Instance-based
Natural Language Generation

Sebastian Varges and Chris Mellish
LTG and ICCS
varges@cogsci.ed.ac.uk, chrism@dai.ed.ac.uk
Division of Informatics
University of Edinburgh

Abstract

This paper presents a bottom-up generator that
makes use of Information Retrieval techniques to
rank potential generation candidates by compar-
ing them to a data base of stored instances. We
introduce two general techniques to address the
search problem, expectation-driven search and dy-
namic grammar rule selection, and present the archi-
tecture of an implemented generation system called
IGEN. Our approach uses a domain-specific genera-
tion grammar that is automatically derived from a
semantically tagged treebank. We then evaluate the
efficiency of our system.

1 Introduction

In recent years, Machine Learning techniques have
been introduced into natural language generation
(NLG) for at least three reasons: First, we often find
an interaction of decisions at various levels and the
need to deal with potentially conflicting constraints.
These are typically difficult to handle in purely sym-
bolic approaches. Next, the knowledge acquisition
bottleneck makes it difficult to maintain and extend
hand-crafted rule systems. This is especially true
for problems like generating text in a specific style,
for example. Furthermore, there is the problem of
specifying the generation input: How can a client
application possibly know about the feature values
it has to select in order to drive a surface realizer?

The most prominent example of statistical NLG is
NITROGEN, a sentence realizer designed for use in
general-purpose machine translation (Langkilde and
Knight, 1998). Further examples are the generation
systems in (Ratnaparkhi, 2000) and (Bangalore and
Rambow, 2000) as well as the use of statistical meth-
ods for more specific tasks, for example the order-
ing of NP premodifiers (Shaw and Hatzivassiloglou,
1999).

Instance-based Learning methods (IBL) (Aha et
al., 1991) differ from statistical methods in that they
are lazy learning approaches: they store previously
encountered instances in memory and use them di-
rectly to process new input, rather than abstract-
ing them into some statistical distribution. IBL is

known to be able to learn exceptions in data well
and adapt to subregularities. Since this is highly
desirable for natural language processing in general,
instance-based methods have been used in NLP un-
der various names (ezxample-based, memory-based,
case-based; see Daelemans (1999) for an overview).

In this paper, we investigate the use of IBL-
methods for natural language generation. In par-
ticular, we draw an analogy between IBL and In-
formation Retrieval by noting that IR methods are
essentially performing a form of nearest-neighbour
search when computing the similarity between text
documents. We believe that instance-based natural
language generation (IBNLG) can make use of the
experience in handling language data gained in the
IR community. The so-called bag-of-words models
of IR represent natural language texts as multisets
of words without any linear order and use a distance
metric such as the classical cosine distance to com-
pute similarities between texts (Salton, 1989). De-
spite their simplicity these models have been highly
successful in many document retrieval applications.
In contrast to the local ngram models developed for
speech recognition, for example, bag-of-words mod-
els reflect global word co-occurrence patterns. Since
these bags are always treated separately for simi-
larity computations, co-occurrence patterns in in-
dividual bags can be learned. Bag-of-words models
therefore do not “abstract away” exceptions like sta-
tistical models do, and they are able to consider a
larger context than many of these. Before one can
do a comparison of IBNLG and statistical techniques
for NLG, however, it is necessary to determine how
IBNLG would work and indeed whether it can be
made sufficiently efficient for practical use.

Like any other IBL-approach, instance-based gen-
eration has to answer the question how to repre-
sent and retrieve its stored instances and how to
adapt them to process new inputs. Our proposal
is to use standard IR techniques for representation
and retrieval. This leaves us with the adaption task.
We are basically subscribing to the overgeneration
and ranking approach of NITROGEN but propose
to tightly interleave rule-based generation and rank-

ing rather than employing two separate stages for
these tasks. This amounts to doing the adaption
before/during the computation of the nearest neigh-
bour. Like other machine learning approaches to
NLG, we are recasting an important part of the
generation process in terms of disambiguation be-
tween alternatives. This is in contrast to the tradi-
tional view of generation as a deterministic, decision-
making process.

The structure of the paper is as follows: in the
next section, we give an overview of our system, fol-
lowed by our approach to semantically annotating a
domain corpus (section 3). The issue of automatic
grammar construction is discussed in section 4. In
section 5, we introduce the basic generation algo-
rithm and concepts used for scoring candidates. In
section 6, we present an expectation-driven ranking
algorithm and in section 7 we show how grammar
rules can be selected dynamically. For each of these
we evaluate the efficiency of the ranker (section 8).

