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Abstract its ability to find prefixes, suffixes, and circumfixes

) ) ) in these languages. To our knowledge, this serves
We propose an algorithm to automatically induceys the first evaluation of complete regular

the morphologyofinflectional_languages using f)nlymorphological induction of German or Dutch
text corpora and no human input. Our algorithm,ih6ygh researchers such as Nakisa and Hahn
combines cues from orthography, semantics, anfl gg6) have evaluated induction algorithms on

syntactic distributions to induce morphologicalmorphological sub-problems in German).
relationships in German, Dutch, and English. Using

CELEX as a gold standard for evaleatjwe show 2  Previous Approaches

our algorithm to be an improvement over anyprevious morphology induction approaches have
knowledge-free algorithm yet proposed. fallen into three categories. These categories differ
depending on whether human input is provided and
1 Introduction on whether the goal is to obtain affixes or complete
@orphological analysis. We here briefly describe

Many NLP tasks, such as building machine-readabl .
ork in each category.

dictionaries, are dependent on the results o\fV _
morphological analysis. While morphological 2.1 Using a Knowledge Sage to Bootstrap

analyzers have existed since the early 1960s, curre§hme researchers begin with some initial human-
algorithms require human labor to build rules forjgpeled source from which they induce other
morphological structure. In an attempt to avoid thiﬁnorphological components. In particular, Xu and
labor-intensive process, recent work has focused ofiyoft (1998) use word context derived from a
machine-learning ~ approaches  to  induc&yorpus to refine Porter stemmer output. Gaussier
morphological structure using large corpora. (1999) induces derivational morphology using an
In this paper, we propose a knowledge-fregnfiectional lexicon which includes part of speech
algorithm to automatically induce the morphologyinformation. Grabar and Zweigenbaum (1999) use
structures of a language. Our algorithm takes age SNOMED corpus of semantically-arranged
input a large corpus and produces as output a set gladical terms to find semantically-motivated
conflation sets indicating the various inflected an%orphological relationships. Also, Yarowsky and
derived forms for each word in the language. As afyicentowski (2000) obtained outstanding results at
example, the conflation set of the word “abuse’inducing English past tense after beginning with a
would contain “abuse”, ~ "abused”, "abuses’, |ist of the open class roots in the language, a table of
“abusive”, “abusively”, and so forth. Our algorithm 5 |anguage’s inflectional parts of speech, and the

extends earlier approaches to morphologiuction  canonical suffixes for each part of speech.
by combining various induced information sources;

the semantic relatedness of the affixed forms usin
a Latent Semantic Analysis approach to corpusA secondknowledge-freeategory of research has
based semantics (Schone and Jurafsky, 2000), affircused on obtaining affix inventories. Brent, et al.
frequency, syntactic context, and transitive closure(1995) used minimumegscription length (MDL) to
Using the hand-labeled CELEX lexicon (Baayen, efind the most data-compressing suffixes. Kazakov
al., 1993) as our gold standard, the current versio(1997) does something akin to this using MDL as a
of our algorithm achieves an F-score of 88.1% offitness metric for evolutionary computing. DéJean
the task of identifying conflation sets in English, (1998) uses a strategy similar to that of Harris
outperforming earlier algorithms. Our algorithm is (1951). He declares that a stem has ended when the
also applied to German and Dutch and evaluated arumber of characters following it exceed some

.2 Affix Inventories



given threshold and identifies any residual following ~ semantic relations, we identified those word pairs
the stems as suffixes. that have strong semantic correlations as being
2.3 Complete morphological analysis morphqloglcal variants of ea'ch other. Wlth the

) ) ~_ exception of word segmentation, we provided no
Due to the existence of morphological ambiguity,,yman information to our system. We applied our
(such as with the word "caring” whose stem iSgystem to an English corpus and evaluated by
care” rather than “car”), finding affixes alone doescomparing each word’s conflation set as produced

not constitute a complete morphological analysisyy oyr algorithm to those derivable from CELEX.
Hence, the last category of research is alsg

knowledge-free but attempts to induce, for eactt-4 Problems with earlier approaches

word of a corpus, a complete analysis. Since our  Most of the existing algorithms described focus on
approach falls into this category (expanding upon  suffixing in inflectional languages (though
our earlier approach (Schone and Jurafsky, 2000)), Jacquemin and DéJean describe work on prefixes).
we describe work in this area in more detail. None of these algorithms consider the general
2.3.1 Jacquemin’s multiword approach conditions of circumfixing or infixing, nor are they
applicable to other language types such as
agglutinative languages (Sproat, 1992).

