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Abstract

Traditionally coreference is resolved by satisfy-
ing a combination of salience, syntactic, seman-
tic and discourse constraints. The acquisition of
such knowledge is time-consuming, difficult and
error-prone. Therefore, we present a knowledge-
minimalist methodology of mining coreference rules
from annotated text corpora. Semantic consistency
evidence, which is a form of knowledge required by
coreference, is easily retrieved from WordNet. Ad-
ditional consistency knowledge is discovered by a
meta-bootstrapping algorithm applied to unlabeled
texts.

1 Background

Reference resolution is an important task for dis-
course or dialogue processing systems since iden-
tity relations between anaphoric textual entities and
their antecedents is a prerequisite to the understand-
ing of text or conversation. Traditionally, coref-
erence resolution has been performed by combin-
ing linguistic and cognitive knowledge of language.
Linguistic information is provided mostly by syn-
tactic and semantic modeling of language whereas
cognitive information is incorporated in computa-
tional models of discourse. Computational meth-
ods based on linguistic and congitive information
were presented in (Hobbs 1978), (Lappin and Le-
ass 1994), (Brennan et al.1987), (Grosz et al.1995)
and (Webber 1988). The acquisition of exten-
sive linguistic and discourse knowledge necessary
for resolving coreference is time consuming, diffi-
cult and error-prone. Neverthless, recent results
show that knowledge-poor, empirical methods per-
form with amazing accuracy on certain forms of
coreference (cf. (Mitkov 1998) (Kennedy and Bogu-
raev 1996) (Kameyama 1997)). For example, COG-
NIAC (Baldwin 1997), a system based on just seven
ordered heuristics, generates high-precision resolu-
tion (over 90%) for some cases of pronominal refer-
ence.

In our work, we approached the coreference res-
olution problem by trying to determine how much
more knowledge is required to supplement the above-

mentioned knowledge-poor methods and how to de-
rive that knowledge. To this end we (1) analyze
the data to find what types of anaphor-antecedent
pairs are most popular in real-world texts; (2) devise
knowledge-minimalist rules for handling the major-
ity of those popular cases; and (3) discover what
supplementary knowledge is needed for remaining,
more difficult cases.

To analyze coreference data we use a corpus of
annotated texts. To devise minimalist coreference
resolution rules we consider (1) strong indicators of
cohesion, such as repetitions, name aliases or apposi-
tions; and (2) gender, number and class agreements.
WordNet (Miller 1995), the vast semantic knowledge
base, provides suplementary knowledge in the form
of semantic consistency between coreferring nouns.
Additional semantic consistency knowledge is gener-
ated by a bootstrapping mechanism when our corefer-
ence resolution system, COCKTAIL!, processes new
texts. This bootstrapping mechanism inspired by
the technique presented in (Riloff and Jones 1999)
targets one of the most problematic forms of knowl-
edge needed for coreference resolution: the semantic
consistency of corefering nominals.

The rest of the paper is organized as follows.
Section 2 discusses our text mining methodology
for analysing the data and devising knowledge-
minimalist rules for resolving the most popular
coreference cases. Section 3 presents the knowledge-
mining components of COCKTAIL that use WordNet
for deriving semantic consistency as well as gender
information. Section 4 presents an entropy-based
method for optimally combining coreference rules
and Section 5 presents the bootstrapping mecha-
nism. Section 6 reports and discusses the experi-
mental results while Section 7 summarizes the con-
clusions.

LCOCKTALL is a pun on COGNIAC, because COCKTAIL uses
multiple coreference resolution rules corresponding to differ-
ent forms of coreference, blended together in a single system.



2 Text Mining for Coreference
Resolution

Information used for categorizing coreference reso-
lution cases was mined from 30 documents manu-
ally annotated with SGML-coreference tags. The
annotations contain information needed to establish
a coreference link between an explicitly marked pair
of noun phrases from the text. These 30 texts, used
for training our procedure, constitute half of the
60 documents annotated for coreference and made
available during the MUC-6 and MUC-7 Message
Understanding Conferences (MUC)2. The remaining
30 documents were used for testing our coreference
procedure and bootstrapping supplemental knowl-
edge.

