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Abstract
In this paper we investigate polysemous adjectives whose
meaning varies depending on the nouns they modify
(e.g.,fast). We acquire the meanings of these adjectives
from a large corpus and propose a probabilistic model
which provides a ranking on the set of possible interpre-
tations. We identify lexical semantic information auto-
matically by exploiting the consistent correspondences
between surface syntactic cues and lexical meaning.
We evaluate our results against paraphrase judgments
elicited experimentally from humans and show that the
model’s ranking of meanings correlates reliably with hu-
man intuitions: meanings that are found highly probable
by the model are also rated as plausible by the subjects.

1 Introduction
Much recent work in lexical semantics has been con-
cerned with accounting for regular polysemy, i.e., the
regular and predictable sense alternations certain classes
of words are subject to. Adjectives, more than other cat-
egories, are a striking example of regular polysemy since
they are able to take on different meanings depending on
their context, viz., the noun or noun class they modify
(see Pustejovsky (1995) and the references therein).

The adjectivefast in (1) receives different interpre-
tations when modifying the nounsprogrammer, plane
andscientist. A fast programmeris typically a program-
mer who programs quickly, afast planeis typically a
plane that flies quickly, afast scientistcan be a scien-
tist who publishes papers quickly, who performs exper-
iments quickly, who observes something quickly, who
reasons, thinks, or runs quickly. Interestingly, adjectives
like fast are ambiguous across and within the nouns they
modify. A fast planeis not only a plane that flies quickly,
but also a plane that lands, takes off, turns, or travels
quickly. Even the more restrictivefast programmeral-
lows more than one interpretation. One can easily think
of a context where afast programmerthinks, runs or
talks quickly.
(1) a. fast programmer

b. fast plane
c. fast scientist

∗The work reported in this paper was carried out while the author
was at the Division of Informatics, University of Edinburgh.

(2) a. easy problem
b. difficult language
c. good cook
d. good soup

Adjectives likefast have been extensively studied in the
lexical semantics literature and their properties have been
known at least since Vendler (1968). The meaning of
adjective-noun combinations like those in (1) and (2) are
usually paraphrased with a verb modified by the adjective
in question or its corresponding adverb. For example, an
easy problemis “a problem that is easy to solve” or “a
problem that one can solve easily”. In order to account
for the meaning of these combinations Vendler (1968,
92) points out that “in most cases not one verb, but a fam-
ily of verbs is needed”. Vendler further observes that the
noun figuring in an adjective-noun combination is usu-
ally the subject or object of the paraphrasing verb. Al-
thoughfast usually triggers a verb-subject interpretation
(see (1)),easyanddifficult trigger verb-object interpre-
tations (see (2a,b)). Aneasy problemis usually a prob-
lem that is easy to solve, whereas adifficult languageis a
language that is difficult to learn, speak, or write. Adjec-
tives like good allow either verb-subject or verb-object
interpretations: agood cookis a cook who cooks well
whereasgood soupis soup that tastes good or soup that
is good to eat.

Pustejovsky (1995) avoids enumerating the various
senses for adjectives likefast by exploiting the seman-
tics of the nouns they modify. Pustejovsky treats nouns
as having aqualia structureas part of their lexical en-
tries, which among other things, specifies possible events
associated with the entity. For example, the telic (pur-
pose) role of the qualia structure forproblemhas a value
equivalent tosolve. When the adjectiveeasyis combined
with problem, it predicates over the telic role ofprob-
lem and consequently the adjective-noun combination
receives the interpretation a problem that is easy to solve.

Pustejovsky (1995) does not give an exhaustive list
of the telic roles a given noun may have. Furthermore,
in cases where more than one interpretations are pro-
vided (see Vendler (1968)), no information is given with
respect to the likelihood of these interpretations. Out-
of context, the number of interpretations forfast scien-
tist is virtually unlimited, yet some interpretations are
more likely than others:fast scientistis more likely to



be a scientist who performs experiments quickly or who
publishes quickly than a scientist who draws or drinks
quickly.

In this paper we focus on polysemous adjective-noun
combinations (see (1) and (2)) and attempt to address
the following questions: (a) Can the meanings of these
adjective-noun combinations be acquired automatically
from corpora? (b) Can we constrain the number of inter-
pretations by providing a ranking on the set of possible
meanings? (c) Can we determine if an adjective has a
preference for a verb-subject or verb-object interpreta-
tion? We provide a probabilistic model which combines
distributional information about how likely it is for any
verb to be modified by the adjective in the adjective-
noun combination or its corresponding adverb with in-
formation about how likely it is for any verb to take
the modified noun as its object or subject. We obtain
quantitative information about verb-adjective modifica-
tion and verb-argument relations from the British Na-
tional Corpus (BNC), a 100 million word collection of
samples of written and spoken language from a wide
range of sources designed to represent current British En-
glish (Burnard, 1995). We evaluate our results by com-
paring the model’s predictions against human judgments
and show that the model’s ranking of meanings correlates
reliably with human intuitions.