Additionally, most approaches have centered
around statistics of orthographic properties. We had
noted previously (Schone and Jurafsky, 2000),
owever, that errors can arise from strictly
rthographic systems. We had observed in other
ystems such errors as inappropriate removal of

Jacquemin (1997) deems pairs of wardrams as
morphologically related if two words in the finst

gram have the same first few lettersgtam) as two
words in the second-gramand if there is a suffix
for each stem whose length is less thaHe also
clusters groups of words having the same kinds o
word endings, which gives an added performancg

boost. He applies his algorithm to a French term'lis\gaIid affixes (“ally’=“all’), failure to resolve
and scores based on sampled, by-hand evaluat'o%orphological ambiguities (“hatee”hat”), and

2.3.2. Goldsmith: EM and MDLs pruning of semi-productive affixes (“dirty™dirt”).

Goldsmith (1997/2000) tries to automatically severYet we illustrated that induced semantics can help
each word in exactly onegxe in order to establish overcome some of these errors.

a potential set of stems and suffixes. He uses theHowever, we have since observed that induced
expectation-maximization algorithm (EM) and MDL semantics can give rise to different kinds of
as well as some triage procedures to help eliminateroblems. For instance, morphological variants may
inappropriate parses for every word in a corpus. HEe semantically opaque such that the meaning of
collects the possible suffixes for each stem and call@ne variant cannot be readily determined by the
these signatures which give clues about word other (‘reusability“use”). Additionally, high-
classes. With the exceptions of capitalizatiorfrequency function words may be conflated due to
removal and some word segmentation, Goldsmith'8aving weak semantic information (“as’a”).
algorithm is otherwise knowledge-free. His Coupling semantiandorthographic statistics, as
algorithm, Linguistica is freely available on the Well as introducing induced syntactic information
Internet. Goldsmith applies his algorithm to variousand relational transitivity can help in overcoming
languages but evaluates in English and French. these problems. Therefore, we begin with an

2.3.3 Schone and Jurafsky: induced semantics approach S|rr_nlar 0 our previous algorlthr_n. Yet We.
build upon this algorithm in several ways in that we:

In our earlier work, we (Schone and Jurafsky[1] consider circumfixes, [2] automatically identify
(2000)) generated a list df candidate suffixes and capitalizations by treating them similar to prefixes
used this list to identify word pairs.which shar(aT the3] incorporate frequency information, [4] use
same stem but conclude with distinct candidatgjistributional information to help identify syntactic
suffixes. We then applied Latent Semanticyroperties, and [5] use transitive closure to help find
Analysis (Deerwester, et al.,, 1990) as a method Qfariants that may not have been found to be
automatically determining semantic relatednesgemantically related but which are related to mutual
between word pairs. Using statistics from theyariants. We then apply these strategies to English,



German, and Dutch. We evaluate our algorithm  Figure 2). Yet using this approach, there may be
against the human-labeled CELEX lexicon in all  circumfixes whose endings will be overlooked in
three languages and compare our results to those the search for suffixes unless we first remove all
that the Goldsmith and Schone/Jurafsky algorithms  candidate prefixes. Therefore, we build a lexicon
would have obtained on our same data. We show  consisting of all words in our corpus and identify all
how each of our additions result in progressively  word beginnings with frequencieggs @ some
better overall solutions. threshol@;J. We call thesg@seudo-prefixesNe

strip all pseudo-prefixes from each word in our
3 Current Approach lexicon and add the word residuals back into the