In order to generate the massive amount of data
essential to our text mining approach, we expand
the annotated tags from the training corpus. The
expansion techniques make use of the properties of
coreference relations. Due to the transitivity of coref-
erence relations, any k coreference relations having
at least one common argument generate k + 1 core-
ferring expressions. The text position determines
an order among coreferring expressions. A coref-
erence structure is created when a set of coreferring
expressions are connected in an oriented graph, such
that each node is related only to one of its preceding
nodes. In turn, a coreference chain is the corefer-
ence structure in which every node is connected to
its immediately preceding node. Clearly, multiple
coreference structures for the same set of coreferring
expressions can be mapped in a single coreference
chain. As an example, both coreference structures
illustrated in Figure 1(a) and (c) are cast into the
coreference chain illustrated in Figure 1(b).
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Figure 1: Coreference structures vs. coreference

chains.

2(Hirschman et al.1998) describes the annotation proce-
dure for the MUC texts that results in an inter-annotator
agreement of 85%, similar to the results presented in (Wiebe
et al. 1999) for the annotations of the gold-data set of subjec-
tivity classifications. The same coreference data set was used
in the development of several other robust coreference resolu-
tion algorithms (cf. (Kameyama 1997) (Cardie and Wagstaff
1999)).

The corefrence chain illustrated in Figure 1(b) is
generated from the relations {R;, Ry, R3, R4}. If it
is the case that relations R3 and R4 are more dif-
ficult to identify automatically, since they rely on
knowledge that is not easily available, the same set of
coreferring expressions can be generated by the rela-
tions {R1, Ra, R5, Rg}, as illustrated in Figure 1(a).
If relations Ry, and Rz are difficult to identify au-
tomatically, the same set of coreferring expressions
can be generated by the relations {R;, Ry, Ry, Rs},
as ilustrated in Figure 1(c). From this example, we
can see that if all the possible coreference relations
were available, we could mine minimalist coreference
knowledge that relies on relatively simpler syntactic
and semantic information.

Corpus Number of | Number of | Number of
coreference original new
chains anaphoric anaphoric
relations relations
MUC-6 319 1461 11690
MUC-7 485 1845 15858

Table 1: Annotated coreference data and new rela-
tions.

To find out how many possible coreference rela-
tions we can generate from the tags of the training
documents, we first compute the number of coref-
erence structures that can be derived. Given a set
of coreferring expressions ni, na, ... niy1°, if each
node ny, (1<k<lI) is connected to any of the k — 1
nodes preceding it in the document, we can gener-
ate 1 x2x...x (I —k)...x1—1=1!—1 coreference
structures. The number of new coreference relations
highlighted by these structures is computed by the
recursive equation n! = n!~l +1—2. The solution
of this equationisn!,, =1+2+3+...+(—-2) =
W. We can thus hypothesize that it is pos-
sible to generate, from a set of set of 30 annotated
texts, new relations that are an order of magnitude
more numerous than the original annotated ones.
This hypothesis is confirmed by the data listed in Ta-
ble 1. Such a large number of new annotations can-
not be derived manually and therefore we devised an
automatic annotation procedure, called AUTOTAG-
COREF?. The algorithm for annotation is as follows:

1. For every coreference chain CC containing more
than 2 expressions, e.g.CC={E(1),E(2),...,E(n)}
For (k=n; k;2; k=k-1)
if (Relation(E(k),E(k+1)) # Apposition)
For (i=k+1; i <n+1; i=i+1)
Add Annotated-Relation(E(k-1),E(3));

Crs o o

SExpressions ni, na, ... ny41 are cast in a coreference chain
of length [.

4The name was inspired by Riloff’s Auto-SrLoc (Riloff
1996), the system capable of automatically acquiring linguis-
tic patterns for Information Extraction.



