
Applying Co-Training methods to Statistical Parsing�

Anoop Sarkar
Dept. of Computer and Information Science

University of Pennsylvania
200 South 33rd Street,

Philadelphia, PA 19104-6389 USA
anoop@linc.cis.upenn.edu

Abstract
We propose a novel Co-Training method for statistical
parsing. The algorithm takes as input a small corpus
(9695 sentences) annotated with parse trees, a dictionary
of possible lexicalized structures for each word in the
training set and a large pool of unlabeled text. The algo-
rithm iteratively labels the entire data set with parse trees.
Using empirical results based on parsing the Wall Street
Journal corpus we show that training a statistical parser
on the combined labeled and unlabeled data strongly out-
performs training only on the labeled data.

1 Introduction
The current crop of statistical parsers share a similar
training methodology. They train from the Penn Tree-
bank (Marcus et al., 1993); a collection of 40,000 sen-
tences that are labeled with corrected parse trees (ap-
proximately a million word tokens). In this paper, we
explore methods for statistical parsing that can be used
to combine small amounts of labeled data with unlimited
amounts of unlabeled data. In the experiment reported
here, we use 9695 sentences of bracketed data (234467
word tokens). Such methods are attractive for the follow-
ing reasons:

� Bracketing sentences is an expensive process. A
parser that can be trained on a small amount of la-
beled data will reduce this annotation cost.

� Creating statistical parsers for novel domains and
new languages will become easier.

� Combining labeled data with unlabeled data allows
exploration of unsupervised methods which can
now be tested using evaluations compatible with su-
pervised statistical parsing.

In this paper we introduce a new approach that com-
bines unlabeled data with a small amount of labeled
(bracketed) data to train a statistical parser. We use a Co-
Training method (Yarowsky, 1995; Blum and Mitchell,

� I would like to thank Aravind Joshi, Mitch Marcus, Mark Liberman,
B. Srinivas, David Chiang and the anonymous reviewers for helpful
comments on this work. This work was partially supported by NSF
Grant SBR8920230, ARO Grant DAAH0404-94-G-0426, and DARPA
Grant N66001-00-1-8915.

1998; Goldman and Zhou, 2000) that has been used pre-
viously to train classifiers in applications like word-sense
disambiguation (Yarowsky, 1995), document classifica-
tion (Blum and Mitchell, 1998) and named-entity recog-
nition (Collins and Singer, 1999) and apply this method
to the more complex domain of statistical parsing.

2 Unsupervised techniques in language
processing

While machine learning techniques that exploit anno-
tated data have been very successful in attacking prob-
lems in NLP, there are still some aspects which are con-
sidered to be open issues:

� Adapting to new domains: training on one domain,
testing (using) on another.

� Higher performance when using limited amounts of
annotated data.

� Separating structural (robust) aspects of the prob-
lem from lexical (sparse) ones to improve perfor-
mance on unseen data.

In the particular domain of statistical parsing there has
been limited success in moving towards unsupervised
machine learning techniques (see Section 7 for more dis-
cussion). A more promising approach is that of combin-
ing small amounts of seed labeled data with unlimited
amounts of unlabeled data to bootstrap statistical parsers.
In this paper, we use one such machine learning tech-
nique: Co-Training, which has been used successfully in
several classification tasks like web page classification,
word sense disambiguation and named-entity recogni-
tion.

Early work in combining labeled and unlabeled data
for NLP tasks was done in the area of unsupervised part
of speech (POS) tagging. (Cutting et al., 1992) reported
very high results (96% on the Brown corpus) for un-
supervised POS tagging using Hidden Markov Models
(HMMs) by exploiting hand-built tag dictionaries and
equivalence classes. Tag dictionaries are predefined as-
signments of all possible POS tags to words in the test
data. This impressive result triggered several follow-up
studies in which the effect of hand tuning the tag dictio-
nary was quantified as a combination of labeled and unla-



Pierre/NNP Vinken/NNP

NP

will/MD

join/VB

the/DT board/NN

NP

as/IN

a/DT non−executive/JJ director/NN

NP

PP

VP

VP

S

Figure 1: An example of the kind of output expected from a statistical parser.

beled data. The experiments in (Merialdo, 1994; Elwor-
thy, 1994) showed that only in very specific cases HMMs
were effective in combining labeled and unlabeled data.