Figure 1. Strategy and evaluation lexicon as if they were also words. Using this final
lexicon, we can now seek for suffixes in a manner
(1) Identify pairs of potential equivalent to what we had done beforeh@we and
morpholo;‘glcal variants Jurafsky, 2000).
(2)Determine semantic vectors To demonstrate how this is done, suppose our
for each word initial lexicon < contained the words “align,”
\ “real,” “aligns,” “realign”, “realigned”, “react”,
(3) Correlate semantic vectors and “reacts,” and “reacted.” Due to the high frequency
build conflation sets occurrence of “re-" suppose it is identified as a
| pseudo-prefix. If we strip off “re-" from all words,
(4) Augment with frequency and add all residuals to a trie, the branch of the trie
information L . . -
| of words beginning with “a” is depicted in Figure 2.
(5) Consider local context Figure 2: Inserting the residual lexicon into a trie

for part of speech info

|
6) tAdd th{ordsl using @ ®—Q
ransitive closure
AN \‘/ /7/ 0 '

(7) Evaluate using CELEX @%ﬂ (s

3.1 Finding Candidate Circumfix Pairings 0N ® DO

As in our earlier approach (Schone and Jurafsky
2000), we begin by generating, from an untagged In our earlier work, we showed that a majority of
corpus, a list of word pairs that might bethe regular suffixes in the corpus can be found by
morphological variants. Our algorithm has changeddentifying trie branches that appear repetitively.
somewhat, though, since we previously sought wory “branch” we mean those places in the trie where
pairs that vary only by a prefix or a suffix, yet we some splitting occurs. In the case of Figure 2, for
now wish to generalize to those with circumfixing example, the branches NULL (empty circle), “-s”
differences. We use “circumfix” to mean true and “-ed” each appear twice. Vdssemble a list of
circumfixes like the German ge-/-t as well asall trie branches that occur some minimum number
combinations of prefixes and suffixes. It should beof times {T,) and refer to such gtential suffixes.
mentioned also that we assume the existence ofGiven this list, we can now find potential prefixes
languages having valid circumfixes that are nousing a similar strategy. Using our original lexicon,
composed merely of a prefix and a suffix thatwe can now strip off all potentialiffixesfrom each
appear independently elsewhere. word and form a new augmented lexicon. Then, (as

To find potential morphological variants, our first we had proposed before) if we reverse the ordering
goal is to find word endings which could serve an the words and insert them into a trie, the
suffixes. We had shown in our earlier work how ondoranches that are formed will be potential prefixes
might do this using a character tree,tde (as in (in reverse order).




Before describing the last steps of this procedurélable 1. Outputs of the trie stage:

potential rules

it is beneficial to define a few terms (some of whict

appeared in our previous work): ( Ranid ENGLISH| GERMAN DUTCH
[a] potential circumfix A pair B/E where B and E 1 S o n=o0 en-o
occur respectively in potential prefix and suffix lists| 2 | -ed -ing -en-o =0
[b] pseudo-stemthe residue of a word after its | 4 -ing= o -S= @ -n= ¢
potential circumfix is removed 8 ly= o -en= -t de= &
[c] candidate circumfixa potential circumfix which 775 C— C- e -te e o
appears affixed to at Ie'a'Eg pseudp-stems that are ¢ — 1= o =
shared by other potential circumfixes >0 | erssoin - Vo
[d] rule: a pair of candidate circumfixes sharing at g 2 _

leastT, pseudo-stems 24 -0 1= 2 ‘ingen— -€
[e] pair of potential morphological variants | 28 -4 r ge-/-t—-en ge- -e
(PPMV): two words sharing the same rule but] 32 S—o D-= d- -N= -Is