2 The Model
2.1 Formalization of Adjective-Noun Polysemy
In order to come up with the meaning of “plane that flies
quickly” for fast planewe would like to find in the cor-
pus a sentence whose subject is the nounplaneor planes
and whose main verb isfly, which in turn is modified by
the adverbsfast or quickly. In the general case we want
to paraphrase the meaning of an adjective-noun combi-
nation by finding the verbs that take the head noun as
their subject or object and are modified by an adverb
corresponding to the modifying adjective. This can be
expressed as the joint probabilityP(a,n,v, rel) wherev
is the verbal predicate modified by the adverba (derived
from the adjective present in the adjective-noun combi-
nation) bearing the argument relationrel (i.e., subject or
object) to the head nounn. We rewriteP(a,n,v, rel) using
the chain rule in (3).

P(a,n,v, rel) =(3)

P(v) ·P(n|v) ·P(a|v,n) ·P(rel|v,n,a)

Although the parametersP(v) andP(n|v) can be straight-
forwardly estimated from the BNC, the estimation of
P(rel|v,n,a) andP(a|v,n) is somewhat problematic. In
order to obtainP(rel|v,n,a) we must estimate the fre-
quencyf (v,n,a, rel) (see (4)).

P(rel|v,n,a) =
f (v,n,a, rel)

f (v,n,a)
(4)

One way to acquiref (v,n,a, rel) would be to fully parse
the corpus so as to identify the verbs which take the

head nounn as their subject or object and are modified
by the adverba. Even if we could accurately parse the
corpus, it is questionable whether we can find enough
data for the estimation off (v,n,a, rel). There are only
six sentences in the entire BNC that can be used to es-
timate f (v,n,a, rel) for the adjective-noun combination
fast plane(see (5a)–(5f)). The interpretations “plane that
swoops in fast”, “plane that drops down fast” and “plane
that flies fast” are all equally likely, since they are at-
tested in the corpus only once. This is rather counter-
intuitive sincefast planesare more likely to fly than
swoop in fast. For the adjective-noun combinationfast
programmerthere is only one sentence relevant for the
estimation of f (v,n,a, rel) in which the modifying ad-
verbial is notfast but the semantically relatedquickly
(see (6)). The sparse data problem carries over to the es-
timation of the frequencyf (v,n,a).
(5) a. Three planes swooped in, fast and low.

b. The plane was dropping down fast towards
Bangkok.

c. The unarmed plane flew very fast and very
high.

d. The plane went so fast it left its sound behind.
e. And the plane’s going slightly faster than the

Hercules or Andover.
f. He is driven by his ambition to build a plane

that goes faster than the speed of sound.
(6) It means that programmers will be able to develop

new applications more quickly.
We avoid these estimation problems by reducing the pa-
rameter space. In particular, we make the following in-
dependence assumptions:

P(a|v,n) ≈ P(a|v)(7)

P(rel|v,n,a) ≈ P(rel|v,n)(8)

We assume that the likelihood of an adverb modifying
a verb is independent of the verb’s arguments (see (7)).
Accordingly, we assume that knowing that the adverba
modifying the verbv will contribute little information to
the likelihood of the relationrel which depends more on
the verb and its argumentn (see (8)). By substituting (7)
and (8) into (3),P(a,n,v, rel) can be written as:

P(a,n,v, rel) ≈ P(v) ·P(n|v) ·P(a|v) ·P(rel|v,n)(9)

We estimate the probabilitiesP(v), P(n|v), P(a|v), and
P(rel|v,n) as follows:

P(v) =
f (v)

∑
i

f (vi)
(10)

P(n|v) =
f (n,v)
f (v)

(11)

P(a|v) =
f (a,v)
f (v)

(12)

P(rel|v,n) =
f (rel,v,n)

f (v,n)
(13)



By substituting equations (10)–(13) into (9) and simpli-
fying the relevant terms, (9) is rewritten as follows:

P(a,n,v, rel) ≈ f (rel,v,n) · f (a,v)
f (v) ·∑

i
f (vi)

(14)

Depending on the data (noisy or not) and the task at hand
we may choose to estimate the probabilityP(v,n,a, rel)
from reliable corpus frequencies only (e.g.,f (a,v) > 1
and f (rel,v,n) > 1). If we know the interpretation pref-
erence of a given adjective (i.e., subject or object), we
may vary only the termv, keeping the termsn, a andrel
constant. Alternatively, as we show in Experiment 1 (see
Section 3), we may acquire the interpretation preferences
automatically by varying both the termsrel andv.