However, (Brill, 1997) showed that aggressively us-
ing tag dictionaries extracted from labeled data could be
used to bootstrap an unsupervised POS tagger with high
accuracy (approx 95% on WSJ data). We exploit this ap-
proach of using tag dictionaries in our method as well
(see Section 3.2 for more details). It is important to point
out that, before attacking the problem of parsing using
similar machine learning techniques, we face a represen-
tational problem which makes it difficult to define the
notion of tag dictionary for a statistical parser.

The problem we face in parsing is more complex than
assigning a small fixed set of labels to examples. If the
parser is to be generally applicable, it has to produce
a fairly complex “label” given an input sentence. For
example, given the sentencePierre Vinken will join the
board as a non-executive director, the parser is expected
to produce an output as shown in Figure 1.

Since the entire parse cannot be reasonably considered
as a monolithic label, the usual method in parsing is to
decompose the structure assigned in the following way:

S(join)! NP(Vinken) VP(join)

NP(Vinken)! Pierre Vinken

VP(join)! will VP(join)

VP(join)! join NP(board) PP(as)

: : :

However, such a recursive decomposition of structure
does not allow a simple notion of a tag dictionary. We
solve this problem by decomposing the structure in an
approach that is different from that shown above which
uses context-free rules.

The approach uses the notion of tree rewriting as
defined in the Lexicalized Tree Adjoining Grammar
(LTAG) formalism (Joshi and Schabes, 1992)1 which re-

1This is a lexicalized version of Tree Adjoining Grammar (Joshi et
al., 1975; Joshi, 1985).

tains the notion of lexicalization that is crucial in the suc-
cess of a statistical parser while permitting a simple def-
inition of tag dictionary. For example, the parse in Fig-
ure 1 can be generated by assigning the structured labels
shown in Figure 2 to each word in the sentence (for sim-
plicity, we assume that the noun phrases are generated
here as a single word). We use a tool described in (Xia
et al., 2000) to convert the Penn Treebank into this rep-
resentation.

Pierre Vinken

NP

will VP

VP

NP

join NP

VP

S

the board

NP

VP

as NP

PP

VP

a non−executive director

NP

Figure 2: Parsing as tree classification and attachment.

Combining the trees together by rewriting nodes as
trees (explained in Section 2.1) gives us the parse tree
in Figure 1. A history of the bi-lexical dependencies that
define the probability model used to construct the parse
is shown in Figure 3. This history is called thederivation
tree.

In addition, as a byproduct of this kind of represen-
tation we obtain more than the phrase structure of each
sentence. We also produce a more embellished parse in
which phenomena such as predicate-argument structure,
subcategorization and movement are given a probabilis-



tic treatment.

Pierre_Vinken will the_board

a_nonexecutive_director

as

join

Figure 3: A derivation indicating all the attachments be-
tween trees that have occurred during the parse of the
sentence.

2.1 The Generative Model
A stochastic LTAG derivation proceeds as follows (Sch-
abes, 1992; Resnik, 1992). An initial tree is selected with
probabilityPinit and other trees selected by words in the
sentence are combined using the operations of substitu-
tion and adjoining. These operations are explained below
with examples. Each of these operations is performed
with probabilityPattach.

For each� that can be valid start of a derivation:
X

�

Pinit(�) = 1

Substitution is defined as rewriting a node in the fron-
tier of a tree with probabilityPattachwhich is said to be
proper if:

X

� 0

Pattach(�; � ! � 0) = 1

where�; � ! � 0 indicates that tree� 0 is substituting
into node� in tree� . An example of the operation of
substitution is shown in Figure 4.

Adjoining is defined as rewriting any internal node of a
tree by another tree. This is a recursive rule and each ad-
joining operation is performed with probabilityPattach
which is proper if:

Pattach(�; � ! NA) +
X

� 0

Pattach(�; � ! � 0) = 1

Pattachhere is the probability that� 0 rewrites an in-
ternal node� in tree� or that no adjoining (NA) occurs
at node� in � . The additional factor that accounts for no
adjoining at a node is required for the probability to be
well-formed. An example of the operation of adjoining
is shown in Figure 5.