distinct candidate circumfixes ) e . L
[f] ruleset the set of all PPMVs for a common rule wrong: the potential 's- preflx O.f Eng_llsh IS hever
— valid although word combinations like stick/tick
Our final goal in this first stage of induction is to spark/park, and slap/lap happen frequently in
find all of the possible rules and their correspondingenglish. Incorporating semantics can help determine
rulesets. We therefore re-evaluateh word in the  the validity of each rule.
original lexicon to identify all potential circumfixes . :
that could have been valid for the word. Fors'2 Computing Semantics
example, suppose that the lists of potential suffixe®eerwester, et al. (1990) introduced an algorithm
and prefixes contained “-ed” and “re-” respectively.called Latent Semantic Analysis (LSA) which
Note also that NULL exists by default in both listsshowed that valid semantic relationships between
as well. If we consider the word “realigned” from words and documents in a corpus can be induced
our lexicon<£, we would find that its potential with virtually no human intervention. To do this,
circumfixes would be NULIed re/NULL, and ©ne typically begins by applying singular value
re/fedand the corresponding pseudo-stems would b@ecomposition (SVD) to a matrik}, whose entries
“realign,” “aligned,” and “align,” respectively, M(i,j) contains the frequency of woidas seen in
From<, we also note that circumfixes re/ed andgdocumeni of the corpus. The SVD decomposés
NULL/ing share the pseudo-stems “us,” “align,” and!Nto the product of three matricés, D, andV" such
“view” so a rule could be created: refedULL/ing.  thatU andV' are orthogonal matrices afilis a
This means that word pairs such as “reused/usingliagonal matrix whose entries are the singular
and “realigned/aligning” would be deemed PPMVs vValues ofM. The LSA approach then zeros out all
Although the choices in ;T through,T is but the to;ksmgqlar yalues of th(aT SVD,WhI("Jh has
somewhat arbitrary, we chose, T =T &T =10 andhe effect of projecting vectors into an optirkal
T,=3. In English, for example, this yielded 30535dimensional  subspace. This methodology is
possible rules. Table 1 gives a sampling of thesyell-descrlbgd in the literature (Landauer, et al.,
potential rules in each of the three languages iA998; Manning and Schitze, 1999).
terms of frequency-sorted rank. Notice that several [N order to obtain semantic representations of each
“rules” are quite valid, such as the indication of anvord, we apply our previous strategy (Schone and
English suffix -s. There are also valid circumfixesJurafsky (2000)). Rather than using a term-
like the ge-/-t circumfix of German. Capitalization document matrix, we had followed an approach akin
also appears (as a ‘prefix’), such as €in English, 0 that of Schitze (1993), who performed SVD on
D—d in German, and ¥v in Dutch. Likewise there &Nx2N term-term matrix. Thél here represents
are also some rules that may only be true in certaif?€ N-1 most-frequent words as well as a glob
circumstances, such as—& in English (such as POsition to account for all other words not in the top

worked/worker, but certainly not for steed/steer.)N-1. The matrix is structured such that for a given
However, there are some rules that ar@vordws row, the firstN columns denote words that



precedew by up to 50 words, and the secadNd e >

columns represent those words that follow by up to Pyes(io) = chs expl-((x-p)lo) dx

50 words. Since SVDs are more designed to work  then, if there were n items in the ruleset, the
with  normally-distributed data (Manning and  probability that a NCS is non-random is

Schutze, 1999, p. 565), we fill each entry with a N @y c{H.05)
normalized count (or Z-score) rather than straightpr(NCSZ (o). (0.1)+ n.® S )-
frequency. We then compute the SVD and keep the r~N) PredO, TPy Oy

top 300 singular values to form semantic vectors for ~ We defing (w =w )=Pr(NCS(w,,w,)). We
each word. Worav would be assigned the semantic hoose to accept as valid relationships only those

vectorQ,,-U,, Dy, whereU,, represents the row of PPMVs withPre.»T 5 where Ty is an acceptance
U corresponding ta andD, indicates that only the threshold. We showed in our earlier work that
topk diagonal entries db have been preserved. T5=85% affords high overall precision while still
As a last comment, one would like to be able tddentifying most valid morphological relationships.
obtain a separate semantic vector for every wor@.4 Augmenting with Affix Frequencies
(not just those in the tdgd). SVD computations can
be expensive and impractical for large valuehl.of
Yet due to the fact that andV' are orthogonal
matrices, we can start with a matrix ehsonable-

The first major change to our previous algorithm is
an attempt to overcome some of the weaknesses of
purely semantic-based morphology induction by

. . L. -~ incorporating information about affix frequencies.
sizedN and “fold in” the remaining terms, which is P 9 9

. As validated by Kazakov (1997), high frequenc
the approach we have followed. For details ab.o%/ord endingsy and begiﬁmingg ing infle?:tiona>ll

folglr;g t|1n ttermlséége regggr is referred to Manananguages are very likely to be legitimate affixes. In
and Schize ( DR P )_' English, for example, the highest frequency rule is
3.3 Correlating Semantic Vectors -s=@. CELEX suggests that 99.7% of our PPMVs

