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Abstract 
 
In automatic speech recognition (ASR) enabled 
applications for medical dictations, corpora of 
li teral transcriptions of speech are critical for 
training both speaker independent and speaker 
adapted acoustic models.  Obtaining these 
transcriptions is both costly and time consuming.  
Non-li teral transcriptions, on the other hand, are 
easy to obtain because they are generated in the 
normal course of a medical transcription operation.  
This paper presents a method of automatically 
generating texts that can take the place of li teral 
transcriptions for training acoustic and language 
models.  ATRS1 is an automatic transcription 
reconstruction system that can produce near-li teral 
transcriptions with almost no human labor. We will 
show that (i) adapted acoustic models trained on 
ATRS data perform as well as or better than 
adapted acoustic models trained on li teral 
transcriptions (as measured by recognition 
accuracy) and (ii ) language models trained on 
ATRS data have lower perplexity than language 
models trained on non-li teral data. 
 
Introduction 
 
Dictation applications of automatic speech 
recognition (ASR) require li teral transcriptions of 
speech in order to train both speaker independent 
and speaker adapted acoustic models.  Literal 
transcriptions may also be used to train stochastic 
language models that need to perform well on 
spontaneous or disfluent speech.  With the 
exception of personal desktop systems, however, 
obtaining these transcriptions is costly and time 
consuming since they must be produced manually 

                                                        
1 patent pending (Serial No.: 09/487398) 

by humans educated for the task.  The high cost 
makes li teral transcription unworkable for ASR 
applications that require adapted acoustic models 
for thousands of talkers as well as accurate 
language models for idiosyncratic natural speech.  
 
Non-li teral transcriptions, on the other hand, are 
easy to obtain because they are generated in the 
normal course of a medical transcription operation.  
It has been previously shown by Wightman and 
Harder (1999) that the non-li teral transcriptions can 
be successfully used in acoustic adaptation. 
However, non-li teral transcriptions are incomplete.  
They exclude many utterances that commonly 
occur in medical dictation—fill ed pauses, 
repetitions, repairs, ungrammatical phrases, 
pleasantries, asides to the transcriptionist, etc.  
Depending on the talker, such material may 
constitute a significant portion of the dictation. 
 
We present a method of automatically generating 
texts that can take the place of li teral transcriptions 
for training acoustic and language models.  ATRS 
is an automatic transcription reconstruction system 
that can produce near-li teral transcriptions with 
almost no human labor.  
 
The following sections will describe ATRS and 
present experimental results from language and 
acoustic modeling. We will show that (i) adapted 
acoustic models trained on ATRS data perform as 
well as or better than adapted acoustic models 
trained on li teral transcriptions (as measured by 
recognition accuracy) and (ii ) language models 
trained on ATRS data have lower perplexity than 
language models trained on non-li teral data. Data 
used in the experiments comes from medical 
dictations.  All of the dictations are telephone 
speech. 
 



1  Dictation Applications of ASR 
 
The application for our work is medical dictation 
over the telephone.  Medical dictation differs from 
other telephony based ASR applications, e.g. airline 
reservation systems, because the talkers are repeat 
users and utterances are long.  Dictations usually 
consist of 1-30 minutes of speech.  The talkers call 
in 3-5 days per week and produce between 1 and 12 
dictations each day they call .  Hence a medical 
dictation operation has access to hours of speech 
for each talker.   
 
Spontaneous telephone speech presents additional 
challenges that are caused partly by a poor acoustic 
signal and partly by the disfluent nature of 
spontaneous speech. A number of researchers have 
noted the effects of disfluencies on speech 
recognition and have suggested various approaches 
to dealing with them at language modeling and 
post-processing stages. (Shriberg 1994, Shriberg 
1996, Stolcke and Shriberg 1996, Stolcke et al. 
1998, Shriberg and Stolcke 1996, Siu and 
Ostendorf 1996, Heeman et al. 1996) Medical over-
the-telephone dictations can be classified as 
spontaneous or quasi-spontaneous discourse 
(Pakhomov 1999, Pakhomov and Savova 1999). 
Most physicians do not read a script prepared in 
advance, instead, they engage in spontaneous 
monologues that display the full spectrum of 
disfluencies found in conversational dialogs in 
addition to other "disfluencies" characteristic of 
dictated speech. An example of the latter is when a 
physician gives instructions to the transcriptionist 
to modify something in the preceding discourse, 
sometimes as far as several paragraphs back. 
 