2 System Overview

We are interested in developing a corpus-based,
domain-specific generation component that requires
significantly less manual development effort than
current approaches. The generator assumes that
content determination has already taken place and
the generation input has been chunked into sentence-
sized units. This leaves some tasks of sentence plan-
ning, most notably lexical choice, and sentence re-
alization to our system called IGEN. However, we
cannot know whether the generator is actually able
to express the entire input in a single sentence, and
we expect our system to robustly handle gaps in ex-
pressibility.

Our domain of choice involves texts on manage-
ment successions that can be found in the Who’s
News section of the Wall Street Journal. This do-
main has been used in the information extraction
(IE) task of MUC-6. Our task is to generate the first
sentences of these Who’s News texts, effectively re-
versing the IE process. Following standard method-
ology we divide the corpus into training and test
sets. The training set can then serve as an instance
base for our IBNLG approach and we will use the
test set to provide inputs to the system for evalua-
tion. To this end, we add semantic markup to both
training and test set articles.

The system consists of a base generator using a
rule-based grammar to produce candidates, poten-
tial outputs of the system. The grammar is au-
tomatically derived from the semantically marked-
up training set in combination with the correspond-
ing Penn treebank structures. The ranker scores
these candidates according to a similarity metric
which measures their distance to the elements in
the instance base. The ranks are determined by

the similarity to the closest instances and the high-
est ranked sentence is chosen as the final genera-
tion output. IGEN uses standard chart generation
techniques (Kay, 1996) in its base generator to ef-
ficiently produce generation candidates. The set of
candidates forms a subset of the chart edges in that
they comprise all edges of syntactic category S. The
particular advantage of a bottom-up generation al-
gorithm is that it allows our surface-based ranker to
score edges as soon as they are built.

3 Semantic Annotation

The MUC-6 IE task consisted of extracting infor-
mation about incoming and outgoing person and the
post name. Generating the actual texts requires con-
siderably more input than what was extracted in the
MUC-6 task. We collected the first sentences of 142
Who’s News articles of the Penn treebank II and
developed a tagging scheme that also accounts for
previous and other posts, dates, descriptions of com-
panies and others. The overall number of different
tags is 68. Examples are given in figure 1.

The input to the system is a set of tags (“slots”)
and fillers.! For most tags, the fillers are always of
the same syntactic category, for example a proper
name, a number expression or simply a noun. These
can directly be rendered by the generator. However,
in some cases, there is more variety concerning the
category of the filler: for example, retirement as the
reason for leaving a post is expressed as ’X, who is
retiring’, X, who retired’ or 'X will retire from his
post as ...°, (see tag [OUTEVENT_PRP_(SYNCAT) ..] in
figure (1)). We added to these tags the syntactic
category of the filler to allow them to be used only
in the syntactically correct places by the rule sys-
tem. This solves the practical problem but results
in a potentially large number of unique tags and also
gives the generator a strong hint towards a specific
syntactic realization.

We divided the annotated corpus into a random
selection of 105 articles for the training set and 37
for the test set. Within the training set, two sets of
tags occurred 5 times, one set 4 times, 3 sets 3 times,
5 sets 2 times and 72 sets were singletons. There are
just 6 bags of tags that occur in both training and
test set.

The frequency distribution over individual tags
is sharper: the most frequent tag in the training
set is posT (138 occurrences), followed by INPER-
SON_FULLNAME and cOMP_DESCR. There were only
33 singletons. The relatively low count of OUTPER-
SON_FULLNAME tags (14 occurrences) indicates that
the articles tend to start with incoming events. Cru-
cially, 5 types of tags only occur in the test set.

