated with each
sample utterance. The method combines automatic train-
ing of application-specific phonotactic models together

with token sequence classifiers. The accuracy of this
phone-string utterance classification method turns out to
be surprisingly close to what can be achieved by conven-
tional methods involving word-trigram language mod-
els that require manual transcription. To quantify this,
we present empirical accuracy results from three differ-
ent call-routing applications comparing our method with
conventional utterance classification using word-trigram
recognition.

Previous work at AT&T on utterance classification
without words used information theoretic metrics to dis-
cover “acoustic morphemes” from untranscribed utter-
ances paired with routing destinations (Gorin et al., 1999;
Levit et al., 2001; Petrovska-Delacretaz et al., 2000).
However, that approach has so far proved impractical:
the major obstacle to practical utility was the low run-
time detection rate of acoustic morphemes discovered
during training. This led to a high false rejection rate (be-
tween 40% and 50% for 1-best recognition output) when
a word-based classification algorithm (the one described
by Wright et. al (1997)) was applied to the detected se-
quence of acoustic morphemes.

More generally, previous work using phone string (or
phone-lattice) recognition has concentrated on tasks in-
volving retrieval of audio or video (Jones et al., 1996;
Foote et al., 1997; Ng and Zue, 1998; Choi et al., 1999).
In those tasks, performance of phone-based systems was
not comparable to the accuracy obtainable from word-
based systems, but rather the rationale was avoiding the
difficulty of building wide coverage statistical language
models for handling the wide range of subject matter that
a typical retrieval system, such as a system for retrieving
news clips, needs to cover. In the work presented here, the
task is somewhat different: the system can automatically
learn to identify and act on relatively short phone subse-
quences that are specific to the speech in a limited domain
of discourse, resulting in task accuracy that is comparable
to word-based methods.
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In section 2 we describe the utterance classification
method. Section 3 describes the experimental setup and
the data sets used in the experiments. Section 4 presents
the main comparison of the performance of the method
against a “conventional” approach using manual tran-
scription and word-based models. Section 5 gives some
concluding remarks.

2 Utterance Classification Method

2.1 Runtime Operation

The runtime operation of our utterance classification
method is simple. It involves applying two models
(which are trained as described in the next subsection): A
statistical n-gram phonotactic model and a phone string
classification model. At runtime, the phonotactic model
is used by an automatic speech recognition system to con-
vert a new input utterance into a phone string which is
mapped to an output class by applying the classification
model. (We will often refer to an output class as an “ac-
tion”, for example transfer to a specific call-routing des-
tination). The configuration at runtime is as shown in
Figure 1. More details about the specific recognizer and
classifier components used in our experiments are given
in the Section 3.
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Figure 1: Utterance classifier runtime operation

The classifier can optionally make use of more infor-
mation about the context of an utterance to improve the
accuracy of mapping to actions. As noted in Figure 1,
in the experiments presented here, we use a single addi-
tional feature as a proxy for the utterance context, specif-
ically, the identity of the spoken prompt that elicited the
utterance. It should be noted, however, that inclusion of

such additional information is not central to the method:
Whether, and how much, context information to include
to improve classification accuracy will depend on the ap-
plication. Other candidate aspects of context may include
the dialog state, the day of week, the role of the speaker,
and so on.

2.2 Training Procedure

Training is divided into two phases. First, train a phone
n-gram model using only the training utterance speech
files and a domain-independent acoustic model. Second,
train a classification model mapping phone strings and
prompts (the classifier inputs) to actions (the classifier
outputs).

The recognition training phase is an iterative proce-
dure in which a phone n-gram model is refined succes-
sively: The phone strings resulting from the current pass
over the speech files are used to construct the phone n-
gram model for the next iteration. In other words, this
is a “Viterbi re-estimation” or “1-best re-estimation” pro-
cess. We currently only re-estimate the n-gram model, so
the same general-purpose HMM acoustic model is used
for ASR decoding in all iterations. Other more expen-
sive n-gram re-estimation methods can be used instead,
including ones in which successive n-gram models are
re-estimated from n-best or lattice ASR output. Candi-
dates for the initial model used in this procedure are an
unweighted phone loop or a general purpose phonotactic
model for the language being recognized.