2.2 Parameter Estimation
We estimated the parameters described in the previous
section from a part-of-speech tagged and lemmatized
version of the BNC (100 million words). The estimation
of the termsf (v) and∑i f (vi) (see (14)) reduces to the
number of times a given verb is attested in the corpus.
In order to estimate the termsf (rel,v,n) and f (a,v) the
corpus was automatically parsed by Cass (Abney, 1996),
a robust chunk parser designed for the shallow analysis
of noisy text. We used the parser’s built-in function to ex-
tract tuples of verb-subjects and verb-objects (see (15)).
The tuples obtained from the parser’s output are an im-
perfect source of information about argument relations.
Bracketing errors as well as errors in identifying chunk
categories accurately result in tuples whose lexical items
do not stand in a verb-argument relationship. For exam-
ple, the verb is missing from (16a) and the noun is miss-
ing from (16b).
(15) a. change situation SUBJ

b. come off heroin OBJ
c. deal with situation OBJ

(16) a. isolated people SUBJ
b. smile good SUBJ

In order to compile a comprehensive count of verb-
argument relations we discarded tuples containing verbs
or nouns attested in a verb-argument relationship only
once. Non-auxiliary instances of the verbbe(e.g.,OBJbe
embassy) were also eliminated since they contribute no
semantic information with respect to the events or states
that are possibly associated with the noun with which the
adjective is combined. Particle verbs (see (15b)) were
retained only if the particle was adjacent to the verb.
Verbs followed by the prepositionby and a head noun
were considered instances of verb-subject relations. The
verb-object tuples also included prepositional objects
(see (15c)). It was assumed that PPs adjacent to the verb
headed by either of the prepositionsin, to, for, with,
on, at, from, of, into, through, uponwere prepositional
objects. This resulted in 737,390 distinct types of verb-
subject pairs and 1,077,103 distinct types of verb-object
pairs.

Generally speaking, the frequencyf (a,v) represents
not only a verb modified by an adverb derived from the

adjective in question (see (17a)) but also constructions
like the ones in (17b,c) where the adjective takes an in-
finitival VP complement whose logical subject can be re-
alized as afor-PP (see (17c)). It is relatively straight-
forward to develop an automatic process which maps
an adjective to its corresponding adverb, modulo excep-
tions and idiosyncrasies. However in the experiments de-
scribed in the following sections this mapping was man-
ually specified.
(17) a. comfortable chair→ a chaironwhich onesits

comfortably
b. comfortable chair→ a chair that iscomfort-

ableto sit on
c. comfortable chair→ a chair that iscomfort-

ablefor me tosit on
We estimated the frequencyf (a,v) by collapsing the
counts from cases where the adjective was followed by
an infinitival complement (see (17b,c)) and cases where
the verb was modified by the adverb corresponding to
the related adjective (see (17a)). We focused only on in-
stances where the verb and the adverbial phrase modify-
ing it (AdvP) were adjacent and extracted the verb and
the head of the AdvP immediately following or preced-
ing it. From constructions with adjectives immediately
followed by infinitival complements with an optionally
interveningfor-PP (see (17c)) we extracted the adjective
and the main verb of the infinitival complement.

2.3 Comparison against the Literature

In what follows we explain the properties of the model by
applying it to a small number of adjective-noun combina-
tions taken from the lexical semantics literature. Table 1
gives the interpretations of eight adjective-noun com-
binations discussed in Pustejovsky (1995) and Vendler
(1968). Table 2 shows the five most likely interpretations
for these combinations as derived by the model discussed
in the previous sections (v1 is the most likely interpreta-
tion, v2 is the second most likely interpretation, etc.).

First notice that our model predicts variation in mean-
ing when the same adjective modifies different nouns by
providing different interpretations foreasy problemand
easy planet(see Table 2). Our model agrees with Vendler
(1968) in the interpretation ofeasy problem(see Tables 1
and 2). Furthermore, it provides the additional meanings
“a problem that is easy to deal with, identify, tackle, and
handle”. Although the model does not derive Vendler’s
interpretation ofeasy planet, it produces complementary
meanings such as “a planet that is easy to predict, iden-
tify, plunder, work with”. Similarly, although the model
does not discover the suggested interpretation forgood
umbrellait comes up with the plausible meaning “an um-
brella that covers well”. In fact the latter can be consid-
ered as a subtype of the meaning suggested by Puste-
jovsky (1995): an umbrella functions well if it opens
well, closes well, covers well, etc. Although Pustejovsky
suggests only a subject-related interpretation forgood
umbrella, the model also derives plausible object-related
interpretations: “an umbrella that is good to keep, good
for waving, good to hold, good to run for, good to leave”.



