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OVERVIEW

The basic building blocks in our MUC system are reusable text handling tools which we have been
developing and using for a number of years at the Language Technology Group. They are modular tools
with stream input/output; each tool does a very specific job, but can be combined with other tools in
a UNIX pipeline. Different combinations of the same tools can thus be used in a pipeline for completing
different tasks.

Our architecture imposes an additional constraint on the input/output streams: they should have a
common syntactic format. For this common format we chose eXtensible Markup Language (XML). XML
is an official, simplified version of Standard Generalised Markup Language (sGML), simplified to make
processing easier [3]. We were involved in the development of the XML standard, building on our expertise
in the design of our own Normalised sGML (NSL) and NSL tool LT NsL [10], and our XML tool LT XML
[11]. A detailed comparison of this sGML-oriented architecture with more traditional data-base oriented
architectures can be found in [9].

A tool in our architecture is thus a piece of software which uses an AP1 for all its access to XML and SGML
data and performs a particular task: exploiting markup which has previously been added by other tools,
removing markup, or adding new markup to the stream(s) without destroying the previously added
markup. This approach allows us to remain entirely within the sGML paradigm for corpus markup while
allowing us to be very general in the design of our tools, each of which can be used for many purposes.
Furthermore, because we can pipe data through processes, the UNIX operating system itself provides the
natural “glue” for integrating data-level applications.

The sGML-handling APT in our workbench is our LT NsL library [10] which can handle even the most
complex document structures (DTDs). It allows a tool to read, change or add attribute values and
character data to SGML elements and to address a particular element in an NSL or XML stream using a
query language called ltquery.

The simplest way of configuring a tool is to specify in a query where the tool should apply its processing.
The structure of an SGML text can be seen as a tree, as illustrated in Figure 1. Elements in such a tree
can be addressed in a way similar to UNIX file system pathnames. For instance, DOC/TEXT/P[0] will
give all first paragraphs under TEXT elements which are under DOC. We can address an element by freely
combining partial descriptions, e.g. its location in the tree, its attributes, character data in the element
and sub-elements contained in the element. The queries can also contain wildcards. For instance, the
query .*/S will give all sentences anywhere in the document, at any level of embedding.

Using the syntax of ltquery we can directly specify which parts of the stream we want to process and
which part we want to skip, and we can tailor tool-specific resources for this kind of targeted processing.
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Figure 1: Partial SGML structure of a MUC article.

For example, we have a programme called £sgmatch which can be used to tokenize input text according
to rules specified in certain resource grammars. It can be called with different resource grammars for
different document parts. Here is an example pipeline using fsgmatch:

>> cat text | fsgmatch -q ".*/DATE|NWORDS" date.gr
| £sgmatch -q ".*/PREAMBLE" preamb.gr
| £fsgmatch -q ".*/TEXT/P[0]" PO.gr

In this pipeline, £sgmatch takes the input text, and processes the material that has been marked up as
DATE or NWORDS using a tokenisation grammar called date.gr; then it processes the material in PREAMBLE
using the tokenisation grammar preamb.gr; and then it processes the first paragraph in the TEXT section
using the grammar PO.gr.

This technique allows one to tailor resource grammars very precisely to particular parts of the text. For
example, the reason for applying PO.gr to the first sentence of a news wire i1s that that sentence often
contains unusual information which occurs nowhere else in the article and which 1s very useful for the
MUC task: in particular, if the sentence starts with capitalised words followed by &MD; the capitalised
words indicate a location, e.g. PASADENA, Calif. &MD;.

We have used our tools in different language engineering tasks, such as information extraction in a
medical domain [4], statistical text categorisation [2], collocation extraction for lexicography [1], etc.
The tools include text annotation tools (a tokeniser, a lemmatiser, a tagger, etc.) as well as tools for
gathering statistics and general purpose utilities. Combinations of these tools provide us with the means
to explore corpora and to do fast prototyping of text processing applications. A detailed description of
the tools, their interactions and application can be found in [4] and [5]; information can also be found
at our website, http://wuw.1ltg.ed.ac.uk/software/. This tool infrastructure was the starting point
for our MUC campaign.

LTG TOOLS IN MUC

Amongst the tools used in our MUC system is an existing LTG tokeniser, called 1ttok. Tokenisers take
an input stream and divide it up into “words” or tokens, according to some agreed definition of what a
token is. This is not just a matter of finding white spaces between characters—for example, “Tony Blair
Jr” could be treated as a single token.