Most ASR dictation applications focus on desktop 
users; for example, Dragon, IBM, Phili ps and 
Lernout & Hauspie all sell desktop dictation 
recognizers that work on high quali ty microphone 
speech.  Typically, the desktop system builds an 
adapted acoustic model if the talker "enrolls", i.e. 
reads a prepared script that serves as a li teral 
transcription.  Forced alignment of the script and 
the speech provides the input to acoustic model 
adaptation.   
 
Enrollment makes it relatively easy to obtain li teral 
transcriptions for adaptation.  However, enrollment 
is not feasible for dictation over the telephone 

primarily because most physicians will refuse to 
take the time to enroll .  The alternative is to hire 
humans who will type li teral transcriptions of 
dictation until enough have been accumulated to 
build an adapted model, an impractical solution for 
a large scale operation that processes speech from 
thousands of talkers.  ATRS is appealing because it 
can generate an approximation of li teral 
transcription that can replace enrollment scripts and 
the need for manually generated li teral 
transcriptions. 
 
2 Three Classes of Training Data 
 
In this paper, training texts for language and 
acoustic models fall i nto three categories: 
 
Non-Literal: Non-li teral transcripts present the 
meaning of what was spoken in a written form 
appropriate for the domain.  In a commercial 
medical transcription operation, the non-li teral 
transcript will present the dictation in a format 
appropriate for a medical record.  This typically 
involves (i.) ignoring fill ed pauses, pleasantries, 
and repeats; (ii .) acting on directions for repairs 
("delete the second paragraph and put this in 
instead..."); (iii .) adding non-dictated punctuation; 
(iv.) correcting grammatical errors; and (v.) re-
formatting certain phrases such as "Lung are 
Clear", to a standard form such as "Lungs - Clear". 
 
Literal: Literal transcriptions are exact 
transcriptions of what was spoken.  This includes 
any elements not found in the non-li teral transcript, 
such as fill ed pauses (um's and ah's), pleasantries 
and body noises ("thank you very much, just a 
moment, cough"), repeats, fragments, repairs and 
directions for repairs, and asides ("make that 
bold").  Literal transcriptions require significant 
human effort, and therefore are expensive to 
produce.  Even though they are carefully prepared, 
some errors will be present in the result. 
 
In their study of how humans deal with transcribing 
spoken discourse, Lindsay and O'Connell (1995) 
have found that li teral transcripts were "far from 
verbatim." (p.111) They find that the transcribers in 
their study tended to have the most diff iculty 
transcribing hesitation phenomena, followed by 
sentence fragments, adverbs and conjunctions and, 
finally, nouns, verbs, adjectives and prepositions. 



Our informal observations made from the 
transcripts produced by highly trained medical 
transcriptionists suggest approximately 5% error 
margin and a gradation of errors similar to 
the one found by Lindsay and O'Connell . 
 
Semi-Literal: Semi-li teral transcripts are derived 
using non-li teral transcripts, the recognizer output, 
a set of grammars, a dictionary, and an interpreter 
to integrate the recognized material into the non-
li teral transcription.  Semi-li teral transcripts will 
more closely resemble the li teral transcripts, as 
many of the elements missing from the non-li teral 
transcripts will be restored. 
 
3 Model Adaptation 
 
It is well known that ASR systems perform best 
when acoustic models are adapted to a particular 
talker’s speech.  This is why commercial desktop 
systems use enrollment.  Although less widely 
applied, language model adaptation based on linear 
interpolation is an effective technique for tailoring 
stochastic grammars to particular domains of 
discourse and to particular speakers (Savova et al. 
(2000), Weng et al. (1997)).  
 