Adjective Interpretation

easy problem a problem that is easy to solve (Vendler, 1968, 97)
easy planet a planet that is easy to observe (Vendler, 1968, 99)
good umbrella an umbrella that functions well (Pustejovsky, 1995, 43)
good shoe a shoe that is good for wearing, for walking (Vendler, 1968, 99)
fast horse a horse that runs fast (Vendler, 1968, 92)
difficult language a language that is difficult to speak, learn, write, understand (Vendler, 1968, 99)
careful scientist a scientist who observes, performs, runs experiments carefully (Vendler, 1968, 92)
comfortable chair a chair on which one sits comfortably (Vendler, 1968, 98)

Table 1: Paraphrases for adjective-noun combinations taken from the literature

P(v,n,a, rel) v1 v2 v3 v4 v5

P(v,problem,easy,OBJ) solve deal with identify tackle handle
P(v,planet,easy,OBJ) predict identify plunder see on work with
P(v,umbrella,good,SUBJ) cover
P(v,umbrella,good,OBJ) keep wave hold run for leave
P(v,shoe,good,OBJ) wear keep buy get stick
P(v,horse, fast,OBJ) run learn go come rise
P(v, language,difficult,OBJ) understand interpret learn use speak
P(v,careful,scientist,SUBJ) calculate proceed investigate study analyse
P(v,comfortable,chair,OBJ) sink into sit on lounge in relax in nestle in

Table 2: Model-derived paraphrases for adjective-noun combinations, ranked in order of likelihood

The model and Vendler (1968) agree in their inter-
pretation of the pairsgood shoeand fast horse. The
model additionally acquires the fairly plausible mean-
ings “a shoe that is good to keep, to buy, and get” for
good shoeand “a horse that learns, goes, comes and rises
fast” for fast horse. The model’s interpretations fordif-
ficult languageare a superset of the meanings suggested
by Vendler (see Table 1). The model’s interpretations for
careful scientistseem intuitively plausible (even though
they don’t overlap with those suggested by Vendler). Fi-
nally, note that the meanings derived forcomfortable
chair are also plausible (the second most likely meaning
is the one suggested by Vendler, see Table 1).

The examples in Table 1 may not be entirely represen-
tative of the types of polysemous adjective-noun combi-
nations occurring in unrestricted text since they are taken
from linguistic texts where emphasis is given on explain-
ing polysemy with examples that straightforwardly illus-
trate it. In other words, the adjective-noun combinations
in Table 1 may be too easy for the model to handle. In
Experiment 1 (see Section 3) we test our model on poly-
semous adjective-noun combinations randomly sampled
from the BNC, and formally evaluate our results against
human judgments.

3 Experiment 1: Comparison against
Human Judgments

3.1 Method
The ideal test of the proposed model of adjective-
noun polysemy will be with randomly chosen materi-
als. We evaluate the acquired meanings by comparing
the model’s rankings against judgments of meaning para-

phrases elicited experimentally from human subjects. By
comparing the model-derived meanings against human
intuitions we are able to explore: (a) whether plausi-
ble meanings are ranked higher than implausible ones;
(b) whether the model can be used to derive the argu-
ment preferences for a given adjective, i.e., whether the
adjective is biased towards a subject or object interpre-
tation or whether it is equi-biased; (c) whether there is a
linear relationship between the model-derived likelihood
of a given meaning and its perceived plausibility, using
correlation analysis.

3.1.1 Materials and Design
We chose nine adjectives according to a set of minimal
criteria and paired each adjective with 10 nouns ran-
domly selected from the BNC. We chose the adjectives
as follows: we first compiled a list of all the polysemous
adjectives mentioned in the lexical semantics literature
(Vendler, 1968; Pustejovsky, 1995). From these we ran-
domly sampled nine adjectives (difficult, easy, fast, good,
hard, right, safe, slow, wrong). These adjectives had to
be unambiguous with respect to their part-of-speech:
each adjective was unambiguously tagged as “adjective”
98.6% of the time, measured as the number of different
part-of-speech tags assigned to the word in the BNC.