1lttok is a tokeniser which looks at the characters in the input stream and bundles them into tokens.
The input to 1ttok can be sGML-marked up text, and 1ttok can be directed to only process characters
within certain SGML elements. One MUC-specific adjustment to the tokenisation rules was to treat a



hyphenated expression as separate units rather than a single unit, since some of the NE expressions
required this, e.g. <TIMEX TYPE="DATE">first-quarter</TIMEX>-charge.

Here is an example of the use of 1ttok.

cat text | muc2xml
| 1ttok -q ".*/P" -mark W standard.gr

The first call in this pipeline is to muc2xml, a programme which takes the MUC text and maps it into
valid XML. 1ttok then uses a resource grammar, standard.gr, to tokenise all the text in the P elements.
It marks the tokens using the sGML element W. The output from this pipeline would look as follows:

. <W>said</W> <W>the</W> <W>director</W> <W>of</W> <W>Russian</W> <W>Bear</W>
<W>Ltd.</W> <W>He</W> <W>denied</W> <W>this.</W> <W>But</W> ...

As the example shows, the tokeniser does not attempt to resolve whether a period is a full stop or part
of an abbreviation. Depending on the choice of resource file for 1ttok, a period will either always be
attached to the preceding word (as in this example) or it will always be split off.

This creates an ambiguity where a sentence-final period is also part of an abbreviation, as in the first
sentence of our example. To resolve this ambiguity we use a special program, ltstop, which applies
a maximum entropy model pre-trained on a corpus [8]. To use ltstop the user must specify whether
periods in the input are attached to or split off from the preceding words; in our case, they were attached
to the words, and 1tstop is used with the option —split. With this option, 1tstop will split the period
from regular words and create an end-of-sentence token <W C=".">.</W>; or it will leave the period with
the word if it 1s an abbreviation; or, in the case of sentence-final abbreviations, it will leave the period
with the abbreviation and in addition create a virtual full stop <W C="."></W>

Like the other LTG tools 1tstop can be targeted at particular SGML elements. In our example, we want
to target it at <W> elements within <P> elements—the output of 1ttok. It can be used with different
maximum entropy models, trained on different types of corpora.

For our example, the full pipeline looks as follows:
cat text | muc2xml
| 1ttok -q ".*/P" -mark W standard.gr
| 1tstop -q ".*/P/W" -split fs_model.me

This will generate the following output:

<W>said</W> <W>the</W> <W>director</W> <W>of</W> <W>Russian</W><W>Bear</w>

<W>Ltd.</W> <W C=°.’></W> <W>He</W> <W>denied</W> <W>this</W><W C=¢.’>.</W> <W>But</W>...

Note how ltstop has “added” a final stop to the first sentence, making explicit that the period after
“Ltd” has two distinct functions.

Another standard LTG tool we used in our MUC system was our part-of-speech tagger LT POS [7]. LT POS
1s SGML-aware: it reads a stream of sSGML elements specified by the query and applies a Hidden Markov
Modeling technique with estimates drawn from a trigram maximum entropy model to assign the most
likely part of speech tags. An important feature of the tagger is an advanced module for handling
unknown words [6], which proved to be crucial for name spotting.

Some MUC-specific extensions were added at this point in the processing chain: for capitalised words, we
added information as to whether the word exists in lowercase in the lexicon (marked as L=1) or whether
it exists in lowercase elsewhere in the same document (marked as L=d). We also developed a model
which assigns certain “semantic” tags which are particularly useful for MUC processing. For example,
words ending in -yst and -ist (analyst, geologist) as well as words occurring in a special list of words



(spokesman, director) are recognised as professions and marked as such (S=PROF). Adjectives ending
in -an or -ese whose root form occurs in a list of locations (American/America, Japanese/Japan) are
marked as locative adjectives (S=LOC_JJ).

The output of this part of speech tagging could look as follows:

<W C=VBD>said</W> <W C=DET>the</W> <W C=NN S=PROF>director</W> <W C=IN>of</W>
<W C=NNP S=L0OC_JJ>Russian</W><W C=NNP L=1>Bear</W> <W>Ltd.</W> <W C=°‘.’></W>

We also used a number of other sGML-tools, such as sgdelmarkup which strips unwanted markup from
a document, sgsed and sgtr, SGML-aware versions of the UNIX tools sed and tr.