IStrictly speaking, we do not need the fillers until gener-
ation has finished but we use them to obtain a phonological
string for each phrase (see below).

tag example frequency (training set)
INPERSON_FULLNAME [INPERSON_FULLNAME Gordon A. Paris] was elected ... 104
OUTPERSON_FULLNAME , succeeding [OUTPERSON_FULLNAME David S. Black]. 14
INPERSON_AGE [INPERSON_AGE 36] years old 38
POST was named [POST director] 138
INPERSON_PREVIOUSPOST formerly a [INPERSON_PREVIOUSPOST manager] 16
COMP_DESCR of this [COMP_DESCR investment-banking company] 88
BOARD_INCR , expanding the board to [BOARD_INCR 14] members. 13
COMP_NATIONALITY [COMP_NATIONALITY US] [COMP_DESCR metals concern] 0
OUTEVENT_-DATE_EFFECTIVE , effective [OUTEVENT_DATE_EFFECTIVE Dec. 31]. 5
POST_DESCR_(SYNCAT=NN) filling a [POST_-DESCR_NN vacancy] 3
OUTEVENT_PRP_(SYNCAT=VBD) | , who [OUTEVENT_PRP_VBD resigned]. 9

Figure 1: Example tags and phrases in management succession texts

**x*x*x* marked-up sentence:

[INPERSON_FULLNAME Peter W. Likins], [INPERSON_OTHERPOST president] of [INPERSON_OTHERCOMP Lehigh University],
[INPERSON_OTHERCOMP_LOC Bethlehem, Pa.], was elected a [POST director] of this [COMP_DESCR maker of industrial

motion-control parts and systems].
**%k% input rules:

PP-COMP_DESCR <== of this COMPDESCR (£=72)

NP-POST <== a POST (f=22)

NP-INPERSON_OTHERCOMP_LOC <== INPERSON_OTHERCOMP_LOC (£=2)
NP-INPERSON_OTHERCOMP <== INPERSON_OTHERCOMP (£=8)

NP-INPERSON_OTHERPOST <== INPERSON_OTHERPOST (£=39)

NP-INPERSON_FULLNAME <== INPERSON_FULLNAME (£=100)

%k% phrase combining rules:

VP-POST <== was elected NP-POST PP-COMP_DESCR (f=4)

PP-INPERSON_OTHERCOMP <== of NP-INPERSON_OTHERCOMP , NP-INPERSON_OTHERCOMP_LOC (f=2)
NP-INPERSON_OTHERPOST <== NP-INPERSON_OTHERPOST PP-INPERSON_OTHERCOMP (£=19)
NP-INPERSON_FULLNAME <== NP-INPERSON_FULLNAME , NP-INPERSON_OTHERPOST , (£=27)

S-INPERSON_FULLNAME <== NP-INPERSON_FULLNAME VP-POST .

(£=77)

Figure 2: cfg rules extracted for example sentence and their training set (instance base) frequency

4 Automatic Grammar Construction
from Semantically Annotated
Treebanks

After semantic markup has been added to the cor-
pus, we use the syntactic treebank structure in com-
bination with the additional markup to automat-
ically produce a semantic grammar. The system
needs to accept a set of semantic tags and gener-
ate initial phrases that can be combined to larger
ones in a standard chart execution mechanism.

The basic idea is to identify portions of the tree
structure around the semantic tags and allow these
subtrees to be generated whenever the respective tag
is available in the input. We are looking for the
largest subtrees that do not overlap with other ones
so that each corresponding input rule fires when a
single tag is given. In the next step, we identify
phrasal rules that combine several phrases and pos-
sibly some lexical material. The result of this process
is the context-free backbone of a phrase-based gen-
eration grammar. There are thus two steps involved:

1. Input rule identification: recursively extend rule
areas from input tags outwards, and stop ex-

tending areas when they are about to overlap
with others. We only keep the mother node of
the tree fragment, and ignore any internal struc-
ture. Furthermore, we omit any traces.

2. Phrasal rule identification: initially, phrasal
rules are identified with input rule subtrees.
These are then recursively extended - overlaps
allowed - until the entire sentence structure is
covered by a single rule.

To restrict rule combinations in a semantically ori-
ented manner, we introduce new category labels for
mother nodes of phrases that consist of the syntactic
category obtained from the treebank plus the seman-
tic tag of its leftmost daughter (figure 2).

This grammar construction algorithm has conse-
quences for the semantic annotation step described
above. In general, only constituents should be al-
lowed to be marked up. In some situations however,
Penn treebank words have to be broken in order to
identify paths that will correspond to generation in-
puts (for example:(JJ 54-year-old)).

Words that are not supposed to be generated
by a rule are not to be left untagged, even if we

are unsure about the actual tag, for example ’this
company which also has an interest in book pub-
lishing’. We tagged these pieces of text as ADDI-
TIONAL_INFORMATION plus a more specific suffix re-
ferring to the type of information.