Notice that apposition is not included in the above
algorithm. AUTOTAG-COREF considers the coref-
erence established by appositions as a special case.
Because appositions can be detected fairly reliably,
no other coreference annotation sourced at an ap-
positive expression needs to be generated. Thus,
for a coreference chain of length [ + 1, any ap-
position will reduce the number of new links by
[—2— (l—1)2(l—2) _ (l—2)2(l—3) )

AUTOTAG-COREF adds not only a large num-
ber of new relations, as shown in Table 1, but it
also changes the distribution of coreference relations.
For example, in the original annotations, 18.4% of
the links connect anaphors to proper nouns whereas
the new relations changed this percentage to 29.1%.
Furthermore, the number of relations connecting
pairs of common nouns decreased from 31.5% to
almost 10.2%. These observations show that the
distribution of coreference data changes when new
coreference relations are added. Once we have the
expanded coreference data set that we were aiming
for, we proceed with following three-step method for
data analysis and derivation of coreference rules:

1. Find the coreference knowledge satisfied by the
largest number of anaphor-antecedent pairs.
We have observed that most of the coreference
relations with a Proper Noun antecedent
involve a repetition of the anaphor, a name
alias, or a very similar expression. Also many
relations satisfy agreements in number, gender
and semantic class between the anaphor and its
antecedent. Fewer relations involve semantic
knowledge, such as synonymy.

2. Develop coreference rules from the above

observed knowledge. We formalize the left-hand
side of each coreference rule as a conjunct of the
conditions that must be satisfied by the anaphor
and its candidate antecedent. The right-hand
side is always implemented by the function
Cast_in_Chain(Antecedent, Anaphor). The role
of Cast_in_Chain is to check whether the an-
tecedent already belongs to a coreference chain,
and in this case a coreference relation is cast be-
tween the anaphor and the the closest textual
expression from the coreference chain. The dis-
tance between two noun phrases NP, and NP
is measured by the function Surface_Distance,
which counts the number of NPs when scan-
ning the text in the following way:
(a) if both NPs are in the same sentence, a func-
tion called Surface_Search® scans the sentence
starting at NV P, going towards N P; in a right-
to-left order;

5This search was implemented in the FASTUS system (cf.
(Kameyama 1997)) and it is reported to model successfully
the parse tree search proposed in (Hobbs 1978).

(b) otherwise, Surface_Search scans the sen-
tence containing NP, in a right-to-left order
and then all the previous sentences in the nor-
mal left-to-right order, until it reaches N P;.
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Figure 2: New coreference annotations and the effect
of one filter. An example.

3. Filter out the annotations that can be
identified by the current coreference rules.
Whenever the conditions of a rule are satis-
fied, an antecedent for the anaphor is identi-
fied. Therefore no other coreference annota-
tions sourced at the same anaphor are needed
and they can be filtered out. After each filter
is applied, the remaining annotations represent
relations that are not identified by the current
set of coreference rules. This tells us what kind
of relations are more difficult to identify and,
therefore, necessitate more than the minimal-
ist amount of knowledge incorporated into the
current set of coreference rules. Figure 2(a) il-
lustrates the original annotations as opposed
to the annotations expanded by AUTOTAG-
COREF, represented in Figure 2(b). Figure 2(c)
shows the remaining relations when coreference
relations Ry and Ry from Figure 2(b) were iden-
tified by two different rules.

2.1 Coreference rules

Coreference knowledge is implemented as (1) the
conditions from the left-hand side of a set of corefer-
ence rules; and also as (2) the conditions of the filters
that eliminate the annotations discovered by the cur-
rent set of rules. Since all rules have the same right-
hand side, the are differentiated only by the condi-
tions implemented. Consequently, coreference rules
can be described by the three filters applied to the
coreference data, as they implement the same con-
ditions. Figure 3 illustrates three coreference rules,



RULE-1-Filter-1-Pronoun (R1F1Pron)

then Cast_in_Chain(Antecedent, Anaphor)