To correlate these semantic vectors, we ustr this rule would be true. However, since the
normalized cosine scores (NCSs) as we haBurely semantic-based approach tends to select only
illustrated before (Schone and Jurafsky (2000))relationships with contextually similar meanings,
The normalized cosine score between two worgs wonly 92% of the PPMVs are retained. This suggests
and w is determined by first computing cosinethat one might improve the analysis by
values between each word’s semantic vector angPPlementing ~ semantic ~ probabilities  with
200 other randomly selected semantic vectors. Thigrthographic-based probabilitieBr(,,).

provides a mean (1) and variane® of correlation ~ Our approach to obtainirir,, is motivated by

for each word. The NCS is given to be an appeal to minimum edit distance (MED). MED
. o - has been applied to the morphology induction
NC _ min COS@le Wz) llk
Sw,,w,) D problem by other researchers (such as Yarowsky

ke(1.2) Oy and Wicentowski, 2000). MED determines the
We had previously illustrated NCS values onminimum-weighted set of insertions, substitutions,
various PPMVs and showed that this type of scorand deletions required to transform one word into
seems to be appropriately identifying semanticanother. For example, only a single deletion is
relationships. (For example, the PPMVs of car/cargequired to transform “rates” into “rate” whereas
and ally/allies had NCS values of 5.6 and 6.%wo substitutions and an insertion are required to
respectively, whereas car/cares and ally/all hagransform it into “rating.” Effectively, if Cost] is
scored only -0.14 and -1.3.) Further, we Showe@‘ansforming cost, Cost(ratesate) = Cost(so)
that by performing this normalizing process, one cafvhereas Cost(ratesating)=Cost(esing). More
estimate the probability that an NCS is random ogenerally, suppose woklhas circumfix C =B /E
not. We expect that random NCSs will beand pseudo-stem -S-, and wordhas circumfix
approximately normally distributed according to C,=B,/E, also with pseudo-stem -S-. Then,
N(0,1). We can also estimate the distributionCost(X=Y)=Cost(B, SE=B SE,)=Cost(C=C ).
N(ir,0,°) of true correlations and number of termsSince we are free to choose whatever cost function
in that distributioni§;). If we define a function  we desire, we can equally choose one whose range



lies in the interval of [0,1]. Hence, we can assign Consider Table 2 which is a sample of PPMVs
Pr,w(X=Y) = 1-Costk=Y). This calculation implies ~ from the ruleset fors*z” along with their
that theorthographicprobability thatX andY are  probabilities of validity. A validity threshold{T ) of
morphological variants is directly derivable fromthe  85% would mean that the four bottom PPMVs
cost of transforming £ intoL . would be deemed invalid. Yet if we find that the
The only question remaining is how to determine  local contexts of these low-scoring word pairs
Cost(G=C,). This cost should depend on a number  match the contexts of other PPMVs having high
of factors: the frequency of the rul€,=C,), the  scores (i.e., those whose scores exceed T ), then
reliability of the metric in comparison to that of  their prabaés of validity should incease. If we
semanticsd, wherea € [0,1]), and the frequencies  could compute a syntax-based probability for these

of other rules involving € andC . We define the  words, namelyBr , then assuming independence
orthographic probability of validity as we would have:

20 f(C=C,) Pr(valid) =Prg o +Pr syna (PT s T syntak
Cos(C,=C)=1- Figure 3 describes the pseudo-code for an

max f(C,=2) + max f(W=C,)  aigorithm to compute Bjnax - Essentially, the

vZ YW algorithm has two major components. First, for left
We suppose that orthographic information is less (L) and right-hand (R) sides of each valid PPMV of
reliable than semantic information, so we arbitrarily  a giveeset, try to find a collection of words
seta=0.5. Now sincér,,(X=Y)=1-Cost(C=C,), from the corpus that are collocated with L and R but
we can readily combine it witRrg,,,if we assume  which occur statistically too many or too few times
independence using the “noisy or” formulation: in these collocations. Such word sets form

Prg.o(valid) =Preem+Pr onin~ (PT senP! oty (2)  signatures Then, determine similar signatures for

By using this formula, we obtain 3% (absolute)2 randomly-chosen set of words from the corpus as
more of the correct PPMVs than semantics alon¥ell as for each of the PPMVs of the ruleset that are
had provided for the -s» rule and, as will be not yet validated. Lastly, compute the NCS and

shown later, gives reasonable improvements overaff'€ir corresponding probabilities (see equation 1)
between the ruleset’s signatures and those of the to-