5 Basic Generation Algorithm

The grammar construction step outlined above ex-
tracts 328 rules (148 input rules and 180 phrasal
rules) from the parse trees of the training set in-
stances. The frequency distribution over these rules
is very sharp again: the most frequent rule occurs
100 times and there are 235 singletons.

We automatically converted these rules into a no-
tation that is suitable for use in our generation sys-
tem. The rule system uses a production system
based on the Rete algorithm (Forgy, 1982) to han-
dle the relatively large number of rules. We assume
a standard bottom-up chart algorithm (Gazdar and
Mellish, 1989) which is initialized by adding edges
for individual input tags to the agenda. For each
new edge added from the agenda to the chart, all
possible rule applications are computed to guaran-
tee completeness of the chart. Grammar rules add
new edges to the agenda and the algorithm stops
when the agenda is empty. To guarantee seman-
tic coherence, ie to avoid expressing some input tag
more than once, a coherence-check is called for all
non-first daughters of phrasal rules.

We rank new edges produced by the base gener-
ator according to their distance to the instances in
the instance base before adding them to the agenda.
An edge has as many cosine scores as there are in-
stances and we use the best score to determine the
agenda ordering. An example of a slightly simplified
chart edge is shown below:

(VP-POST
(phon <was elected a director>)
(terms <was elected a POST>)
(consumes {POST}) ; covered input tags
(instances Ext-Addr) ; pointer to instance base
(idx 67) ; unique identifier
(deriv <3>) (fired-by input-rule-11))

As in other IR and IBL applications, we need to
decide on the term representation of instances and
on the weighting scheme for these terms. Training
set instances are generally represented as bags of
terms of the form I; = {t; 1, ..., t; n} Where t;, is the
weight of term k in instance . The term represen-
tations contain the semantic tags and words outside
tagged areas but not the fillers. For example, in a
unigram model, the marked-up string was elected a
[POST president] is represented as a document with
weights for the terms was, elected, a and POST.

To be able to score edges, the ranker needs to ob-
tain term representations of the edge contents that

potentially match the index terms used for the rep-
resentation of instances. The terms slot of the chart
edges contains a list of surface elements, for example
<was,elected,a,posT>. When edges are combined,
these lists are concatenated and used to compute
a pseudo-document vector similar to the one for in-
stances. This allows us to experiment with ngram
terms (like the bigrams {’was elected’,’elected a’,’a
POsT’}, for example) provided that the instances are
represented similarly.

Terms are weighted by the well-known t¢f - idf
term weighting scheme that assigns highest weights
to terms that occur frequently (¢f-component) in
few instances (idf-component). Since instances and
edges contain relatively few terms, ¢f is less impor-
tant than idf which serves to discriminate between
relevant and irrelevant “documents”.

The definition of cosine distance between a candi-
date and an instance is

Wej*Wij

T
cos(C, i) \/Z;’L=1 w?, .\/ijl wi;

where w,; is the weight of term j for candidate c
and w;; the weight of term j for instance i. We
need normalization since otherwise ever more non-
matching words could be added to an edge without
penalties.

6 Expectation-driven Ranking

If we want to avoid the computational cost of com-
puting the similarity between every new edge and
the entire instance base, we have to consider two im-
portant characteristics of the search problem. First,
edges have a number of cosine scores from different
instances. If we want to use a Viterbi-style algorithm
which defines equivalence classes for chart edges and
only keeps the current best one for each class in a
table, we need to maintain a separate table for each
instance. This is because we cannot combine scores
from different instances. In contrast, a single sta-
tistical model allows one to maintain a single table
(Langkilde, 2000).

Second, the cosine score of an edge can increase
as well as decrease when it is combined with other
edges, depending on whether or not the newly added
terms match the instance terms. Thus, the cosine
score does not exhibit a monotonic behaviour that
could be straightforwardly exploited.

We can, however, define the notion of the expec-
tation of an edge that is monotonically decreasing.
This is the potentially best cosine score an edge
would have with respect to a specific instance if all
missing matching words are added to it. To see its
monotonic behaviour consider the following: The ex-
pectation of an initially empty edge e is 1 since it
contains no non-matching terms: exp(€empty,) = 1.

For each term ¢ that is added to e, two cases can
arise:

1. t does not occur in 4. This will decrease the
score as well as the expectation since it only
increases the denominator of the cosine formula.