Each LTAG derivationD which was built starting from
tree� with n subsequent attachments has the probability:

Pr(D) = Pinit(�)
Y

1�i�n

Pattach(�; � ! � 0i )

Pierre Vinken

NP

join NP

VP

S

NP

join NP

VP

S

Pierre Vinken

NP

Figure 4: Example substitution of the tree for
Pierre Vinken into the tree forjoin: �(join);NP !
� 0(Pierre Vinken).

will VP

VP

NP

join NP

VP

S

NP

will

join NP

VP

VP

S

Figure 5: Example adjoining of the tree forwill into the
tree forjoin: �(join);VP! � 0(will ).

Note that assuming each tree is lexicalized by one
word the derivationD corresponds to a sentence ofn+1
words.

In the next section we show how to exploit this notion
of tag dictionary to the problem of statistical parsing.

3 Co-Training methods for parsing
Many supervised methods of learning from a Treebank
have been studied. The question we want to pursue in
this paper is whether unlabeled data can be used to im-
prove the performance of a statistical parser and at the
same time reduce the amount of labeled training data
necessary for good performance. We will assume the



data that is input to our method will have the following
characteristics:

1. A small set of sentences labeled with corrected
parse trees and large set of unlabeled data.

2. A pair of probabilistic models that form parts of a
statistical parser. This pair of models must be able
to mutually constrain each other.

3. A tag dictionary (used within a backoff smoothing
strategy) for labels are not covered in the labeled
set.

The pair of probabilistic models can be exploited to
bootstrap new information from unlabeled data. Since
both of these steps ultimately have to agree with each
other, we can utilize an iterative method called Co-
Training that attempts to increase agreement between a
pair of statistical models by exploiting mutual constraints
between their output.

Co-Training has been used before in applications like
word-sense disambiguation (Yarowsky, 1995), web-page
classification (Blum and Mitchell, 1998) and named-
entity identification (Collins and Singer, 1999). In all
of these cases, using unlabeled data has resulted in per-
formance that rivals training solely from labeled data.
However, these previous approaches were on tasks that
involved identifying the right label from a small set of
labels (typically 2–3), and in a relatively small parame-
ter space. Compared to these earlier models, a statistical
parser has a very large parameter space and the labels
that are expected as output are parse trees which have
to be built up recursively. We discuss previous work in
combining labeled and unlabeled data in more detail in
Section 7.

Co-training (Blum and Mitchell, 1998; Yarowsky,
1995) can be informally described in the following man-
ner:

� Pick two (or more) “views” of a classification prob-
lem.

� Build separate models for each of these “views” and
train each model on a small set of labeled data.

� Sample an unlabeled data set and to find examples
that each model independently labels with high con-
fidence. (Nigam and Ghani, 2000)

� Confidently labeled examples can be picked in var-
ious ways. (Collins and Singer, 1999; Goldman and
Zhou, 2000)

� Take these examples as being valuable as training
examples and iterate this procedure until the unla-
beled data is exhausted.

Effectively, by picking confidently labeled data from
each model to add to the training data, one model is la-
beling data for the other model.

3.1 Lexicalized Grammars and Mutual Constraints
In the representation we use, parsing using a lexicalized
grammar is done in two steps:

1. Assigning a set of lexicalized structures to each
word in the input sentence (as shown in Figure 2).

2. Finding the correct attachments between these
structures to get the best parse (as shown in Fig-
ure 1).

Each of these two steps involves ambiguity which can
be resolved using a statistical model. By explicitly rep-
resenting these two steps independently, we can pursue
independent statistical models for each step:

1. Each word in the sentence can take many different
lexicalized structures. We can introduce a statistical
model that disambiguates the lexicalized structure
assigned to a word depending on the local context.

2. After each word is assigned a certain set of lexical-
ized structures, finding the right parse tree involves
computing the correct attachments between these
lexicalized structures. Disambiguating attachments
correctly using an appropriate statistical model is
essential to finding the right parse tree.

These two models have to agree with each other on
the trees assigned to each word in the sentence. Not only
do the right trees have to be assigned as predicted by the
first model, but they also have to fit together to cover the
entire sentence as predicted by the second model2. This
represents the mutual constraint that each model places
on the other.