3.5 Local Syntactic Context be-validated PPMVs to see if they can be validated.
Since a primary role of morphology — inflectional Table 3 gives an example of the kinds of
morphology in particular — is to conveyntactic  contextual words one might expect for the=z"
information, there is no guarantee that two wordsule. In fact, the syntactic signature fes*2” does
that are morphological variants need to share similandeed include such words ai®, other, these two,
semantigroperties. This suggests that performancevere andhaveas indicators of words that occur on
could improve if the induction process tookthe left-hand side of the ruleset, amdn, this, is,
advantage of local, syntactic contexts around wordsas and A as indicators of the right-hand side.
in addition to the more global, large-window These terms help distinguish plurals from singulars.

contexts used in semantic processing. Table 3 Examples of “s=o” contexts

Context forL Context forR
agendasire| seasvere| alegend [this formulg
Word+s) Word | Pr| Word+$ Word P fwored padk pleasave militiais | anarea
agendaf agenda .9$8 legernds legend |98] theseideas|otherarea$ railroathiag Aguerrilla

ideas idea | 97§ m|I|t|§1f, militig_ 1.0p There is an added benefit from following this

pleas | plea| 1.0p guerrillps guerrfila 1.90 ,5504ch: it can also be used to find rules that,

Seas sea| 1.00 formulps formla 1100 though different, seem to convey similar

areas | area| 1.00 railroads railrdad 1|00 information . Table 4 illustrates a number of such

Areas | Area| .72] pads pad .781 agreements. We have yet to take advantage of this

Vegas| Vega| .64]1 feedd feed .5p3 feature, but it clearly could be of use for part-of-
speech induction.

Table 2 Sample probabilities for-5=¢"




Figure 3: Pseudo-code to find Probabilify;.,

Figure 4: Semantic strengths

procedure SyntaxProb(ruleset,corpus)
leftSig =GetSignature(ruleset,corpus,left)
rightSig=GetSignature(ruleset,corpus,right
Q et =Concatenate(leftSig, rightSig)
(urulesetc rulesgtccomparetORandorm ruleslt
foreach PPMVin ruleset
if (Pto(PPMV)> Tg) continue
wLSig=GetSignature(PPMV,corpus,left)
WRSig=GetSignature(PPMV,corpus,righ
Qppny =Concatenate(wLSig, wRSIig)
UepwvsOppn) =ComparetoRandorf¥ppy)
prob[PPMV3}Pr(NCS(PPMV,ruleset))
end procedure

function GetSignature(ruleset,corpus,side)
foreach PPMVin ruleset
if (Pto(PPMV)<T ) continue
if (side=left) X < LeftWordOf(PPMV)
else X < RightWordOf(PPMV)
CountNeighbors(corpus,colloc,X)
colloc =SortWordsByFreq(colloc)
for i = 1to 100 signature[#-collocfi]
return signature
end function

procedure CountNeighbors(corpus,colloc,X)
foreach W in Corpus
push(lexicon,W)
if (PositionalDistanceBetween(X,\A3)
count[W}= count[W]+1
foreach W in lexicon
if ( Zscore(countfWp 3.0 or
Zscore(count[W4)-3.0)
colloc[W}colloc[W]+1
end procedure

Table 4 Relations amongst rules

Rule | Relative] Cod Rule] Relative C
-S=¢ | -lessy |83.8]-ed=z | -d=o [95.5
-S=o | -es=o |79.5]-ing=0 | -e=¢ [|94.3
-et=o | -iled=y |81.9]-ing=0 | -ting=0 | 70.7

3.6 Branching Transitive Closure

~—

abusive

abusers — — _ _

corpus choice or weak distributional properties.
However, X and Y may appear as members of other
valid PPMVs such as (%¥Z) and (ZY) containing
variants (Z, in this case) which are either
semantically or syntactically related to both of the
other words. Figure 4 demonstrates this property in
greater detail. The words conveyed in Figure 4 are
all words from the corpus that have potential
relationships between variants of the word “abuse.”
Links between two words, such as “abuse” and
“Abuse,” are labeled with a weight which is the
semantic correlation derived by LSA. Solid lines
represent valid relationships with Bf0.85 and
dashed lines indicate relationships with lower-than-
threshold scores. The absence of a link suggests that
either the potential relationship was never identified
or discarded at an earlier stage. Self loops are
assumed for each node since clearly each word
should be related morphologically to itself. Since
there are seven words that are valid morphological
relationships of “abuse,” we would like to see a
complete graph containing 21 solid edges. Yet, only
eight connections can be found by semantics alone
(Abuse-abuse, abusersmbusing, etc.).