2. t occurs in ¢. If ¢t has not been present in e
before, the expectation does not change since
it already assumes that all correct words have
been added. Otherwise, the score increases. If ¢
occurs in e already, we have to consider the case
of a t f-component in the edge term weights.? If
the number of occurrences of ¢ in e exceeds its
number in i (¢tfi. > tf::), e is able to neutral-
ize the effect of its non-matching terms by re-
peating correct terms. Therefore, we impose an
upper bound on tf; . in the numerator (but not
the denominator) of the cosine and restrict it to
tfii. As a result, exceeding correct terms in e
can only lead to an increase of the denominator
and will decrease the cosine score.

A monotonically decreasing expectation thus re-
quires two assumptions: First, edges are always ex-
tended monotonically. Terms are not allowed to be
removed.? Second, it requires an upper bound on
the tf-component of edge term weights. In prac-
tice, we do not find any noticible difference between
using the normal cosine or the bounded one. We
explain this partially by the effect of the coherence
constraint in the base generator which prevents re-
peated realizations of the input semantics.

We can now modify the ranker to take advan-
tage of the expectation. The main idea is that as
soon as we have a first candidate and its score, we
can discard all similarity computations that involve
an expectation that is lower than this score. Thus,
the score of already available candidates serves as
a threshold th that can be dynamically adjusted to
the current best candidate as more candidates are
being constructed.

For each chart edge e we define the notion of rel-
evant instances ri.,. This is a table of all instances
i for which the edge has an expectation higher than
the score of the current best candidate. Each ¢
in 1i. is associated with the current expectation:
rie = {i1 : exp(i1,€),....0n : €xp(in,e)}. As long
as no candidate is available, we assume a threshold
of 0 to allow all instances to be considered. For each
€new built by a grammar rule, the ranker performs
the following steps:

1. Determine ri,,,,: For chart edges built from
scratch, ri., ., contains references to the entire

2We assume that the same weighting scheme applies to
both candidate and instance terms.

3In a unigram bag-of-words model, reordering of the sur-
face string by grammatical operations would still be possible
since this does not affect the term representation.

instance base with an expectation of 1: 74, ., =
{i1 : 1,...,i, : 1}. For chart edges built by com-
bining existing edges, say e; and ey, a cheap
initial approximation of ri.,,, is obtained by
intersecting ri., and ri., and taking the lower
expectation of the remaining ¢. This is justified
because the resulting edge will contain terms of
both e; and ep. Thus: ri.,,, = rie, Nri., where
for each i € ri., ., : exp(i,enew) = exp(i,e1)
if exp(i,e1) < exp(i,ez) and exp(i,encw)=
exp(i,ez) otherwise.

2. Check the expectations in ri.,,, against the
current threshold th. For all ¢ € ri.,, : if
exp(i, enew) > th* keep i in ri, ., else remove
1.

3. Compute the actual exp(i,eney) for all i €
Tle, .., -

4. Add eneq with its updated ri., ., to agenda un-
less | ri |= 0 in which case we can drop eneq.

5. If enew also qualifies as a candidate, compute
cos(enew, t) for all i € ri.,,, and add it to the
current list of candidates. If cosmaz (€new) > th
adjust threshold: th = cosmaz(€new)-

The algorithm incrementally constrains the set of
relevant instances ri. It has the advantage of be-
ing independent of the order in which chart edges
are combined and it finds a single (or all) glob-
ally best solutions based on optimistic assumptions
about best possible scores. It can deliver an output
as soon as the first candidate is available, and further
computation can be used to find potentially better
ones. The performance of the expectation-based al-
gorithm depends on how quickly a good candidate
can be constructed since this sets the threshold for
the remaining edges. If no candidate is available at
all, no pruning can take place and the algorithm re-
verts to exhaustive search. However, these seem to
be rather rare cases in practice (see section 8).

7 Dynamic Rule Selection

A further technique to increase the efficiency of the
system is to reduce the number of grammar rules and
instances before generation starts. We compute the
cosine similarity between the semantic input and the
instances represented by their semantic tags only.
This only involves a single cycle over the instance
base. We can then select the n-best instances for all
further similarity computations. Furthermore, we
can characterize each instance by a bitvector rep-
resentation of the grammar rules derived from it in
the grammar construction step. We determine the
rules corresponding to the m semantically closest in-
stances by the union of their bitvector representa-
tions. Generation can then proceed as before with

4We can use exp(i,enew) > th to find all best solutions.