The training texts used in acoustic modeling come 
from recognizer-generated texts, li teral 
transcriptions or non-li teral transcriptions.  Within 
the family of transformation and combined 
approaches to acoustic modeling (Digalakis and 
Neumeyer (1996), Strom (1996), Wightman and 
Harder (1999), Hazen and Glass (1997)) three basic 
adaptation methods can be identified: unsupervised, 
supervised, or semi-supervised.  Each adaptation 
method depends on a different type of training text.  
What follows will briefly introduce the three 
methods. 
 
Unsupervised adaptation relies on the 
recognizer’s output as the text guiding the 
adaptation.  Eff icacy of unsupervised adaptation 
fully depends on the recognition accuracy.  As 
Wightman and Harder (1999) pointed out, 
unsupervised adaptation works well i n laboratory 
conditions when the speech signal has large 
bandwidth and is relatively “clean” of background 
noise, throat clearings, and other disturbances.  In 
laboratory conditions, the errors introduced by 
unsupervised adaptation can be averaged out by 

using more data (Zavaliagkos and Colthurst, 1997); 
however, in a telephony operation with degraded 
input that is not feasible.  
 
Supervised adaptation is dependent on li teral 
transcription availabili ty and is widely used in 
enrollment in most desktop ASR systems.  A 
speaker’s speech sample is transcribed verbatim 
and then the speech signal is aligned with 
pronunciations frame by frame for each individual 
word.  A speaker independent model is augmented 
to include the observations resulting from the 
alignment. 
 
Semi-supervised adaptation rests on the idea that 
the speech signal can be partially aligned by using 
of the recognition output and the non-li teral 
transcription.  A significant problem with semi-
supervised adaptation is that only the speech that 
the recognizer already recognizes successfully ends 
up being used for adaptation.  This reinforces what 
is already well represented in the model.  
Wightman and Harder (1999) report that semi-
supervised adaptation has a positive side effect of 
excluding those segments of speech that were mis-
recognized for reasons other than a poor acoustic 
model.  They note that background noise and 
speech disfluency are detrimental to the 
unsupervised adaptation.   
 
In addition to the two problems with semi-
supervised adaptation pointed out by Wightman 
and Harder, we find one more potential problem.  
As a result of matching the word labels produced 
by the recognizer and the non-li teral transcription, 
some words may be skipped which may introduce 
unnatural phone transitions at word boundaries.  
 
Language model adaptation is not an appropriate 
domain for acoustic adaptation methods.  However, 
adapted language models can be loosely described 
as supervised or unsupervised, based on the types 
of training texts—li teral or non-li teral—that were 
used in building the model. 
 
In the following sections we will describe the 
system of generating data that is well suited for 
acoustic and language adaptation and present 
results of experimental evaluation of this system. 
 



3.2 Generating semi-literal data 

ATRS is based on reconstruction of non-li teral 
transcriptions to train utterance specific language 
models.  First, a non-li teral transcription is used to 
train an augmented probabili stic finite state model 
(APFSM) which is, in turn, used by the recognizer 
to re-recognize the exact same utterance that the 
non-li teral transcription was generated from.  The 
APFSM is constructed by linear interpolation of a 
finite state model where all transitional 
probabili ties are equal to 1 with two other 
stochastic models.   
 
One of the two models is a background model that 
accounts for expressions such as greetings, 
thanking, false starts and repairs.  A list of these 
out-of-transcription expressions is derived by 
comparing already existing li teral transcriptions 
with their non-li teral transcription counterparts.  
The other model represents the same non-li teral 
transcription populated with fill ed pauses (FP) 
(“um’s and ah’s”) using a stochastic FP model 
derived from a relatively large corpus of li teral 
transcriptions (Pakhomov, 1999, Pakhomov and 
Savova, 1999). 
 