If (( Syntactic_Category(Anaphor)== Pronoun) AND Repetition (Anaphor, Antecedent) )

RULE-1-Filter-1-Nominal (R1F1Nom)

then Cast_in_Chain(Antecedent, Anaphor)

If (( Syntactic_Category(Anaphor)== Common Noun) AND (Anaphor == Apposition(Antecedent) )

RULE-2-Filter-1-Nominal (R2F1Nom)

then Cast_in_Chain(Antecedent, Anaphor)

then Cast_in_Chain(Antecedent, Anaphor)

If (( Syntactic_Category(Anaphor)== Syntactic_Category(Antecedent)==Proper Noun) AND Same-Category(Antecedent,Anaphor) )

If ( Category(Anaphor) == PERSON) AND ( Last_Name(Antecedent)==Last_Name(Anaphor) ) AND
AND (Gender(Antecedent) = Gender(Anaphor) AND Surface_Distance(Anaphor,Antecedent)=min)

If ( Category(Anaphor) == ORGANIZATION) AND Acronym(Anaphor,Antecedent))

Figure 3: Example of coreference rules.

the first one recognizes pronoun repetitions, the sec-
ond one identifies coreference due to appositions and
the third one is based on name alias identification.
They correspond to the conditions applied by the
first filter.

Filter 1

The first filter implements strong cohesion indica-
tors, thus imposing high confidence in the corefer-
ence rules:

1) repetitions of the same expression (pronoun or
nominal);

2) appositions and arguments of the same copulative
verb (e.g. be, become, make);

3) name alias recognitions, comprising acronyms or
forms of addressing people (e.g. Bill Clinton and
Mr. Clinton);

4) the anaphor and the antecedent share the same
head and have compatible adjuncts.

The applications of the coreference rules deter-
mined by the first filter eliminates 83% of the exap-
nded annotations on the MUC-6 corpus, leaving only
1871 relations from the initial 11,690, whereas on
the MUC-T7 corpus, a reduction of 82% takes place,
leaving only 2834 links from a total of 15,858 initial
expanded relations.

Filter 2

The second filter uses weaker indicators of corefer-
ence, but makes the salience factor more relevant.
Unlike filter 1, where the four conditions are applied
disjunctively, the second filter imposes three condi-
tions that must be satisfied concurently. The condi-
tions are:

1) The anaphor and the antecedent share the same
semantic category. A named entity tagger provides
the semantic category information for proper names
whereas WordNet defines the category of common
nouns.

2) The anaphor and the antecedent agree in num-
ber, gender and person. The number information
is provided by the part-of-speech tagger, the gender
information is mined from WordNet with a method
described in the next section.

3) No other text expression satisfying the above two
conditions is at a smaller Surface_Distance from the
anaphor.

The only semantic category considered by this
filter is the PERSON category, recognized by (a) a
named entity recognizer; (b) as a hyponym of the
WordNet synset {person, individual}, or (c) as per-
sonal pronouns. Only the non-personal pronouns
can corefer with any other noun category. An ex-
ception to the first condition is implemented in our
system, by allowing the pronoun they to corefer also
with any hyponym of the synset {social group}, com-
prising such nouns as police, army or school. The
second filter reduces the number of unresolved rela-
tions to 521 in the MUC-6 data and to 767 in the
MUC-7 data.

Filter 3

The third filter applies only to pairs of coreferring
common nouns that are not PERSONS. The filter
tests the semantic consistency of the coreference re-
lation by using lexico-semantic information available
from WordNet, as described in the next section.
From the performance evaluation of other corefer-
ence resolution systems (e.g. (Kameyama 1997)),
we know that more than 30% of the missed coreref-
erence links are due to the lack of semantic consis-
tency information between an anaphoric noun and
its antecedent noun. After this filter is applied, when
comparing the number of original coreference anno-
tations against the remaining annotations, we ob-
tained a maximum recall of 91.3% for the MUC-6
data and of 88.7% for the MUC-7 data.