The steps of the training process are as follows. (The
procedure is depicted in Figure 2.)
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Figure 2: Utterance classifier training procedure



1. Set the phone string modelG to an initial phone
string model. Initialize the n-gram orderN to 1.
(Here ‘order’ means the size of the n-grams, so for
example2 means bi-grams.)

2. SetS to the set of phone strings resulting from rec-
ognizing the training speech files withG (after pos-
sibly adjusting the insertion penalty, as explained
below).

3. Estimate an n-gram modelG′ of orderN from the
set of stringsS.

4. If N < Nmax, setN ← N + 1 andG← G′ and go
to step 2, otherwise continue with step 5.

5. For each recognized strings ∈ S, construct a clas-
sifier input pair(s, r) where r is the prompt that
elicited the utterance recognized ass.

6. Train a classification modelM to generalize the
training functionf : (s, r) → a, wherea is the
action associated with the utterance recognized ass.

7. Return the classifier modelM and the final n-gram
modelG′ as the results of the training procedure.

Instead of increasing the orderN of the phone n-gram
model during re-estimation, an alternative would be to
iterateNmax times with a fixed n-gram order, possibly
with successively increased weight being given to the lan-
guage model vs. the acoustic model in ASR decoding.

One issue that arises in the context of unsupervised
recognition without transcription is how to adjust recog-
nition parameters that affect the length of recognized
strings. In conventional training of recognizers from
word transcriptions, a “word insertion penalty” is typ-
ically tuned after comparing recognizer output against
transcriptions. To address this issue, we estimate the ex-
pected speaking rate (in phones per second) for the rele-
vant type of speech (human-computer interaction in these
experiments). The token insertion penalty of the recog-
nizer is then adjusted so that the speaking rate for auto-
matically detected speech in a small sample of training
data approximates the expected speaking rate.

3 Experimental Setup

3.1 Data

Three collections of utterances from different domains
were used in the experiments. Domain A is the one stud-
ied in previously cited experiments (Gorin et al., 1999;
Levit et al., 2001; Petrovska-Delacretaz et al., 2000). Ut-
terances for domains B and C are from similar interactive
spoken natural language systems.

Domain A. The utterances being classified are the cus-
tomer side of live English conversations between AT&T

residential customers and an automated customer care
system. This system is open to the public so the num-
ber of speakers is large (several thousand). There were
40106 training utterances and 9724 test utterances. The
average length of an utterance was 11.29 words. The split
between training and test utterances was such that the ut-
terances from a particular call were either all in the train-
ing set or all in the test set. There were 56 actions in
this domain. Some utterances had more than one action
associated with them, the average number of actions as-
sociated with an utterance being 1.09.

Domain B. This is a database of utterances from an in-
teractive spoken language application relating to product
line information. There were 10470 training utterances
and 5005 test utterances. The average length of an utter-
ance was 3.95 words. There were 54 actions in this do-
main. Some utterances had more than one action associ-
ated with them, the average number of actions associated
with an utterance being 1.23.

Domain C. This is a database of utterances from an
interactive spoken language application relating to con-
sumer order transactions (reviewing order status, etc.) in
a limited domain. There were 14355 training utterances
and 5000 test utterances. The average length of an utter-
ance was 8.88 words. There were 93 actions in this do-
main. Some utterances had more than one action associ-
ated with them, the average number of actions associated
with an utterance being 1.07.