3.2 Tag Dictionaries
For the words that appear in the (unlabeled) training data,
we collect a list of part-of-speech labels and trees that
each word is known to select in the training data. This
information is stored in a POS tag dictionary and a tree
dictionary. It is important to note that no frequency or
any other distributional information is stored. The only
information stored in the dictionary is which tags or trees
can be selected by each word in the training data.

We use a count cutoff for trees in the labeled data and
combine observed counts into anunobservedtree count.
This is similar to the usual technique of assigning the
tokenunknownto infrequent word tokens. In this way,
trees unseen in the labeled data but in the tag dictionary
are assigned a probability in the parser.

The problem of lexical coverage is a severe one for
unsupervised approaches. The use of tag dictionaries is
a way around this problem. Such an approach has al-
ready been used for unsupervised part-of-speech tagging
in (Brill, 1997) where seed data of which POS tags can
be selected by each word is given as input to the unsu-
pervised tagger.

2Seex7 for a discussion of the relation of this approach to that of
SuperTagging (Srinivas, 1997)



In future work, it would be interesting to extend mod-
els for unknown-word handling or other machine learn-
ing techniques in clustering or the learning of subcatego-
rization frames to the creation of such tag dictionaries.

4 Models
As described before, we treat parsing as a two-step pro-
cess. The two models that we use are:

1. H1: selects trees based on previous context (tagging
probability model)

2. H2: computes attachments between trees and re-
turns best parse (parsing probability model)

4.1 H1: Tagging probability model

We select the most likely trees for each word by examin-
ing the local context. The statistical model we use to de-
cide this is the trigram model that was used by B. Srinivas
in his SuperTagging model (Srinivas, 1997). The model
assigns ann-best lattice of tree assignments associated
with the input sentence with each path corresponding to
an assignment of an elementary tree for each word in the
sentence. (for further details, see (Srinivas, 1997)).

P (TjW)

= P (T0 : : : TnjW0 : : :Wn) (1)

=
P (T0 : : : Tn)� P (W0 : : :WnjT0 : : : Tn)

P (W0 : : :Wn)
(2)

� P (TijTi�2Ti�1)� P (WijTi) (3)

whereT0 : : : Tn is a sequence of elementary trees as-
signed to the sentenceW0 : : :Wn.

We get (2) by using Bayes theorem and we obtain (3)
from (2) by ignore the denominator and by applying the
usual Markov assumptions.

The output of this model is a probabilistic ranking of
trees for the input sentence which is sensitive to a small
local context window.

4.2 H2: Parsing probability model

Once the words in a sentence have selected a set of el-
ementary trees, parsing is the process of attaching these
trees together to give us a consistent bracketing of the
sentences. Notation: Let� stand for an elementary tree
which is lexicalized by a word:w and a part of speech
tag:p.

LetPinit (introduced earlier in 2.1) stand for the prob-
ability of being root of a derivation tree defined as fol-
lows:

X

�

Pinit(�) = 1

including lexical information, this is written as:

Pr(�; w; pjtop = 1) =

Pr(� jtop = 1)� (4)

Pr(pj�; top = 1)� (5)

Pr(wj�; p; top = 1); (6)

where the variabletop indicates that� is the tree that
begins the current derivation. There is a useful approxi-
mation forPinit :

Pr(�; w; pjtop = 1) � Pr(labeljtop = 1)

wherelabel is the label of the root node of� .

P̂r(labeljtop = 1) =

Count(top = 1; label) + �

Count(top = 1) +N�
(7)

where N is the number of bracketing labels and� is a
constant used to smooth zero counts.