 

 
Interpolation weights are established empirically by 
calculating the resulting model’s perplexity against 
held out data.  Out-of-vocabulary (OOV) items are 
handled provisionally by generating on-the-fly 

pronunciations based on the existing dictionary 
spelli ng-pronunciation alignments. The result of 
interpolating these two background models is that 
some of the transitional probabili ties found in the 
finite state model are no longer 1. 
 
The language model so derived can now be used to 
produce a transcription that is likely to be more true 
to what has actually been said than the non-li teral 
transcription that we started to work with. 
 
Further refinement of the new semi-li teral 
transcription is carried out by using dynamic 
programming alignment on the recognizer’s 
hypothesis (HYP) and the non-li teral transcription 
that is used as reference (REF).  The alignment 
results in each HYP label being designated as a 
MATCH, a DELETION, a SUBSTITUTION or an 
INSERTION.  Those labels present in the HYP 
stream that do not align with anything in the REF 
stream are designated as insertions and are assumed 
to represent the out-of-transcription elements of the 
dictation.  Those labels that do align but do not 
match are designated as substitutions.  Finally, the 
labels found in the REF stream that do not align 
with anything in the HYP stream are designated as 
deletions.   
 

 
The final semi-li teral transcription is constructed 
differently depending on the intended purpose of  
 
 

Figure { SEQ Figure \* ARABIC } Percent improvement in true data representation 
of ATRS reconstruction vs. Non-Literal data 



the transcription.  If the transcription will be used 
for acoustic modeling, then the MATCHES, the  
REF portion of SUBSTITUTIONS and the HYP 
portion of only those INSERTIONS that represent 
punctuation and fill ed pauses make it into the final  
semi-li teral transcription.  It is important to fil ter 
out everything else because acoustic modeling is 
very sensitive to misalignment errors.  Language 
modeling, on the other hand, is less sensitive to 
alignment errors; therefore, INSERTIONS and 
DELETIONS can be introduced into the semi-
li teral transcription. 
 
One method of ascertaining the quali ty of semi-
li teral reconstruction is to measure its alignment 
errors against li teral data using a dynamic 
programming application.  By measuring the 
correctness spread between ATRS and li teral data, 
as well as the correctness spread between non-
li teral and li teral data, the ATRS alignment 
correctness rate was observed to be 4.4% higher 
absolute over 774 dictation files tested. Chart 1 
summarizes the results. The X axis represents the 
number of dictations in each bin displayed along 
the Y axis representing the % improvement over 
the non-li teral counterparts. The results showed 
nearly all ATRS files had better alignment 
correctness than their non-li teral counterparts.  The 
majority of the reconstructed dictations resemble 
li teral transcriptions between 1% and 8% better 
than their non-li teral counterparts.  These results 
are statistically significant as evidenced by a t-test 
at 0.05 confidence level.  Much of the increase in 
alignment can be attributed to the introduction of 
fill ed pauses by ATRS.  However, ignoring fill ed 
pauses, we have observed informally that the 
correctness still i mproves in ATRS files versus 
non-li teral. 
 
In the following sections we will address acoustic 
and language modeling and show that semi-li teral 
training data is a good substitute for li teral data.   
 
 
4 Experimental results 
 
The usefulness of semi-li teral transcriptions was 
evaluated in two ways: acoustic adaptation and 
language modeling.  

 

4.1 Adapted acoustic model evaluation 
Three speaker adapted acoustic models were 
trained for each of the 5 talkers in this study using 
the three types of label files and evaluated on the 
talker’s testing data. 
 
4.1.1 Setup 
The data collected for each talker were spli t into 
testing and training. 

Training Data  
45-55 minutes of audio data was collected for each 
of the six talkers in this experiment: 
 
A female 
B female 
C male 
D male 
F female 
 
All talkers are native speakers of English, two 
males and three females. 
 
Non-literal transcriptions of this data were 
obtained in the course of normal transcription 
operation where trained medical transcriptionists 
record the dictations while fil tering out disfluency, 
asides and ungrammatical utterances. 
 