3 Knowledge Mining for Coreference
Resolution

WordNet is used to acquire gender information for
the agreement conditions and to mine patterns of
semantic consistency between pairs of nouns.

Acquiring gender information from WordNet

We formalize the gender information through an
expression G, which may be either an atomic ex-
pression, representing one of the gender attributes




of a nominal, or a disjunct of two or three of them,
as illustrated in Table 2. The gender attributes may
have the values:

e m for masculine nouns;

¢ ffor feminine nouns; and

e 1 for all the nouns that either are not from the
PERSON category or are polysemous® and at least
one of the senses does not belong to the PERSON
category.

G Noun examples #
mV fVn | client, leader, neighbour 807
mV f lawyer, loser, patron, newborn 5217
mvVn king, antique, father 42
fvn maiden, mezzo, nanny, harpy 81
m groom, housefather, nobleman 208

f woman, daughter, bride, sheika 417

Table 2: Distribution of gender information.

Gender attributes are assigned by the two follow-
ing heuristics:
Heuristic 1 If a collocation fom a WordNet synset
contains the word male, the expression G for the
whole sysnet is m. If the collocation contains the
words female or woman, G=f.
Heuristic 2 Consider the first four words from the
synset gloss. If any of the gloss words have been as-
signed gender information, propagate the same in-
formation to the defined synset as well.
Each hyponym of the concept {person, individual,
human}, categorized as PERSON has expression G
initialized to f V m, since all lexemes represent per-
sons, that can be either males or females. Whenever
one of the two heuristics previously defined can be
applied at any node S from this subhierarchy, three
operations take place:
> Operation 1: We update G with the new expres-
sion brough forward by the heuristic.
> Operation 2: We propagate all the expression to
the hyponyms of S;
> Operation 3: We revisit the whole PERSON sub-
hierarchy, in search for concepts D that are defined
with glosses that use any of the words from synset
S or any word from any of its hyponyms. Whenever
we find such a word, we update its G expression
to G(S). We also note that many words are polyse-
mous, thus a word w may have multiple senses under
the PERSON sub-hierarchy and moreover, each sense
might have a different G expression. In this case, all
words from the synsets containing w receive the dis-
junct of the gender attributes corresponding to each
sense of w.

Mining semantic information from WordNet

We used the WordNet knowledge base to mine pat-
terns of WordNet paths that connect pairs of core-
ferring nouns from the annotated chains. The paths
are combinations of any of the following WordNet

6A polysemous noun has multiple semantic senses and
therefore has multiple entries in the WordNet dictionary.

relations:
e SYNONYM connecting all elements of a synset;
e Is-A connecting nouns and verbs from the same
hierarchies. We also consider the reversed Is-A re-
lation, denote RIS-A;
e GLOSS connecting any element of a synset with
the genus of its glossed definition. We also consider
its reverse relation, named DEFINES;
¢ IN-GLOSS connecting any element of a synset with
one of the first four words of its glossed definition.
We also consider its reversed relation, named IN-
DEFINITION
e HAS-PART connecting a concept to its meronyms.
We also consider the reversed IS-PART relation;
e MORPHO-DERIVATION connecting a word to its
morphological derivations.
¢ COLLIDE-SENSE connecting several senses of the
same word.

To determine the confidence of the path we con-
sider three factors:
oFactor f; has only two values. It is set to 1 when
another coreference chain contains elements in the
same NPs as the anaphor and the anetcedent. For
example, if NPy is “ the professor’s son” and N P,
is “his father”, the semantic consistency between fa-
ther and professor is more likely, given that his and
son corefer. Otherwise, f; is set to 0.
oFactor fo favors (a) relations that are consid-
ered “stronger” (e.g. SYNONYMY, GLOSS); and
(b) shorter paths. For this purpose we assign
the following weights to each relation considered:
w(SYNONYM) = 1.0; w(Is-A) = 0.9; w(GLOSS) =
0.9; w(IN-Gross) = 0.3; w(HAs-PART) = 0.7;
w(MORPHO-DERIVATION) = 0.6; and w(COLLIDE-
SENSE) = 0.5. When computing the f factor, we
assume that whenever at least two relations of the
same kind repeat, we should consider the sequence
of relations equivalent to a single relation, having
the weight devided by the length of the sequence. If
we denote by nr, the number of different relation
types encountered in a path, and nrseme(rel) de-
notes the number of links of type rel in a sequence,
then we define fo with the formula:

= 1 w(rel)
27 nrsame (1€l)

Mrel rel€Path
oFactor f3 is a semantic measure operating on a con-
ceptual space. When searching for a lexico-semantic
path, a search space SS is created, which contains
all WordNet content words that can be reached from
the candidate antecedent or the anaphor in at most
five combinations of the seven relations used by the
third filter. We denote by N the total number of
nouns and verbs in the search space. C represents
the number of nouns and verbs that can be reached
by both nominals. In addition nrie is the num-
ber of concepts along all paths established, whereas



Nrpeen, 18 the number of concepts along the path
with the best scoring fs. The formula computing
f3, inspired by Salton and Buckley’s tf-idf weighting
scheme (Salton and Buckley 1988), is:

0.5 X nrpan (SS) lo g
ot (88) UN

The confidence measure of the path, denoted by
R, combines all three factors in a way similar to
van Rijsbergen’s E-Formula (van Rijsbergen 1979),
used for evaluating the performance of Information
Retrieval systems. The formula that computes the
confidence value of a paths, R, is:

f3=05+

1+ (-1
R= w1 T 2 bil
f3 f2

The selection of the value b plays an important
role in the overall performance of COCKTAIL. Since
we are more interested in the precision of the lexico-
semantic path than in the recall of all possible paths,
we select b = 2.7. Table 3 lists some of the patterns
determined on the training data and their confidence

factors.
Noun+»Noun Pattern R
helicopter<>chopper | Is-A 0.92
site<>terrain Is-A: RIS-A 0.76
concern<>maker SYNONYM:GLOSS 0.84
regime<>government | SYNONYM 1.0
beacon< signal IN-GLOSS:USE-GLoOss | 0.72

Table 3: Patterns of semantic consistency.

4 Combining Coreference Rules

The order in which coreference rules are applied
is very important, since sometimes, for the same
anaphor, different antecedents are indicated by dif-
ferent coreference rules. One solution is to use the
same order in which coreference rules have been de-
vised. This order gives preference to proper noun
antecedents over pronominal antecedents or common
noun antecedents. Such an order determines what
rule should be applied when several candidate an-
tecedents are identified.

rel (p+)
|

1 1
Figure 4: A function of coreference confidence.

An alternative is not to use a predefined order, but
to find for each anaphor what rule should be applied

such that the resulting coreference chains are as pre-
cise as possible. For this purpose, for each rule R;
from the set of coreference rules R ={ Ry, Ra, ..., R, }
we compute p, the number of times when the appli-
cation of rule R; in the training corpus is correct,
and n, the number of times when the application of
rule R; was not correct. This allows us to define the
confidence of using R; for establishing coreference
between two noun phrases NP; and NP, by using
the formula:
1—entropy(R;) ifp>n

rel(Ri, N Pj, NPy) = { entropy(Ri)(—% otherwise

where the entropy measure is defined as:

b b
entropy(R;) = — lo —
py(R;) Pl e

log: p+n

The rationale for rel(R;, NP;, NPy) is given by
the fact that the entropy indicates how much infor-
mation is still needed to establish the coreference be-
tween NP; and NP, with certainty. As illustrated
in Figure 4, if p; (R;) = 5% then the closer p. (R;)
is to 1, the more confidence we have in the corefer-
ence relation between NP; and N P;. Similarly, the
closer p4 (R;) is to 0, the more confident we are that
NP; and NP, do not corefer.