Let Pattach (introduced earlier in 2.1) stand for the
probability of attachment of� 0 into another� :

Pattach(�; � ! NA) +
X

� 0

Pattach(�; � ! � 0) = 1

including lexical information, this is written as:

Pr(� 0; p0; w0jNode; �; w; p) (8)

Pr(NAjNode; �; w; p) (9)

We decompose (8) into the following components:

Pr(� 0; p0; w0jNode; �; w; p) =

Pr(� 0jNode; �; w; p)� (10)

Pr(p0j� 0; Node; �; w; p)� (11)

Pr(w0jp0; � 0; Node; �; w; p); (12)

We do a similar decomposition for (9).
For each of the equations above, we use a backoff

model which is used to handle sparse data problems. We
compute a backoff model as follows:

Let e1 stand for the original lexicalized model ande2
be the backoff level which only uses part of speech infor-
mation:

e1: Node; �; w; p

e2: Node; �; p

For bothPinit andPattach, let c = Count(e1). Then
the backoff model is computed as follows:

�(c)e1 + (1� �(c))e2



where�(c) = c
(c+D) andD is the diversity ofe1 (i.e.

the number of distinct counts fore1).
ForPattachwe further smooth probabilities (10), (11)

and (12). We use (10) as an example, the other two are
handled in the same way.

P̂r(� 0jNode; �; w; p) =

(Count(Node; �; w; p; � 0) + �)

(Count(Node; �; w; p) + k�)
(13)

Count(Node; �; w; p) =
X

y2T 0

Count(Node; �; w; p; y) (14)

where k is the diversity of adjunction, that is: the num-
ber of different trees that can attach at that node.T 0 is
the set of all trees� 0 that can possibly attach at Node in
tree� .

For our experiments, the value of� is set to 1
100;000 .

5 Co-Training algorithm
We are now in the position to describe the Co-Training
algorithm, which combines the models described in Sec-
tion 4.1 and in Section 4.2 in order to iteratively label a
large pool of unlabeled data.

We use the following datasets in the algorithm:

labeled a set of sentences bracketed with the correct
parse trees.

cache a small pool of sentences which is the focus of
each iteration of the Co-Training algorithm.

unlabeled a large set of unlabeled sentences. The only
information we collect from this set of sentences is
a tree-dictionary:tree-dictand part-of-speech dic-
tionary:pos-dict. Construction of these dictionaries
is covered in Section 3.2.

In addition to the above datasets, we also use the usual
development test set (termeddevin this paper), and a test
set (calledtest) which is used to evaluate the bracketing
accuracy of the parser.

The Co-Training algorithm consists of the following
steps which are repeated iteratively until all the sentences
in the setunlabeledare exhausted.

1. Input: labeledandunlabeled

2. Update cache

� Randomly select sentences fromunlabeledand
refill cache

� If cacheis empty; exit

3. Train models H1 and H2 usinglabeled

4. Apply H1 and H2 to cache.

5. Pick most probablen from H1 (run through H2) and
add tolabeled.

6. Pick most probablen from H2 and add tolabeled

7. n = n+ k; Go to Step 2

For the experiment reported here,n = 10, andk was
set to ben in each iteration. We ran the algorithm for 12
iterations (covering 20480 of the sentences inunlabeled)
and then added the best parses for all the remaining sen-
tences.

6 Experiment
6.1 Setup

The experiments we report were done on the Penn Tree-
bank WSJ Corpus (Marcus et al., 1993). The various
settings for the Co-Training algorithm (from Section 5)
are as follows:

� labeledwas set to Sections 02-06 of the Penn Tree-
bank WSJ (9625 sentences)

� unlabeledwas 30137 sentences (Section 07-21 of
the Treebank stripped of all annotations).

� A tag dictionary of all lexicalized trees fromlabeled
andunlabeled.

� Novel trees were treated as unknown tree tokens.

� Thecachesize was 3000 sentences.

While it might seem expensive to run the parser over
the cache multiple times, we use the pruning capabilities
of the parser to good use here. During the iterations we
set the beam size to a value which is likely to prune out
all derivations for a large portion of the cache except the
most likely ones. This allows the parser to run faster,
hence avoiding the usual problem with running an iter-
ative algorithm over thousands of sentences. In the ini-
tial runs we also limit the length of the sentences entered
into the cache because shorter sentences are more likely
to beat out the longer sentences in any case. The beam
size is reset when running the parser on the test data to
allow the parser a better chance at finding the most likely
parse.