Literal transcriptions were obtained by having 5 
medical transcriptionists specially trained not to 
fil ter out disfluency and asides transcribe all the 
dictations used in this study. 
 
Semi-literal transcriptions were obtained with the 
system described in section 5 of this paper. 
 

Testing Data  
Three dictations (0.5 – 2 min) each were pulled out 
of the Literal transcriptions training set and set 
aside for each talker for testing. 

Recognition and evaluation software and 
formalism 
 
Software licensed from Entropic Laboratory was 
used for performing recognition, evaluating 
accuracy and acoustic adaptation. (Valtchev, et al. 
(1998)). Adapted models were trained using MLLR 



technique (Legetter and Woodland, (1996)) 
available as part of the Entropic package.  
 
Recognition accuracy and correctness reported in 
this study were calculated according to the 
following formulas: 
 
(1) Acc = hits – insertions / total words 
(2) Correctness = hits / total words 
 
 
4.1.2 Experiment 
The following Acoustic Models were trained via 
adaptation with a general SI model for each talker 
using all available data (except for the testing data). 
Each model’s name reflects the kind of label data 
that was used for training. 
 
LITERAL 
 
Each audio file was aligned with the corresponding 
li teral transcription.  
 
NON-LITERAL 
 
Each audio file was recognized using SI acoustic 
and language models. The recognition output was 
aligned with the non-li teral transcription using 
dynamic programming. Only those portions of 
audio that corresponded to direct matches in the 
alignment were used to produce alignments for 
acoustic modeling. This method was originally used 
for medical dictations by Wightman and Harder 
(1999). 
 
SEMI-LITERAL 
 
Each audio file has been processed to produce a 
semi-li teral transcription that was then aligned with 
recognition output generated in the process of 
creating semi-li teral transcriptions. The portions of 
the audio corresponding to matching segments were 
used for acoustic adaptation training. 
 
The SI model had been trained on all available at 
the time (12 hours)2 similar medical dictations to 
the ones used in this study. The data for the 
                                                        
2 Although 50-100 hours of data for SI modeling is the 
industry standard, the population we are dealing with is 
highly homogeneous and reasonable results can be 
obtained with lesser amount of data. 

speakers in this study were not used in training the 
SI model.  
 
4.1.3 Results 
Table 1 shows the test results. As expected, both 
recognition accuracy and correctness increase with 
any of the three kinds of adaptation. Adaptation 
using Literal transcriptions yields an overall 
10.84% absolute gain in correctness and 11.49% in 
accuracy over the baseline. 
 
Adaptation using Non-li teral transcriptions yields 
an overall 6.36 % absolute gain in correctness and 
5.23 % in accuracy over the baseline. Adaptation 
with Semi-li teral transcriptions yields an overall 
11.39 % absolute gain in correctness and 11.05 % 
in accuracy over the baseline. No statistical 
significance tests were performed on this data. 
 

Table 1. Recognition results for three adaptation 
methods 
 
4.1.4 Discussion 
The results of this experiment provide additional 
support for using automatically generated semi-
li teral transcriptions as a viable (and possibly 
superior) substitute for li teral data. The fact that 
three SEMI-LITERAL adapted AM’s out of 5 
performed better than their LITERAL counterparts 
seems to indicate that there may be undesirable 
noise either in the li teral transcriptions or in the 
corresponding audio. It may also be due to the 
relatively small amount of training data used for SI 
modeling thus providing a baseline that can be 
improved with li ttle effort. However, the results 
still i ndicate that generating semi-li teral 
transcriptions may help eliminate the undesirable 
noise and, at the same time, get the benefits of 
broader coverage that semi-li teral transcripts can 
afford over NON-LITERAL transcriptions. 
 