3.2 Recognizer

The same acoustic model was used in all the experiments
reported here, i.e. for experiments with both the phone-
based and word-based utterance classifiers. This model
has 42 phones and uses discriminatively trained 3-state
HMMs with 10 Gaussians per state. It uses feature space
transformations to reduce the feature space to 60 fea-
tures prior to discriminative maximum mutual informa-
tion training. This acoustic model was trained by Andrej
Ljolje and is similar to the baseline acoustic model used
for experiments with the Switchboard corpus, an earlier
version of which is described by Ljolje et al. (2000).
(Like the model used here, the baseline model in those
experiments does not involve speaker and environment
normalizations.)

The n-gram phonotactic models used were represented
as weighted finite state automata. These automata (with
the exception of the initial unweighted phone loop) were
constructed using the stochastic language modeling tech-
nique described by Riccardi et al. (1996). This modeling
technique, which includes a scheme for backing off to
probability estimates for shorter n-grams, was originally
designed for language modeling at the word level.



3.3 Classifier

Different possible classification algorithms can be used in
our utterance classification method. For the experiments
reported here we use the BoosTexter classifier (Schapire
and Singer, 2000). Among the alternatives are decision
trees (Quinlan, 1993) and support vector machines (Vap-
nik, 1995). BoosTexter was originally designed for text
categorization. It uses the AdaBoost algorithm (Freund
and Schapire, 1997; Schapire, 1999), a wide margin ma-
chine learning algorithm. At training time, AdaBoost
selects features from a specified space of possible fea-
tures and associates weights with them. A distinguishing
characteristic of the AdaBoost algorithm is that it places
more emphasis on training examples that are difficult to
classify. The algorithm does this by iterating through a
number of rounds: at each round, it imposes a distribu-
tion on the training data that gives more probability mass
to examples that were difficult to classify in the previ-
ous round. In our experiments, 500 rounds of boosting
were used; each round allows the selection of a new fea-
ture and the adjustment of weights associated with exist-
ing features. In the experiments, the possible features are
identifiers corresponding to prompts, and phone n-grams
or word n-grams (for the phone and word-based methods
respectively) up to length 4.

3.4 Experimental Conditions

Three experimental conditions are considered. The suf-
fixes (M andH) in the condition names refer to whether
the two training phases (i.e. training for recognition and
classification respectively) use inputs produced by ma-
chine (M ) or human (H) processing.

PhonesMM This experimental condition is the method
described in this paper, so no human transcriptions
are used. Unsupervised training from the training
speech files is used to build a phone recognition
model. The classifier is trained on the phone strings
resulting from recognizing the training speech files
with this model. At runtime, the classifier is ap-
plied to the results of recognizing the test files with
this model. The initial recogition model for the un-
supervised recognition training process was an un-
weighted phone loop. The final n-gram order used
in the recognition training procedure (Nmax in sec-
tion 2) was 5.

WordsHM Human transcriptions of the training speech
files are used to build a word trigram model. The
classifier is trained on the word strings resulting
from recognizing the training speech files with this
word trigram model. At runtime, the classifier is ap-
plied to the results of recognizing the test files with
the word trigram model.

Learned phone Corresponding
sequence words
b ih l ih billi ng
k ao l z calls

n ah m b number
f aa n phone
r ey t rate

k ae n s cancel
aa p ax r operator
aw t m ay what my
ch eh k check
m ay b my bill

p ae n ih company
s w ih ch switch
er n ae sh international
v ax k w have a question
l ih ng p billing plan
r ey t s rates

k t uw p like to pay
ae l ax n balance
m er s er customer service
r jh f ao charge for

Table 1: Example phone sequences learned by the train-
ing procedure from domain A training speech files.

WordsHH Human transcriptions of the training speech
files are used to build a word trigram model. The
classifier is trained on the human transcriptions of
the speech training files. At runtime, the classifier
is applied to the results of recognizing the test files
with the word trigram model.

For all three conditions, median recognition and classi-
fication time for test data was less than real time (i.e. the
duration of test speech files) on current micro-processors.
As noted earlier, the acoustic model, the number of boost-
ing rounds, and the use of prompts as an additional clas-
sification feature, are the same for all experimental con-
ditions.