We identified adjective-noun pairs using Gsearch
(Corley et al., 2000), a chart parser which detects syn-
tactic patterns in a tagged corpus by exploiting a user-
specified context free grammar and a syntactic query.
Gsearch was run on a lemmatized version of the BNC so
as to compile a comprehensive corpus count of all nouns
occurring in a modifier-head relationship with each of the
nine adjectives. From the syntactic analysis provided by



Probability BandAdjective-noun
High Medium Low

difficult customer satisfy −20.27 help −22.20 drive −22.64
easy food cook −18.94 introduce −21.95 finish −23.15
fast pig catch −23.98 stop −24.30 use −25.66
good postcard send −20.17 draw −22.71 look at −23.34
hard number remember −20.30 use −21.15 create −22.69
right school apply to −19.92 complain to −21.48 reach −22.90
safe drug release −22.24 try −23.38 start −25.56
slow child adopt −19.90 find −22.50 forget −22.79
wrong colour use −21.78 look for −22.78 look at −24.89

Table 3: Randomly selected example stimuli with log-transformed probabilities derived by the model

the parser we extracted a table containing the adjective
and the head of the noun phrase following it. In the case
of compound nouns, we only included sequences of two
nouns, and considered the rightmost occurring noun as
the head.

We used the model outlined in Section 2 to derive
meanings for the 90 adjective-noun combinations. We
employed no threshold on the frequenciesf (a,v) and
f (rel,v,n). In order to obtain the frequencyf (a,v) the
adjective was mapped to its corresponding adverb. In par-
ticular,good was mapped togoodandwell, fast to fast,
easyto easily, hard to hard, right to rightly andright,
safe to safely and safe, slow to slowly and slow and
wrong to wrongly andwrong. The adverbial function of
the adjectivedifficult is expressed only periphrastically
(i.e., in a difficult manner, with difficulty). As a result,
the frequencyf (difficult,v) was estimated only on the
basis of infinitival constructions (see (17)). We estimated
the probabilityP(a,n,v, rel) for each adjective-noun pair
by varying both the termsv andrel.

In order to generate stimuli covering a wide range
of model-derived paraphrases corresponding to differ-
ent degrees of likelihood, for each adjective-noun com-
bination we divided the set of the derived meanings into
three probability “bands” (High, Medium, and Low) of
equal size and randomly chose one interpretation from
each band. The division ensured that the experimen-
tal stimuli represented the model’s behavior for likely
and unlikely paraphrases and enabled us to test the hy-
pothesis that likely paraphrases correspond to high rat-
ings and unlikely paraphrases correspond to low rat-
ings. We performed separate divisions for object-related
and subject-related paraphrases resulting in a total of six
interpretations for each adjective-noun combination, as
we wanted to determine whether there are differences
in the model’s predictions with respect to the argument
function (i.e., object or subject) and also because we
wanted to compare experimentally-derived adjective bi-
ases against model-derived biases. Example stimuli (with
object-related interpretations only) are shown in Table 3
for each of the nine adjectives.

Our experimental design consisted of the factors
adjective-noun pair (Pair), grammatical function (Func)
and probability band (Band). The factorPair included 90

adjective-noun combinations. The factorFunc had two
levels, subject and object, whereas the factorBandhad
three levels, High, Medium and Low. This yielded a to-
tal of Pair × Func × Band = 90× 2× 3 = 540 stim-
uli. The number of the stimuli was too large for sub-
jects to judge in one experimental session. We limited
the size of the design by selecting a total of 270 stimuli
as follows: our initial design created two sets of stimuli,
270 subject-related stimuli and 270 object-related stim-
uli. For each stimuli set we randomly selected five nouns
for each of the nine adjectives together with their cor-
responding interpretations in the three probability bands
(High, Medium, Low). This yielded a total ofPair ×
Func× Band= 45×2×3= 270 stimuli. This way, stim-
uli were created for each adjective in both subject-related
and object-related interpretations.

We administered the 270 stimuli to two separate sub-
ject groups. Each group saw 135 stimuli consisting
of interpretations for all adjectives with both subject-
related and object-related interpretations. Each exper-
imental item consisted of an adjective-noun pair and
a sentence paraphrasing its meaning. Paraphrases were
created by the experimenter by converting the model’s
output to a simple phrase, usually a noun modified by a
relative clause. A native speaker of English was asked
to confirm that the paraphrases were syntactically well-
formed.

3.1.2 Procedure

The experimental paradigm was Magnitude Estima-
tion (ME), a technique standardly used in psychophysics
to measure judgments of sensory stimuli Stevens (1975),
which Bard et al. (1996) and Cowart (1997) have applied
to the elicitation of linguistic judgments. ME has been
shown to provide fine-grained measurements of linguis-
tic acceptability which are robust enough to yield statis-
tically significant results, while being highly replicable
both within and across speakers.

ME requires subjects to assign numbers to a series of
linguistic stimuli in a proportional fashion. Subjects are
first exposed to a modulus item, to which they assign
an arbitrary number. All other stimuli are rated propor-
tional to the modulus. In this way, each subject can es-
tablish their own rating scale, thus yielding maximally



fine-grained data and avoiding the known problems with
the conventional ordinal scales for linguistic data (Bard
et al., 1996; Sch¨utze, 1996).