*%%% chosen output candidate - correct:

1/258) Francis D John , president , was named to the additional post of chief executive officer .
(exp:5:bigram, cos=1.0)
(Input: INPERSON_FULLNAME: Francis D John, INPERSON_AGE: 35, INPERSON_OTHERPOST: president,

POST_DESCR_JJ: additional, POST: chief executive officer)

1/392) Robert D Paster , 49 years old , Space Shuttle Main Engine program manager , was named
president of Rocketdyne division , a unit of this aerospace concern .

*%%x% chosen output candidate - minor errors:

1/19) Richard Schwartz resigned of an president of this aerospace concern .

1/2469) Steven C Walker , senior vice president , was elected to the president of this bank
holding company . (exhaust:20:unigram, cos=0.83)

**%% chosen output candidate - semantic problems:

1/118) C Hyde Tucker was named chief executive officer and president of this company ’s Bell Atlantic
International Inc. (exp:105:unigram, cos=1.0)

**** some lower ranked candidates:

580/603) vice president , and a Space Shuttle Main Engine program manager was named to its president .

(exp:105:unigram, cos=0.46)
1746/1780) John F Barrett , executive vice president , , 40 , was named chief operating officer , the
vacant posts (exp:105:unigram, cos=0.39)

(exhaust:5:unigram, cos=0.86)

(exhaust:20:unigram, cos=0.74)

589/676) the senior vice president was named a president of the bank holding company and the director .

(exp:105:unigram, cos=0.43)
*x*x* edge dropped by expectation-based ranker:

* Scott C Smith , formerly former vice president finance,

, formerly former chief financial officer

were elected senior vice president of this media concern .

Figure 3: Rank and cosine score of generation candidates

a reduced number of instance tables and grammar
rules from the beginning of processing.

8 Experiments

We tested our system with different settings by us-
ing the semantic tags of the test set as generation
inputs. Although we focus on efficiency issues in
this paper, we would like to give some example out-
puts produced by IGEN (figure 3). Different inputs
and ranking models have been used (the notation
for the system parameters in figure 3 is described
below). Note for example, that the system is able to
produce two uses of named. This is due to high sim-
ilarity scores with respect to different nearest neigh-
bours (figure 3, first and second sentence). We also
give the semantic input for the first output sentence.
In this case, the highest ranked candidate (of 258)
expresses 4 out of 5 input tags.?

A preliminary evaluation® of the quality of the
highest ranked sentences shows that 48.2% are en-
tirely grammatical, 22.5% contain minor errors,
11.7% have problems that make them difficult to in-
terpret and in 17.6% of the cases there was no or only
fragmented output. Depending on the application,
the first one or two categories could be acceptable as
generation output, the latter two not. Typical minor
errors involve punctuation, and also the use of filler
words in incorrect contexts since these are not part
of the term representation. Some correctable errors
are the direct result of the semantic annotation. For
example, was elected to the president (sentence 4 in

5Lower ranked sentences can contain more semantics.
6Two human judges, results averaged over 3 test runs.

figure 3) can be attributed to the following tagging
in the original text where no more specific post was
given: was elected to the [POST board).

|ranker:|7‘iinit|:ngram” 74| |f (secs) | 2| |no c| €] |
exhaust:105:unigram || 105 [92.6 |701| 0% |1803
exhaust:20:unigram || 20 | 32.6 |458(2.7%| 739
exhaust:5:unigram 5 5.4 56 [8.1%| 118
exp:105:unigram 53.3| 18.8 [137| 0% | 495
exp:20:unigram 9.62| 16 194(2.7%| 410
exp:5:unigram 3.7| 6.5 32 (8.1%| 86
exp:105:bigram 32.5| 8.6 81 | 0% | 382
exp:20:bigram 9.98| 8.7 |231|2.7%]| 401
exp:5:bigram 4.0 2.0 33 |5.4%| 81

Figure 4: Average values for test set inputs

Figure (4) shows the performance of different
ranking schemes. The system parameters are given
in the form ranker:nbest-instances:ngram where
the nbest instances are selected according to their se-
mantic similarity with the input. The expectation-
based ranker (ranker=exp) uses the expectation to
determine the agenda ordering. The average in-
stance table size |ri| per test input decreases for the
expectation-based ranker. In contrast, exhaustive
search (ranker=exhaust) always has to use the ini-
tial instance base ri;i;. All experiments were run
with a 2 minute timeout which mainly affects ex-
haustive search with a large instance base. Search
also stopped as soon as a candidate with a cosine
of 1.0 was found. Restricting 7i;,;; and the gram-
mar from 105 to the 5/20 semantically closest in-