However, note that there is a path that can be
followed along solid edges from every correct word
to every other correct variant. This suggests that
taking into consideration link transitivity (i.e., if
X=Y, Y=Y, Y ~Y,... and Y=Z, then X=2)
may drastically reduce the number of deletions.

There are two caveats that need to be considered
for transitivity to be properly pursued. The first

Despite the semantic, orthographic, and syntacticaveat: if no rule exists that would transform X into
components of the algorithm, there are still validZ, we will assume that despite the fact that there
PPMVs, (X=Y), that may seem unrelated due tomay be a probabilistic path between the two, we



will disregard such a path. The second caveat is that the algorithms we test against. Furthermore, since

we will say that paths can only consist of solid ELEX has limited coverage, many okfe lower-

edges, namely each Pr&¥;,,) on every path must  frequency words could not be scored anyway. This

exceed the specified threshold. cut-off also helps each of the algorithms to obtain
Given these constraints, suppose now there is a  stronger statistical information on the words they do

transitive relation from X to Z by way of some  process which means that any observed failures

intermediate patl={Y .Y ,Y}. Thatis, assume cannot be attributed to weak statistics.

there is a path XY, Y =Y,...Y=Z. Suppose Maohological relationships can be represented as

also that the probabilities of these relationships are  directed graphs. Figure 6, for instance, illustrates

respectivelyp,, p;, P»--- P If fis a decay factorin  the directed graph, according to CELEX, of words

the unit interval accounting for the number of link  associated with “conduct.” We will call the words

separations, then we will say that tRe(X=2Z) of such a directed graph thenflation sefor any of

along pathr; has probabilityPr_; = B‘H}:O o We  the words in the graph. Due to the difficulty in

combine the probabilities of all independent paths  developing a scoring algorithm to compare directed

between X and Z according to Figure 5: graphs, we will follow our earlier approach and only

Figure 5: Pseudocode for Branching Probability ¢0mpare induced conflation sets to those of

CELEX. To evaluate, we compute the number of
function BranchProbBetween(X,Z) correct ), inserted J), and deleted®) words each
prob=0 algorithm predicts for each hypothesized conflation
foreachindependent patig set. If X, represents worav's conflation set

prob< prob+Pr (X=2) - (prob*Pr (X=2) ) according to an algorithm, and if,Y represents its
return prob CELEX-based conflation set, then,

C=Tvw (X, Y WJ/Y,)
If the returned probability exceedg T , we declare X p=xvw(|Y,,-(X, Y)Y, and
and Z to be morphological variants of each other. 7 =zvw (IX, -CX Y YD,

4 Evaluation In making these computations, we disregard any

We compare this improved algorithm to our formerCELEX words absent from our data set and vice
algorithm (Schone and Jurafsky (2000)) as well a¥€rsa. Most capltal words are not in CELEX so this
to Goldsmith'dinguistica(2000). We use as input Process also discards _them. Hence, we e_llso make an
to our system 6.7 million words of English augmented CELEX to incorporate capitalized forms.
newswire, 2.3 million of German, and 6.7 million of Table 5 uses the above scoring mechanism to
Dutch. Our gold standards are the hand-taggegPmpare the F-Scores (product of precision and
morphologically-analyzed CELEX lexicon in each recall divided by average of the two ) of our system
of these languages (Baayen, et al., 1993). We appfif & gutoff threshold of 85% to those of our earlier
the algorithms only to those words of our corporg2/gorithm (*S/J2000") at the same threshold;
with frequencies of 10 or more. Obviously this cut-Goldsmith; and a baseline system which performs
off slightly limits the generality of our results, but N0 analysis (claiming that for any word, its
it also greatly decreases processing time for all ofonflation set only consists of itself). The “S” and

Figure 6: Morphologic relations of “conduct’ C” columns respectlve!y indicate perf_or_mance of
systems when scoring for suffixing and

circumfixing (using the unaugmented CELEX). The

conductresses i conductivities . . . .
condyction A” column shows circumfixing performance using
J/ o the augmented CELEX. Space limitations required
conductress conductivity that we illustrate “A” scores for one language only,

\//conduct\ \L but performance in the other two language is
conductor AN conductive similarly degraded. Boxes are shaded out for
\ algorithms not designed to produce circumfixes.