6.2 Results

We scored the output of the parser on Section 23 of the
Wall Street Journal Penn Treebank. The following are
some aspects of the scoring that might be useful for com-
parision with other results: No punctuations are scored,
including sentence final punctuation. Empty elements
are not scored. We usedEVALB (written by Satoshi
Sekine and Michael Collins) which scores based onPAR-
SEVAL (Black et al., 1991); with the standard parame-
ter file (as per standard practice, part of speech brackets
were not part of the evaluation). Also, we used Adwait
Ratnaparkhi’s part-of-speech tagger (Ratnaparkhi, 1996)
to tag unknown words in the test data.



We obtained 80.02% and 79.64% labeled bracketing
precision and recall respectively (as defined in (Black
et al., 1991)). The baseline model which was only
trained on the 9695 sentences of labeled data performed
at 72.23% and 69.12% precision and recall. These re-
sults show that training a statistical parser using our Co-
training method to combine labeled and unlabeled data
strongly outperforms training only on the labeled data.

It is important to note that unlike previous studies, our
method of moving towards unsupervised parsing are di-
rectly compared to the output of supervised parsers.

Certain differences in the applicability of the usual
methods of smoothing to our parser cause the lower ac-
curacy as compared to other state of the art statistical
parsers. However, we have consistently seen increase in
performance when using the Co-Training method over
the baseline across several trials. It should be empha-
sised that this is a result based on less than 20% of data
that is usually used by other parsers. We are experiment-
ing with the use of an even smaller set of labeled data to
investigate the learning curve.

7 Previous Work: Combining Labeled and
Unlabeled Data

The two-step procedure used in our Co-Training method
for statistical parsing was incipient in the SuperTag-
ger (Srinivas, 1997) which is a statistical model for tag-
ging sentences with elementary lexicalized structures.
This was particularly so in the Lightweight Dependency
Analyzer (LDA), which used shortest attachment heuris-
tics after an initial SuperTagging stage to find syntactic
dependencies between words in a sentence. However,
there was no statistical model for attachments and the
notion of mutual constraints between these two steps was
not exploited in this work.

Previous studies in unsupervised methods for parsing
have concentrated on the use of inside-outside algorithm
(Lari and Young, 1990; Carroll and Rooth, 1998). How-
ever, there are several limitations of the inside-outside al-
gorithm for unsupervised parsing, see (Marcken, 1995)
for some experiments that draw out the mismatch be-
tween minimizing error rate and iteratively increasing the
likelihood of the corpus. Other approaches have tried to
move away from phrase structural representations into
dependency style parsing (Lafferty et al., 1992; Fong and
Wu, 1996). However, there are still inherent computa-
tional limitations due to the vast search space (see (Pietra
et al., 1994) for discussion). None of these approaches
can even be realistically compared to supervised parsers
that are trained and tested on the kind of representations
and the complexity of sentences that are found in the
Penn Treebank.

(Chelba and Jelinek, 1998) combine unlabeled and
labeled data for parsing with a view towards language
modeling applications. The goal in their work is not to
get the right bracketing or dependencies but to reduce the
word error rate in a speech recognizer.

Our approach is closely related to previous Co-
Training methods (Yarowsky, 1995; Blum and Mitchell,
1998; Goldman and Zhou, 2000; Collins and Singer,
1999). (Yarowsky, 1995) first introduced an iterative
method for increasing a small set of seed data used to
disambiguate dual word senses by exploiting the con-
straint that in a segment of discourse only one sense of
a word is used. This use of unlabeled data improved
performance of the disambiguator above that of purely
supervised methods. (Blum and Mitchell, 1998) further
embellish this approach and gave it the name of Co-
Training. Their definition of Co-Training includes the
notion (exploited in this paper) that different models can
constrain each other by exploiting different ‘views’ of the
data. They also prove some PAC results on learnability.
They also discuss an application of classifying web pages
by using their method of mutually constrained models.
(Collins and Singer, 1999) further extend the use of clas-
sifiers that have mutual constraints by adding terms to
AdaBoost which force the classifiers to agree (called Co-
Boosting). (Goldman and Zhou, 2000) provide a variant
of Co-Training which is suited to the learning of deci-
sion trees where the data is split up into different equiv-
alence classes for each of the models and they use hy-
pothesis testing to determine the agreement between the
models. In future work we would like to experiment
whether some of these ideas could be incorporated into
our model.