In the present experiment, the subjects were instructed
to judge how well a sentence paraphrases an adjective-
noun combination proportional to a modulus item. The
experiment was conducted remotely over the Inter-
net. Subjects accessed the experiment using their web
browser, which established an Internet connection to the
experimental server running WebExp 2.1 (Keller et al.,
1998), an interactive software package for administer-
ing web-based psychological experiments. Subjects first
saw a set of instructions that explained the ME tech-
nique and included some examples, and had to fill in a
short questionnaire including basic demographic infor-
mation. Each subject group saw 135 experimental stim-
uli (i.e., adjective-noun pairs and their paraphrases). Sub-
jects were assigned to subject groups at random, and a
random stimulus order was generated for each subject.

3.1.3 Subjects
The experiment was completed by 60 unpaid volunteers,
all native speakers of English. Subjects were recruited
via postings to local Usenet newsgroups.

3.2 Results

As is standard in magnitude estimation studies (Bard et
al., 1996), statistical tests were done using geometric
means to normalize the data (the geometric mean is the
mean of the logarithms of the ratings).

We first performed an analysis of variance (ANOVA) to
determine whether there is a relation between the para-
phrases derived by the model and their perceived likeli-
hood. In particular, we tested the hypothesis that mean-
ings assigned high probabilities by the model are per-
ceived as better paraphrases by the subjects and cor-
respondingly that meanings with low probabilities are
perceived as worse paraphrases. The descriptive statis-
tics for log-transformed model-derived probabilities are
shown in Table 4. The ANOVA revealed that the Prob-
ability Band effect was significant, in both by-subjects
and by-items analyses:F1(2,118) = 101.46, p < .01;
F2(2,88) = 29.07, p < .01. The geometric mean of
the ratings in the High band was−.0005, compared to
Medium items at−.1754 and Low items at−.2298 (see
Table 5). Post-hoc Tukey tests indicated that the differ-
ences between all pairs of conditions were significant at
α = .01 in the by-subjects analysis. The difference be-
tween High and Medium items as well as High and Low
items was significant atα = .01 in the by-items analysis,
whereas the difference between Medium and Low items
did not reach significance. These results show that mean-
ing paraphrases derived by the model correspond to hu-
man intuitions: paraphrases assigned high probabilities
by the model are perceived as better than paraphrases that
are assigned low probabilities.

We further explored the linear relationship between
the subjects’ rankings and the corpus-based model, using
correlation analysis. The elicited judgments were com-

Rank µ SD SE Min Max
High −20.5 1.71 .18 −24.0 −15.9
Medium −22.6 .99 .10 −25.2 −20.2
Low −23.9 .86 .18 −25.9 −22.5

Table 4: Descriptive statistics for model-derived proba-
bilities

Rank µ SD SE Min Max
High −.0005 .2974 .0384 −.68 .49
Medium −.1754 .3284 .0424 −.70 .31
Low −.2298 .3279 .0423 −.68 .37

Table 5: Descriptive statistics for Experiment 1, by sub-
jects

pared with the interpretation probabilities which were
obtained from the model described in Section 2 to exam-
ine the extent to which the proposed interpretations cor-
relate with human intuitions. A comparison between our
model and the human judgments yielded a Pearson corre-
lation coefficient of.40 (p < .01,N = 270). This verifies
the Probability Band effect discovered by the ANOVA, in
an analysis which compares the individual interpretation
likelihood for each item with elicited interpretation pref-
erences, instead of collapsing all the items in three equiv-
alence classes (i.e., High, Medium, Low). In order to
evaluate whether the grammatical function has any effect
on the relationship between the model-derived meanings
and the human judgments, we split the items into those
that received a subject interpretation versus those that re-
ceived an object interpretation. A comparison between
our model and the human judgments yielded a corre-
lation of r = .53 (p < .01, N = 135) for object-related
items and a correlation ofr = .21 (p < .05, N = 135)
for subject-related items. Note that a weaker correlation
is obtained for subject-related interpretations. One expla-
nation for that could be the parser’s performance, i.e., the
parser is better at extracting verb-object tuples than verb-
subject tuples. Another hypothesis (which we test be-
low) is that most adjectives included in the experimental
stimuli have an object-bias, and therefore subject-related
interpretations are generally less preferred than object-
related ones.

An important question is how well humans agree in
their paraphrase judgments for adjective-noun combina-
tions. Inter-subject agreement gives an upper bound for
the task and allows us to interpret how well the model is
doing in relation to humans. For each subject group we
performed correlations on the elicited judgments using
leave-one-out resampling (Weiss and Kulikowski, 1991).
For the first group, the average inter-subject agreement
was.67 (Min = .03, Max= .82, SD= .14), and for the
second group.65 (Min = .05, Max= .82, SD= .14).
This means that our model performs satisfactorily given
that humans do not perfectly agree in their judgments.