Note that each of our additions resulted in an

conductors conducts conducting conducted ) ;
overall improvement which held true across each of




the three languagesk-urthermore, using ten-fold  Artificial Intelligence and Statistics
cross validation on the English data, we find that FDéJean, H. (1998) Morphemes as necessary concepts for
score differences of the S column are each Structures: Discovery from untagged corpora.

statistically significant at least at the 95% level. Workshop on paradigms and Grounding in Natural
Language Learningop. 295-299.Adelaide, Australia

Table 5 Computation of F-Scores Deerwester, S., S.T. Dumais, G.W. Furnas, T.K.
Algorithmg English Germari Dutch Landauer, and R. Harshman. (1990) Indexing by
slclals!| c s| ¢ Latent Sematic Analysis.Journal of the American

Society of Information Sciencéol. 41, pp.391-407.
None | 62.§ 59.p 511/ 758 6310 74.2 70.0 Gayssier, E. (1999) Unsupervised learning of derivational
Goldsmithy 81.8 84.0 7518 morphology from inflectional lexiconsACL '99
s/320001 85.2 ssl3 322 Workshop: Unsupervi;ed Learning in Natural
- - Language Processingniv. of Maryland.
+orthogrplp 85.4 82 76]9 89.3 741 80.5 8.9 Goldsmith, J. (1997/2000) Unsupervised learning of the

+syntax| 87.4 840 79]0 91.6 74.2 85.6 719.4 morphology of a natural language. Univ. of Chicago.

= " p http://humanities.uchicago.edu/faculty/goldsmith.
+ [
transitiv§ 88.1/84.p 7992.3 78P85§ 79 Grabar, N. and P. Zweigenbaum. (1999) Acquisition
5 Conclusions automatique de connaissances morphologiques sur le

We have illustrated three extensions to our earlier vocabulaire medical ALN Cargese, France.
morphology induction work (Schone and Jurafskyl'mms,' Z. (1951structural Linguistics University of
(2000)). In addition to nduced semantics, we Chicago Press.

incorporated induced orthographic, syntactic, andacquemin, C. (1997) Guessing morphology from terms
transitive information resulting in almost a 20%  and corporaSIGIR'97 pp. 156-167, Philadelphia, PA.
relative reduction in overalinduction error. We Kazakov, D. (1997) Unsupervised learning of naive
have also extended the work by illustrating morphology with genetic algorithms. In  W.
performance in German and Dutch where, to our Daelemans, et al., ed£CML/Minet Workshop on
knowledge, complete morphology induction Empirical Learning of Natural Language Processing
performance measures have not previously been 12SksPrague, pp. 105-111.

obtained. Lastly, we showed a mechanism whereby?"dauer. T.K., P.W. Foltz, and D. Laham. (1998)

. . o . Introduction to Latent Semantic Analysi3iscourse
circumfixes as well as combinations of prefixing 5 . oa/o 25 op. 259-284

and suffixing can be induced in lieu of the SUfﬁX'Manning C.D. and H. Schiitze. (199%)undations of

only strategies prevailing in most previous research. gagistical Natural Language ProcessinglT Press,
For the future, we expect improvements could be cambridge, MA.

derived by coupling this work, which focuses Nakisa, R.C., U.Hahn. (1996) Where defadt®'t help:
primarily on inducing regular morphology, with that  the case of the German plural systeRroc. of the

of Yarowsky and Wicentowski (2000), wlagsume 18th Conference of the Cognitive Science Society.
some information about regular morphology in ordeiSchone, P. and D. Jurafsky. (2000) Knowledge-free
to induce irregular morphology. We also believe induction of morphology using latent semantic
that some findings of this work can benefit other analysis. Proc. of the Computational Natural

e . Language Learning Conferenddsbon, pp. 67-72.
areas of linguistic induction, such as part aegh. Schiitze, H. (1993) Distributed syntactic representations
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