7e+05 ‘ ‘ ‘ |

G—© exhaust:105:unigram
A—A exp:105:bigram
L @@ exp:105:unigram

edge length in number of terms

Figure 5: Overall number of similarity computations

stances reduces the average processing time #. This
also tends to reduce the average number of edges [e|
and candidates |¢| per test input at the risk of not
finding a solution in some cases (‘no ¢’). However,
the interpretation of |e| and |¢| is made difficult by
the time limit and the stopping criterion.

For all similarity computations, we use t f-idf term
weighting. We assign terms that do not occur in
the training set the idf weight of a term that oc-
curs in a single instance. This is especially relevant
for semantic input tags that have not been seen in
the training set. We also conducted experiments in
which instances and edges are represented as bags
of bigrams. This leads to a decrease in processing
time which we explain by the fact that bigrams have
a greater discriminative power according to the idf
weighting scheme since they tend to be more rare
than unigrams.”

Figure (5) shows the number of overall similar-
ity computations for the 37 test inputs w.r.t. edge
length as measured in number of terms. For ex-
haustive search, as shorter edges are combined into
larger ones, there is an increase in the number of
similarity computations, stopped only by the time
limit and the size of the semantic input. In contrast,
expectation-driven search manages to keep the num-
ber of similarity computations down.

9 Other Approaches

Woods (1982) introduces a shortfall scoring method
for speech recognition that is similar in spirit to
our expectation-driven ranking algorithm in that the
search is guided by optimistic assumptions about the
best possible score of parts of the input not yet cov-
ered by a partial solution. In contrast to our ap-
proach, (Woods, 1982) requires the allocation of best

"We also experimented with other agenda orderings,
higher order ngrams and different instance tables sizes which
we cannot detail here.

possible scores to parts of the input from the be-
ginning of processing. Furthermore, scores need to
be additive and the approach assumes that a lexical
component enumerates words in decreasing order of
score.

In contrast to NITROGEN but similar to Rat-
naparkhi (2000), our system is domain-specific and
makes crucial use of semantic information in the
form of tags. NITROGEN also exhibits a bottom-up
element in the way its lattice is constructed. How-
ever, this does not affect ranking and pruning which
take place in a separate step. The architecture of
Ratnaparkhi (2000) is different from both IGEN and
NITROGEN in that it does not employ a grammar
for candidate construction. In contrast, the overgen-
eration architecture of the latter two enables a divi-
sion of labour to take place between rule-based and
stochastic/instance-based knowledge sources. Al-
though in our approach the training corpus serves
the double purpose of providing the instance-base
and the rule-based grammar, these components rep-
resent different aspects of the training set. Our ap-
proach works with many fewer examples for training
than the one described in (Ratnaparkhi, 2000).

The example-based machine translation (EBMT)
approach of (Sato and Nagao, 1990) uses a tree-
based similarity metric that is used to first identify
the closest instances and then adapt them. This is
very different from the surface-based ranking scheme
used in our overgeneration architecture. The EBMT
system of (Brown, 1999) is more knowledge-poor
than our approach in that new candidates are con-
structed by string/template matching and recombi-
nation rather than by means of a rule-based gram-
mar.

(Miller et al., 2000) describe an approach to infor-
mation extraction that also combines manual seman-
tic annotations with syntactic structures. They use
the resulting augmented trees to train a statistical
model whereas we use them to extract a rule-based
grammar.

10 Discussion and Future Work

Our algorithm is related to the class of A* algo-
rithms in that it optimistically estimates the “cost”
of reaching the goal from a given partial solution.
This goal is defined as (partially) expressing the in-
put semantics with the syntactic goal category. In
the instance-based case however, we need to deal
with a potentially large number of “cost estimates”.
We use existing solutions to reduce the search space
for finding better ones by comparing scores and ex-
pectations across instances.

In this paper, we have concentrated on the effi-
ciency of the basic generation algorithm, a funda-
mental issue in an overgeneration architecture. In
future work, we would like to investigate the lin-

guistic choices made in IGEN empirically, especially
with respect to term weighting and representation.
Errors in the output can give us hints as to whether
more knowledge should be placed in the rule-based
or the instance-based part of the system.