3.5 Example learned phone sequences

To give an impression of the kind of phone sequences
resulting from the automatic training procedure and ap-
plied by the classifier at runtime, see Table 1. The table
lists some examples of such phone strings learned from
domain A training speech files, together with English
words, or parts of words (shown in bold type), they may
correspond to. (Of course, the words play no part in the
method and are only included for expository purposes.)
The phone strings are shown in the DARPA phone alpha-
bet.



Rejection PhoneMM WordHM WordHH
rate (%) accuracy accuracy accuracy

0 74.6 76.2 77.0
10 79.5 81.1 81.5
20 84.4 85.8 86.2
30 89.4 90.5 90.9
40 94.1 94.7 94.4
50 97.2 97.3 96.7

Table 2: Phone-based and word-based utterance classifi-
cation accuracy for domain A

4 Classification Accuracy

In this section we compare the accuracy of our phone-
string utterance classification method (PhonesMM) with
methods (WordsHM andWordsHH ) using manual tran-
scription and word string models.

Accuracy Metric

The results are presented as utterance classification rates,
specifically the percentage of utterances in the test set for
which the predicted action is valid. Here a valid predic-
tion means that the predicted action is the same as one of
the actions associated with the test utterance by a human
labeler. (As noted in section 3, the average number of
actions associated with an utterance was 1.09, 1.23, and
1.07 for domains A, B, and C, respectively.) In this met-
ric we only take into account a single action predicted
by the classifier, i.e. this is “rank 1” classification ac-
curacy, rather than the laxer “rank 2” classification ac-
curacy (where the classifier is allowed to make two pre-
dictions) reported by Gorin et. al (1999) and Petrovska
et. al (2000).

In practical applications of utterance classification,
user inputs are rejected if the confidence of the classifier
in making a prediction falls below a threshold appropri-
ate to the application. After rejection, the system may,
for example, route the call to a human or reprompt the
user. We therefore show the accuracy of classifying ac-
cepted utterances at different rejection rates, specifically
0% (all utterances accepted), 10%, 20%, 30%, 40%, and
50%. Following Schapire and Singer (2000), the con-
fidence level, for rejection purposes, assigned to a pre-
diction is taken to be the difference between the scores
assigned by BoosTexter to the highest ranked action (the
predicted action) and the next highest ranked action.

Accuracy Results

Utterance classification accuracy rates, at various rejec-
tion rates, for domain A are shown in Table 2 for the
three experimental conditions described in section 3.4.
The corresponding results for domains B and C are shown
in Tables 3 and 4.

Rejection PhoneMM WordHM WordHH
rate (%) accuracy accuracy accuracy

0 80.8 81.6 81.0
10 86.0 86.7 85.3
20 90.0 90.6 89.5
30 93.9 93.7 92.3
40 96.3 96.8 94.7
50 97.5 97.7 96.4

Table 3: Phone-based and word-based utterance classifi-
cation accuracy for domain B

Rejection PhoneMM WordHM WordHH
rate (%) accuracy accuracy accuracy

0 68.2 68.9 69.9
10 73.3 73.7 74.9
20 78.9 79.2 80.2
30 84.8 84.7 85.5
40 89.7 89.3 90.2
50 94.1 93.3 94.5

Table 4: Phone-based and word-based utterance classifi-
cation accuracy for domain C

The utterances in domain A are on average longer and
more complex than in domain B; this may partly explain
the higher classification rates for domain B. The gener-
ally lower classification accuracy rates for domain C may
reflect the larger set of actions for this domain (92 ac-
tions, compared with 56 and 54 actions for domains A
and B). Another difference between the domains was that
the recording quality for domain B was not as high as
for domains A and C. Despite these differences between
the domains, there is a consistent pattern for the compar-
ison of most interest to this paper, i.e. the relative per-
formance of utterance classification methods requiring or
not requiring transcription.