The confidence measure of each rule is used in de-
termining the most precise coreference chains span-
ning a text. Given a text 7 we consider all its refer-
ential expressions RE(T)={NP,,NP,, ..,NP,}, a
subset of the text noun phrases. To derive the coref-
erence chains spanning the elements from RE(T) we
use the set of coreference rules R. A given applica-
tion of the rules from R generates a partition on
RE(T). Each partition is a set of coreference chains
Par={CCF} such that each NP; € RE(T) be-
longs to one and only one of the coreference chains
C’C,f o7, Each partition corresponds a possible com-
bination of coreference chains spanning RE(T). If
P(RE) are all the possible partitions on RE(T), our
goal is to find the best partition, i.e. the partition
that contains all the correct coreference chains estab-
lished on RE(T). If every partition Par € P(RE) is
assigned a measure m(Par, R) which computes the
likelihood that Par contains all the correct corefer-
ence links from the text 7, established by the rules
from R, then the best partition is given by:

Parpest = argmal parcP(RE) m(Pa'r7 R)

in which m(Par,R) is defined by the sum between
two factors:

m(Par,R) = m*(Par,R) + m~ (Par,R)

The two factors are defined as:

(1) m*(Par,R) indicates the internal cohesion of
each coreference chain from Par. Formally it is de-
fined as a sum ranging over all pairs of referential ex-
pressions that belong to the same coreference chain
in Par:



m* (Par,R) = Z rel(R;, NP;, N P)
R;eER

(2) m~(P,R) indicates the discrimination among
all the coreference chains from Par. Formally it is
defined as a sum ranging over all pairs of referen-
tial expressions that belong to different coreference
chains in Par:

m~(Par,R) = Y —rel(Ri;, NP;, NP})

R;ER

Learning method
At training time, for each R; from R we compute
the entropy(R;) on the training corpus. At test-
ing time, given a new, test text 77 and its referen-
tial expressions RE(T") ={NPT, NPT, .. NPT},
we find the best partition by using a local search
algorithm, namely by applying hillclimbing to the
values of the m(Parf,R) measure for each pos-
sible partition of 77. The initial partition is
Par® ={{NPI'},{NPI}, ..., {NPI'}}, consisting of
t distinct coreference chains, each containing a sin-
gle referential expression. The other partitions are
generated in a recursive manner. For each partition
Par®, with 1 < i < 2!, the new partitions Parit!
are generated by combining any pairs of chains from
Part. If Par® has k chains, then k(k + 1)/2 new
partitions can be generated and ordered according to
their m measures. At each step of the process of gen-
erating a new partition, the hillclimbing algorithm
selects the best partition Par™, having the high-
est m score. When m(Partt, R) < m(Part,R) the
search terminates, since the maximum of the m mea-
sure has been reached. However, this is often a local
maximum. To avoid local maxima, instead of select-
ing only the best scoring partition, we consider all
the first p paritions, where p is called the patience of
hillclimbing. In our case, we chose p = 5.

5 Bootstrapping for Coreference
Resolution

We considered bootstrapping, the new machine learn-
ing technique presented in (Riloff and Jones 1999),
as an ideal vehicle for enhancing the semantic con-
sistency constraints between common nouns. Boos-
trapping is known to operate on unlabeled data by
using only some knowledge seeds. The rules imple-
mented in COCKTAIL do not capture all the coref-
erence patterns, but they are fairly precise, thus
they can be viewed as the knowledge seeds for boot-
strapping. When applied to new, unlabeled texts,
the coreference rules from COCKTAIL discover new
pairs of common nouns that might corefer. For
example, Figure 5(a) illustrates the application of
three coreference rules on a new text. Two anaphors
CN; and C N, are common nouns and no semantic
consistency information accounts for their corefer-
ence. However, if the antecedent of anaphor C'N; is

sought, coreference rule R; indicates expression A
to be the antecedent. Similarly, the antecedent of
anaphor C'N; is discovered by rule Rs as being ex-
pression B, which corefers with A, because of rule
R3;. When the coreference chain is built, expres-
sion C'Ny is directly linked to expression C'Ns, thus
enabling new semantic consistency information dis-
covered from WordNet paths. Figure 5(b) illustrates
one of the paths that were discovered and its corre-
sponding coreference rule.