We currently consider all sentences as candidates
and do not require semantic completeness since in
general we cannot guarantee that the entire set of
input tags is expressible in a single sentence. As a
result, the different rankers express only 52-70% of
the input tags in the best ranked sentence. This
can be explained by the fact that the cosine simi-
larity metric measures the distance to any instance
regardless of the input semantics. In future work,
we would like to adapt the ranking algorithm to be
sensitive to the coverage of the input semantics.

We would also like to investigate the use of style
in NLG. If we want a NLG system to learn the char-
acteristics of a corpus of texts that exhibit differ-
ent author’s styles, it is usually more appropriate
to generate a text that convincingly fits one specific
style than one whose characteristics correspond to
the average of all styles. An instance-based approach
might be well-suited for this task.

11 Summary

To our knowledge, this paper presents the first in-
cremental nearest-neighbour algorithm for NLG. We
introduce the notion of expectation which allows us
to define an algorithm that finds a globally optimal
generation candidate since it never prunes promising
branches of the search tree. The ranking algorithm
can be used in combination with standard chart-
generation techniques and does not make strong as-
sumptions about the nature of the grammar used
by the base generator. This effectively eliminates
the need for the rule formalism to maintain special-
purpose data structures for ranking.

We show how Information Retrieval methods can
be used for NLG, opening the way for further use of
IR techniques for generation. Our general approach
requires a syntactic treebank of domain texts and -
as the only manual effort - some semantic annota-
tion. A particular advantage of the instance-based
approach is its ability to work with very few example
texts.

Acknowledgements

This research has been supported in part by EP-
SRC and the German Academic Exchange Service
(DAAD), program HSP-III.

The authors would like to thank Jon Oberlander,
Chris Brew and the anonymous reviewers of this con-
ference for valuable suggestions.

References

David W. Aha, D. Kibler, and M. Albert. 1991.
Instance-based Learning Agorithms. Machine
Learning, 7:37—66.

Srinivas Bangalore and Owen Rambow. 2000. Ex-
ploiting a Probabilistic Hierarchical Model for
Generation. In Proceedings of COLING-00, pages
42-48.

Ralf D. Brown. 1999. Adding Linguistic Knowledge
to a Lexical Example-based Translation System.
In Proceedings of the Seventh International Con-
ference on Theoretical and Methodological Issues
in Machine Translation (TMI), pages 22-32.

Walter Daelemans. 1999. Memory-based Lan-
guage Processing. Introduction to the Special Is-
sue. Journal of Experimental and Theoretical Al
11(3):287-467.

Charles L. Forgy. 1982. Rete: A Fast Algorithm for
the Many Pattern/ Many Object Pattern Match
Problem. Artificial Intelligence, pages 17-37.

Gerald Gazdar and Chris Mellish. 1989. Natu-
ral Language Processing in PROLOG. An Intro-
duction to Computational Linguistics. Addison-
Wesley, Wokingham.

Martin Kay. 1996. Chart Generation. In Proceed-
ings of ACL-96, pages 200-204.

Irene Langkilde and Kevin Knight. 1998. Gen-
eration that Exploits Corpus-based Statistical
Knowledge. In Proceedings of COLING/ACL-98,
pages 704-710, Montreal, Canada.

Irene Langkilde. 2000. Forest-based Statistical Sen-
tence Generation. In Proceedings of NAACL-00,
pages 170-177.

Scott Miller, Heidi Fox, Lance Ramshaw, and Ralph
Weischedel. 2000. A Novel Use of Statistical Pars-
ing to Extract Information from Text. In Proceed-
ings of NAACL-00, pages 226—233.

Adwait Ratnaparkhi. 2000. Trainable Methods for
Surface Natural Language Generation. In Pro-
ceedings of NAACL-00, pages 194-201.

Gerald Salton. 1989. Text Processing: the Trans-
formation and Retrieval of Information by Com-
puter. Addison-Wesley, Ca.

Satoshi Sato and Makoto Nagao. 1990. Towards
Memory-based Translation. In Proceedings of
COLING-90.

James Shaw and Vasileios Hatzivassiloglou. 1999.
Ordering among Premodifiers. In Proceedings of
ACL-99, pages 135-143, University of Maryland,
USA.

W. A. Woods. 1982. Optimal Search Strategies for
Speech Understanding Control. Artificial Intelli-
gence, pages 295-326.