Perhaps the most surprising outcome of these ex-
periments is that the phone-based method with short
“phrasal” contexts (up to four phones) has classifica-
tion accuracy that is so close to that provided by the
longer phrasal contexts of trigram word recognition and
word-string classification. Of course, the re-estimation
of phone n-grams employed in the phone-based method
means that two-word units are implicitly modeled since
the phone 5-grams modeled in recognition, and 4-grams
in classification, can straddle word boundaries.

The experiments suggest that if transcriptions are
available (i.e. the effort to produce them has already
been expended), then they can be used to slightly improve
performance over the phone-based method (PhonesMM)
not requiring transcriptions. For domains A and C, this
would give an absolute performance difference of about
2%, while for domain B the difference is around 1%.



Nmax Recog. Classif.
accuracy accuracy

0 54.2 70.0
1 56.6 70.6
2 59.1 71.2
3 59.5 71.5
4 60.0 73.2
5 62.3 74.6

Table 5: Phone recognition accuracy and phone string
classification accuracy (PhoneMM with no rejection) for
increasing values ofNmax for domain A.

Nmax Recog. Classif.
accuracy accuracy

0 27.9 69.2
1 38.3 70.7
2 48.6 74.7
3 53.3 77.6
4 55.1 79.2
5 55.7 80.8

Table 6: Phone recognition accuracy and phone string
classification accuracy (PhoneMM with no rejection) for
increasing values ofNmax for domain B.

Whether it is optimal to train the word-based classifier on
the transcriptions (WordsHH ) or the output of the recog-
nizer (WordsHM ) seems to depend on the particular data
set.

When the operational setting of utterance classifica-
tion demands very high confidence, and a high degree
of rejection is acceptable (e.g. if sufficient human backup
operators are available), then the small advantage of the
word-based methods is reduced further to less than 1%.
This can be seen from the high rejection rate rows of the
accuracy tables.

Effectiveness of Unsupervised Training

Tables 5, 6, and 7, show the effect of increasingNmax
(the final iteration number in the unsupervised phone
recognition model) for domains A, B and C, respectively.
The row withNmax = 0 corresponds to the initial un-
weighted phone loop recognition. The classification ac-
curacies shown in this table are all at 0% rejection. Phone
recognition accuracy is the standard ASR error rate ac-
curacy in terms of the percentage of phone insertions,
deletions, and substitutions, determined by aligning the
ASR output against reference phone transcriptions pro-
duced by the pronounciation component of our speech
synthesizer. (Since these reference phone transcriptions
are not perfect, the actual phone recognition accuracy is
probably slightly higher.) Clearly, for all three domains,
unsupervised recognition model training improves both

Nmax Recog. Classif.
accuracy accuracy

0 55.4 61.1
1 59.8 61.8
2 65.3 64.3
3 68.1 66.3
4 69.1 67.4
5 69.3 68.2

Table 7: Phone recognition accuracy and phone string
classification accuracy (PhoneMM with no rejection) for
increasing values ofNmax for domain C.

recognition and classification accuracy compared with a
simple phone loop. Unsupervised training of the recogni-
tion model is particularly important for domain B where
the quality of recordings is not as high as for domains
A and C, so the system needs to depend more on the re-
estimated n-gram models to achieve the final classifica-
tion accuracy.

5 Concluding Remarks

In this paper we have presented an utterance classifica-
tion method that does not require manual transcription
of training data. The method combines unsupervised re-
estimation of phone n-ngram recognition models together
with a phone-string classifier. The utterance classifica-
tion accuracy of the method is surprisingly close to a
more traditional method involving manual transcription
of training utterances into word strings and recognition
with word trigrams. The measured absolute difference
in classification accuracy (with no rejection) between our
method and the word-based method was only 1% for one
test domain and 2% for two other test domains. The per-
formance difference is even smaller (less than 1%) if high
rejection thresholds are acceptable. This performance
level was achieved despite the large reduction in effort
required to develop new applications with the presented
utterance classification method.
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