 Baseline (SI) 
% 

Literal       
% 

Semi-literal 
% 

Non-literal       
% 

Talker Cor Acc Cor Acc Cor  Acc Cor Acc 

A 58.76 48.47 66.57 58.09 68 58.28 64.76 51.8 

B 41.28 32.2 58.36 49.46 64.59 56.22 55.87 44.66 

C 57.22 54.99 64.38 61.54 61.25 59.31 60.65 58.71 

D 56.86 51.47 68.69 63.3 65.91 59.13 64.69 58.26 

F 54.83 43.69 61.97 53.57 64.7 54.41 61.13 48.73 

         

AVG 52.49 44.81 63.33 56.3 63.81 55.86 58.85 50.04 



4.2 Language Model Evaluation 
For ASR applications where there are significant 
discrepancies between an utterance and its formal 
transcription, the inclusion of li teral data in the 
language model can reduce language model 
perplexity and improve recognition accuracy.  In 
medical transcription, the non-li teral texts typically 
depart from what has actually been said.  Hence if 
the talker says "lungs are clear" or "lungs sound 
pretty clear", the typed transcription is likely to 
have "Lungs - clear".  In addition, as we noted 
earlier, the non-li teral transcription will omit 
disfluencies and asides and will correct 
grammatical errors. 
 
Literal and semi-li teral texts can be added onto 
language model training data or interpolated into 
an existing language model. Below we will present 
results of a language modeling experiment that 
compares language models buil t from li teral, semi-
li teral and non-li teral versions of the same training 
set.  The results substantiate our claim that 
automatically generated semi-li teral transcription 
can lead to a significant improvement in language 
model quali ty. 
 
In order to test the proposed method’s suitabili ty 
for language modeling, we constructed three 
trigram language models and used perplexity as the 
measure of the models’ goodness. 
 
Setup 
The following models were trained on three 
versions of a 270,000-word corpus.  The size of the 
training corpus is dictated by availabili ty of li teral 
transcriptions.  The vocabulary was derived from a 
combination of all three corpora to keep the OOV 
rate constant. 
 
LLM – language model buil t from a corpus of 
li teral transcriptions  
NLM – language model buil t from non-li teral 
transcriptions 
SLM – language model buil t from semi-li teral 
transcriptions  
 
Approximately 5,000-word li teral transcriptions 
corpus consisting of 24 dictations was set aside for 
testing 
 

Results 
The results of perplexity tests of the three models 
on the held-out data at 3-gram level are 
summarized in Table 2. The tests were carried out 
using the Entropic Transcriber Toolkit 
 
It is apparent that SLM yields considerably better 
perplexity than NLM, which indicates that although 
semi-li teral transcriptions are not as good as actual  
li teral transcriptions, they are more suitable for  
 

Table 2.  Perplexity tests on LLM, NLM, SLM 
 
language modeling than non-li teral transcriptions.  
These results are obtained with 270,000 words of 
training data; however, the typical amount is 
dozens of milli on. We would expect the differences 
in perplexity to become smaller with larger 
amounts of training data. 
 
Conclusions and future work 
 
We have described ATRS, a system for 
reconstructing semi-li teral transcriptions 
automatically.  ATRS texts can be used as a 
substitute for li teral transcriptions when the cost 
and time required for generating li teral 
transcriptions are infeasible, e.g. in a telephony 
based transcription operation that processes 
thousands of acoustic and language models.  Texts 
produced with ATRS were used in training speaker 
adapted acoustic models, speaker independent 
acoustic models and language models.  
Experimental results show that models buil t from 
ATRS training data yield performance results that 
are equivalent to those obtained with models 
trained on li teral transcriptions. In the future, we 
will address the issue of the amount of training data 
for the SI model. Also, current ATRS system does 
not take advantage of various confidence scores 
available in leading recognition engines. We 
believe that using such confidence measures can 
improve the generation of semi-li teral transcriptions 
considerably. We would also like to investigate the 
point at which the size of the various kinds of data 

 Perplexity OOV rate (%) 

LLM 185 2.61 
NLM 613 2.61 
SLM 313 2.61 



used for adaptation stops making improvements in 
recognition accuracy.  
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