The elicited judgments can be further used to derive



Adj Model µ SD SE Subjects µ SD SE

diffi-
√

OBJ −21.6 1.36 .04
√

OBJ .07 .36 .07
cult SUBJ −21.8 1.34 .05 SUBJ −.29 .28 .05
easy

√
OBJ −21.6 1.51 .05

√
OBJ .10 .34 .06

SUBJ −22.1 1.36 .06 SUBJ −.14 .23 .04
fast OBJ −24.2 1.27 .13 OBJ −.35 .29 .05√

SUBJ −23.8 1.40 .14
√

SUBJ −.15 .45 .08
good OBJ −22.1 1.28 .06 OBJ −.01 .39 .07

SUBJ −22.3 1.10 .07 SUBJ −.16 .30 .05
hard

√
OBJ −21.7 1.53 .06

√
OBJ .01 .34 .06

SUBJ −22.1 1.35 .06 SUBJ −.25 .24 .04
right

√
OBJ −21.7 1.36 .04

√
OBJ −.01 .25 .05

SUBJ −21.8 1.24 .04 SUBJ −.24 .44 .08
safe OBJ −22.7 1.48 .10

√
OBJ .01 .25 .05√

SUBJ −22.4 1.59 .12 SUBJ −.34 .43 .08
slow OBJ −22.5 1.53 .08 OBJ −.30 .48 .08

SUBJ −22.3 1.50 .07
√

SUBJ −.09 .24 .04
wrong OBJ −23.2 1.33 .08

√
OBJ −.04 .25 .05

SUBJ −23.3 1.30 .08 SUBJ −.24 .37 .08

Table 6: Log-transformed model-derived and subject-
based argument preferences for polysemous adjectives

the grammatical function preferences (i.e., subject or ob-
ject) for a given adjective. In particular, we can determine
which is the preferred interpretation for individual adjec-
tives and compare these preferences against the ones pro-
duced by our model. Argument preferences can be easily
derived from the model’s output by comparing subject-
related and object-related paraphrases. For each adjective
we gathered the subject and object-related interpretations
derived by the model and performed an ANOVA in order
to determine the significance of the Grammatical Func-
tion effect.

We interpret a significant effect as bias towards a par-
ticular grammatical function. We classify an adjective as
object-biased if the mean of the judgments for the object
interpretation of this particular adjective is larger than the
mean for the subject interpretation; subject-biased adjec-
tives are classified accordingly, whereas adjectives for
which no effect of Grammatical Function is found are
classified as equi-biased. Table 6 shows the biases for the
nine adjectives as derived by our model. The presence
of the symbol

√
indicates significance of the Grammat-

ical Function effect as well as the direction of the bias.
Argument preferences were elicited from human sub-
jects in a similar fashion. For each adjective we gathered
the elicited responses pertaining to subject- and object-
related interpretations and performed an ANOVA. The bi-
ases and the significance of the Grammatical Function
effect (

√
) are shown in Table 6.

Comparison of the biases derived from the model with
ones derived from the elicited judgments shows that the
model and the humans are in agreement for all adjec-
tives butslow, wrong andsafe. On the basis of human
judgmentsslow has a subject bias, whereaswrong has
an object bias. Although the model could not reproduce
this result there is a tendency in the right direction (see

Table 6).
Note that in our correlation analysis reported above the

elicited judgments were compared against model-derived
paraphrases without taking argument preferences into ac-
count. We would expect a correct model to produce intu-
itive meanings at least for the interpretation a given ad-
jective favors. We further examined the model’s behav-
ior by performing separate correlation analyses for pre-
ferred and dispreferred biases as determined previously
by the ANOVAs conducted for each adjective. Since the
adjectivegood was equi-biased we included both biases
(i.e., object-related and subject-related) in both correla-
tion analyses. The comparison between our model and
the human judgments yielded a Pearson correlation co-
efficient of .52 (p < .01, N = 150) for the preferred in-
terpretations and a correlation of.23 (p < .01,N = 150)
for the dispreferred interpretations. The result indicates
that our model is particularly good at deriving meanings
corresponding to the argument-bias for a given adjective.
However, the dispreferred interpretations also correlate
significantly with human judgments, which suggests that
the model derives plausible interpretations even in cases
where the default argument bias is overridden.