R3

[ ]
CN2
New semantic consistency

CN1  path = New coreference rule

@

Semantic consistency Path:
Mropho-Derivation : Is-A : Collide-Sense

Coreference Rule:

If (x is Morpho-Derivation ( Anaphor) ) AND
AND (y is one of the hypernyms of x) AND
AND (zisSYNONYM of y) AND
AND (zis SYNONYM of anaphor)

then Cast_in_Chain(Anaphor,antecedent)

()
Figure 5: Bootstrapping new rules.

As a rule of thumb, we do not consider a new
coreference rule based on semantic consistency in-
formation unless coverage in the data warrants it.
At training time, we selected N path patterns be-
cause the majority of the paths matching these pat-
terns had the relevance larger than a threshold, tg.
Whenever new semantic consistency is uncovered by
a path Pathyeyw, its relevance R(Pathye,) must be
larger than the threshold tg. However, the new
paths might not have been encontered in the training
data and still encode relevant semantic consistency
information. To account for this case, a new value
for the t; is selected, which determines a different
entropy for each coreference rule based on semantic
consistency constraints. Consequently, a different
set of coreference chains is generated for each train-
ing text, thus changing both the precision and the
recall of COCKTAIL. This mechanism of discover-
ing and adding new rules to the set of coreference
rules enables the following bootstrapping algorithm:

oGenerate all candidate Paths from new texts

MUTUAL BOOTSTRAPPING LOOP

1. Score all candidate paths by their relevance

2. Add the best candidates and encode them as rules

3. Adjust the relevance threshold

4. Goto step 1 if the F-measure did not degrade
under MIN_Performance



(Riloff and Jones 1999) note that the performance
of the mutual bootstrapping algorithm can deterio-
rate rapidly if erroneous rules are entered. To make
the algorithm more robust we use the same solu-
tion by introducing a second level of bootrapping.
The outer level, called meta-bootstrapping identifies
the most reliable k& rules based on semantic consis-
tency and discard all the others before restarting
the mutual bootstrapping loop again. In our experi-
ments we have retained only those rules for which the
new performance, given by the F-measure was larger
than the median of the past four loops. The for-
mula for the van Rijsbergen’s F-measure combines

i : . _ 2xPxR
the precision P with the recall R in F = =5 TR -

6 Evaluation

To measure the performance of COCKTAIL we have
trained the system on 30 MUC-6 and MUC-7 texts
and tested it on the remaining 30 documents.
We computed the precision, the recall and the F-
measure. The performance measures have been ob-
tained automatically using the MUC-6 coreference
scoring program (Vilain et al. 1995). Table 4 lists
the results.

(I [[ Precision | Recall [ F-measure ||

COCKTAIL 87.1% 61.7% 72.3%
rules
COCKTAIL 91.3% 58.6% 71.8%
rules combined
COCKTAIL 92.0% 73.9% 81.9%
+bootstrapping

Table 4: Bootstrapping effect on COCKTAIL

Table 4 shows that the seed set of rules had good pre-
cision but poor recall. By combining the rules with the
entropy-based measure, we obtained further enhance-
ment in precision, but the recall dropped. The appli-
cation of the bootstrapping methodology determined an
enhancement of recall, and thus of the F-measure. In the
future we intend to compare the overall effect of rules
that recognize referential expressions on the overall per-
formance of the system.

7 Conclusion

‘We have introduced a new data-driven method for coref-
erence resolution, implemented in the COCKTAIL sys-
tem. Unlike other knowledge-poor methods for coref-
erence resolution (Baldwin 1997) (Mitkov 1998), CoCK-
TAIL filters its most performant rules through massive
training data, generated by its AUTOTAG-COREF com-
ponent. Furthermore, by using an entropy-based method
we determine the best partition of corefering expressions
in coreference chains. New rules are learned by applying
a bootstrapping methodology that uncovers additional
semantic consistency data.
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