In future work we would like to explore use of the en-
tire 1M words of the WSJ Penn Treebank as our labeled
data and to use a larger set of unbracketed WSJ data as
input to the Co-Training algorithm. In addition, we plan
to explore the following points that bear on understand-
ing the nature of the Co-Training learning algorithm:

� The contribution of the dictionary of trees extracted
from the unlabeled set is an issue that we would like
to explore in future experiments. Ideally, we wish to
design a co-training method where no such informa-
tion is used from the unlabeled set.

� The relationship between co-training and EM bears
investigation. (Nigam and Ghani, 2000) is a study
which tries to separate two factors: (1) The gradi-
ent descent aspect of EM vs. the iterative nature
of co-training and (2) The generative model used in
EM vs. the conditional independence between the
features used by the two models that is exploited in
co-training. Also, EM has been used successfully
in text classification in combination of labeled and
unlabeled data (see (Nigam et al., 1999)).

� In our experiments, unlike (Blum and Mitchell,
1998) we do not balance the label priors when pick-
ing new labeled examples for addition to the train-
ing data. One way to incorporate this into our algo-
rithm would be to incorporate some form of sample
selection (or active learning) into the selection of
examples that are considered as labeled with high



confidence (Hwa, 2000).

8 Conclusion
In this paper, we proposed a new approach for training
a statistical parser that combines labeled with unlabeled
data. It uses a Co-Training method where a pair of mod-
els attempt to increase their agreement on labeling the
data. The algorithm takes as input a small corpus of
9695 sentences (234467 word tokens) of bracketed data,
a large pool of unlabeled text and a tag dictionary of lexi-
calized structures for each word in this training set (based
on the LTAG formalism). The algorithm presented itera-
tively labels the unlabeled data set with parse trees. We
then train a statistical parser on the combined set of la-
beled and unlabeled data.

We obtained 80.02% and 79.64% labeled bracketing
precision and recall respectively. The baseline model
which was only trained on the 9695 sentences of labeled
data performed at 72.23% and 69.12% precision and re-
call. These results show that training a statistical parser
using our Co-training method to combine labeled and un-
labeled data strongly outperforms training only on the la-
beled data.

It is important to note that unlike previous studies, our
method of moving towards unsupervised parsing can be
directly compared to the output of supervised parsers.
Unlike previous approaches to unsupervised parsing our
method can be trained and tested on the kind of represen-
tations and the complexity of sentences that are found in
the Penn Treebank.

In addition, as a byproduct of our representation we
obtain more than the phrase structure of each sentence.
We also produce a more embellished parse in which phe-
nomena such as predicate-argument structure, subcate-
gorization and movement are given a probabilistic treat-
ment.

References
E. Black, S. Abney, D. Flickinger, C. Gdaniec, R. Grishman, P. Har-

rison, D. Hindle, R. Ingria, F. Jelinek, J. Klavans, M. Liberman,
M. Marcus, S. Roukos, B. Santorini, and T. Strzalkowski. 1991.
A procedure for quantitatively comparing the syntactic coverage of
english grammars. InProc. DARPA Speech and Natural Language
Workshop, pages 306–311. Morgan Kaufmann.

A. Blum and T. Mitchell. 1998. Combining Labeled and Unlabeled
Data with Co-Training. InProc. of 11th Annual Conf. on Comp.
Learning Theory (COLT), pages 92–100.

E. Brill. 1997. Unsupervised learning of disambiguation rules for part
of speech tagging. InNatural Language Processing Using Very
Large Corpora. Kluwer Academic Press.

G. Carroll and M. Rooth. 1998. Valence In-
duction with a Head-Lexicalized PCFG.
http://xxx.lanl.gov/abs/cmp-lg/9805001 , May.

C. Chelba and F. Jelinek. 1998. Exploiting syntactic structure for lan-
guage modeling. InProc. of COLING-ACL ’98, pages 225–231,
Montreal.

M. Collins and Y. Singer. 1999. Unsupervised Models for Named En-
tity Classification. InProc. of WVLC/EMNLP-99, pages 100–110.

D. Cutting, J. Kupiec, J. Pedersen, and P. Sibun. 1992. A practical
part-of-speech tagger. InProc. of 3rd ANLP Conf., Trento, Italy.
ACL.