4 Experiment 2: Comparison against
Naive Baseline

The probabilistic model described in Section 2 explic-
itly takes adjective/adverb and verb co-occurrences into
account. However, one could derive meanings for poly-
semous adjective-noun combinations by solely concen-
trating on verb-noun relations, ignoring thus the adjec-
tive/adverb and verb dependencies. For example, in or-
der to interpret the combinationeasy problemwe could
simply take into account the types of activities which
are related with problems (i.e., solving them, setting
them, etc.). This simplification is consistent with Puste-
jovsky’s (1995) claim that polysemous adjectives like
easyare predicates, modifying the events associated with
the noun. A “naive” or “baseline” model would be one
which simply takes into account the number of times the
noun in the adjective-noun pair acts as the subject or ob-
ject of a given verb, ignoring the adjective completely.

4.1 Naive Model
Given an adjective-noun combination we are interested
in finding the verbs whose object or subject is the noun
appearing in the adjective-noun combination. This can be
simply expressed asP(v|rel,n), the conditional probabil-
ity of a verbv given an argument-noun relationrel,n:

P(v|rel,n) =
f (v, rel,n)
f (rel,n)

(18)

The model in (18) assumes that the meaning of an
adjective-noun combination is independent of the ad-
jective in question. The model in (18) would come up
with the same probabilities forfast planeand wrong
plane since it does not take the identity of the modi-
fying adjective into account. We estimated the frequen-



cies f (v, rel,n) and f (rel,n) from verb-object and verb-
subject tuples extracted from the BNC using Cass (Ab-
ney, 1996).

4.2 Method

Using the naive model we calculated the meaning prob-
ability for each of the 270 stimuli included in Experi-
ment 1. Through correlation analysis we explored the
linear relationship between the elicited judgments and
the naive baseline model. We further directly compared
the two models, our initial, linguistically more informed
model, and the naive baseline.

4.3 Results

Using correlation analysis we explored which model
performs better at deriving meanings for adjective-noun
combinations. A comparison between the naive model’s
probabilities and the human judgments yielded a Pearson
correlation coefficient of .25 (p < .01, N = 270). Recall
that we obtained a correlation of.40 (p < .01,N = 270)
when comparing our original model to the human judg-
ments. Not surprisingly the two models are intercorre-
lated (r = .38, p < .01,N = 270). An important question
is whether the difference between the two correlation co-
efficients (r = .40 andr = .25) is due to chance. Compar-
ison of the two correlation coefficients revealed that their
difference was significant (t(267) = 2.42, p < .01). This
means that our original model performs reliably better
than a naive baseline at deriving interpretations for poly-
semous adjective-noun combinations.

We further compared the naive baseline model and
the human judgments separately for subject-related and
object-related items. The comparison yielded a correla-
tion of r = .29 (p < .01, N = 135) for object interpreta-
tions. Recall that our original model yielded a correlation
coefficient of .53. The two correlation coefficients were
significantly different (t(132) = 3.03, p < .01). No cor-
relation was found for the naive model when compared
against elicited subject interpretations (r = .09, p = .28,
N = 135).

5 Conclusions
In this paper we showed how adjectival meanings can be
acquired from a large corpus and provided a probabilis-
tic model which derives a preference ordering on the set
of possible interpretations. Our model does not only ac-
quire clusters of meanings (following Vendler’s (1968)
insight) but furthermore can be used to obtain argument
preferences for a given adjective.

We rigorously evaluated the results of our model by
eliciting paraphrase judgments from subjects naive to lin-
guistic theory. Comparison between our model and hu-
man judgments yielded a reliable correlation of.40 when
the upper bound for the task (i.e., inter-subject agree-
ment) is approximately.65. Furthermore, our model per-
formed reliably better than a naive baseline model, which
only achieved a correlation of.25. Although adjective-
noun polysemy is a well researched phenomenon in

the theoretical linguistics literature, the experimental ap-
proach advocated here is new to our knowledge.

Furthermore, the proposed model can be viewed as
complementary to linguistic theory: it automatically de-
rives a ranking of meanings, thus distinguishing likely
from unlikely interpretations. Even if linguistic theory
was able to enumerate all possible interpretations for a
given adjective (note that in the case of polysemous ad-
jectives we would have to take into account all nouns
or noun classes the adjective could possibly modify)
it has no means to indicate which ones are likely and
which ones are not. Our model fares well on both tasks.
It recasts the problem of adjective-noun polysemy in a
probabilistic framework deriving a large number of in-
terpretations not readily available from linguistic intro-
spection. The information acquired from the corpus can
be also used to quantify the argument preferences of a
given adjective. These are only implicit in the lexical
semantics literature where certain adjectives are exclu-
sively given a verb-subject or verb-object interpretation.
We have demonstrated that we can empirically derive ar-
gument biases for a given adjective that correspond to
human intuitions.
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