D. Elworthy. 1994. Does baum-welch re-estimation help taggers? In
Proc. of 4th ANLP Conf., pages 53–58, Stuttgart, October 13-15.

E. W. Fong and D. Wu. 1996. Learning restricted probabilistic link
grammars. In S. Wermter, E. Riloff, and G. Scheler, editors,Con-
nectionist, Statistical and Symbolic Approaches to Learning for Nat-
ural Language Processing, pages 173–187. Springer-Verlag.

S. Goldman and Y. Zhou. 2000. Enhancing supervised learning with
unlabeled data. InProc. of ICML’2000, Stanford University, June
29–July 2.

Rebecca Hwa. 2000. Sample selection for statistical grammar induc-
tion. In Proceedings of EMNLP/VLC-2000, pages 45–52.

A. K. Joshi and Y. Schabes. 1992. Tree-adjoining grammar and lex-
icalized grammars. In M. Nivat and A. Podelski, editors,Tree au-
tomata and languages, pages 409–431. Elsevier Science.

A. K. Joshi, L. Levy, and M. Takahashi. 1975. Tree Adjunct Gram-
mars.Journal of Computer and System Sciences.

A. K. Joshi. 1985. Tree Adjoining Grammars: How much context Sen-
sitivity is required to provide a reasonable structural description. In
D. Dowty, I. Karttunen, and A. Zwicky, editors,Natural Language
Parsing, pages 206–250. Cambridge University Press, Cambridge,
U.K.

J. Lafferty, D. Sleator, and D. Temperley. 1992. Grammatical trigrams:
A probabilistic model of link grammar. InProc. of the AAAI Conf.
on Probabilistic Approaches to Natural Language.

K. Lari and S. J. Young. 1990. The estimation of stochastic context-
free grammars using the Inside-Outside algorithm.Computer
Speech and Language, 4:35–56.

C. de Marcken. 1995. Lexical heads, phrase structure and the induc-
tion of grammar. In D. Yarowsky and K. Church, editors,Proc. of
3rd WVLC, pages 14–26, MIT, Cambridge, MA.

M. Marcus, B. Santorini, and M. Marcinkiewiecz. 1993. Building
a large annotated corpus of english.Computational Linguistics,
19(2):313–330.

B. Merialdo. 1994. Tagging english text with a probabilistic model.
Computational Linguistics, 20(2):155–172.

Kamal Nigam and Rayid Ghani. 2000. Analyzing the effectiveness and
applicability of co-training. InProc. of Ninth International Confer-
ence on Information and Knowledge (CIKM-2000).

Kamal Nigam, Andrew McCallum, Sebastian Thrun, and Tom
Mitchell. 1999. Text Classification from Labeled and Unlabeled
Documents using EM.Machine Learning, 1(34).

S. Della Pietra, V. Della Pietra, J. Gillett, J. Lafferty, H. Printz, and
L. Ures̆. 1994. Inference and estimation of a long-range trigram
model. In R. Carrasco and J. Oncina, editors,Proc. of ICGI-94.
Springer-Verlag.

A. Ratnaparkhi. 1996. A Maximum Entropy Part-Of-Speech Tagger.
In Proc. of EMNLP-96, University of Pennsylvania.

P. Resnik. 1992. Probabilistic tree-adjoining grammars as a framework
for statistical natural language processing. InProc. of COLING ’92,
volume 2, pages 418–424, Nantes, France.

Y. Schabes. 1992. Stochastic lexicalized tree-adjoining grammars. In
Proc. of COLING ’92, volume 2, pages 426–432, Nantes, France.

B. Srinivas. 1997.Complexity of Lexical Descriptions and its Rele-
vance to Partial Parsing. Ph.D. thesis, Department of Computer
and Information Sciences, University of Pennsylvania.

F. Xia, M. Palmer, and A. Joshi. 2000. A Uniform Method of Grammar
Extraction and its Applications. InProc. of EMNLP/VLC-2000.

D. Yarowsky. 1995. Unsupervised Word Sense Disambiguation Rival-
ing Supervised Methods. InProc. 33rd Meeting of the ACL, pages
189–196, Cambridge, MA.