But the core tool in our MUC system is fsgmatch. fsgmatch is an SGML transducer. It takes certain
types of SGML elements and wraps them into larger sGML elements. In addition, it is also possible to
use fsgmatch for character-level tokenisation, but in this paper we will only describe its functionality at
the sGML level.

fsgmatch can be called with different resource grammars, e.g. one can develop a grammar for recognising
names of organisations. Like the other LTG tools, it is also possible to use fsgmatch in a very targeted
way, telling it only to process SGML elements within certain other SGML elements, and to use a specific
resource grammar for that purpose.

Piping the previous text through fsgmatch with a resource grammar for company names would result
in the following:

<W>gaid</W> <W>the</W> <W>director</W> <W>of</W> <ENAMEX TYPE="ORGANIZATION">
<W>Russian</W> <W>Bear</W> <W>Ltd.</W> </ENAMEX> <W C=°.’> </W>

The combined functionality of 1ttok and fsgmatch gives system designers many degrees of freedom.
Suppose you want to map character strings like “25th” or “3rd” into SGML entities. You can do this at the
character level, using 1ttok, specifying that strings that match [0-9]1+[ -17((st) | (nd) | (xd) | (th))
should be wrapped into the sGML structure <W C=0RD>. Or you can do it at the sGML level: if your
tokeniser had marked up numbers like “25” as <W C=NUM> then you can write a rule for fsgmatch saying
that <W C=NUM> followed by a <W> element whose character data consist of th, nd, rd or st can be
wrapped into an <W C=0RD> element.

A transduction rule in fsgmatch can access and utilize any information stated in the element attributes,
check sub-elements of an element, do lexicon lookup for character data of an element, etc. For instance,
a transduction rule can say: “if there are one or more W elements (i.e. words) with attribute C (i.e. part
of speech tag) set to NNP (proper noun) followed by a W element with character data “Ltd.”, then wrap
this sequence into an ENAMEX element with attribute TYPE set to ORGANIZATION.

Transduction rules can check left and right contexts, and they can access sub-elements of complex
elements; for example, a rule can check whether the last W element under an NG element (i.e. the head
noun of a noun group) is of a particular type, and then include the whole noun group into a higher level
construction. Element contents can be looked up in a lexicon. The lexicon lookup supports multi-word
entries and multiple rule matches are always resolved to the longest one.

TIMEX, NUMEX, ENAMEX

In our MUC system, TIMEX and NUMEX expressions are handled differently from ENAMEX expressions. The
reason for this is that temporal and numeric expressions in English newspapers have a fairly structured
appearance which can be captured by means of grammar rules. We developed grammars for the temporal
and numeric expressions we needed to capture, and also compiled lists of temporal entities and currencies.
The sGML transducer fsgmatch used these resources to wrap the appropriate strings with TIMEX and
NUMEX tags.



ENAMEX expressions are more complex, and more context-dependent. Lists of organisations and place
names, and grammars of person names, are useful resources, but need to be handled with care: context
will determine whether Arthur Andersen is used as the name of a person or a company, whether Wash-
ington is a location or a person, or whether Granada is the name of a company or a location. At the
same time, once Granada has been used as the name of a company, the author of a newspaper article
will not suddenly start using it to indicate a location without giving contextual clues that such a shift in
denotation has taken place. Because of this, we strongly believe that identification of supportive context
is more important for the identification of names of places, organisations and people than are lists or
grammars. We do use such lists, but alter them dynamically: if anywhere in the text we have found
sufficient context to decide that Granada is used as the name of an organisation, it is added to our list of
organisations for the further processing of that text. When we start processing a new text, we don’t make
any assumptions anymore about whether Granada is an organisation or place, until we find supportive
context for one or the other.

To identify ENAMEX elements we combine symbolic transduction of sGML elements with probabilistic
partial matching in 5 phases:

1. sure-fire rules
2. partial match 1
3. relaxed rules
4. partial match 2
5

. title assignment

We describe each in turn.

ENAMEX: 1. Sure-fire Rules

The sure-fire transduction rules used in the ENAMEX task are very context oriented and they fire only
when a possible candidate expression is surrounded by a suggestive context. For example, “Gerard
Klauer” looks like a person name, but in the context “Gerard Klauer analyst” it is the name of an
organisation (as in “General Motors analyst”). Sure-fire rules rely on known corporate designators
(Ltd., Inc., etc.), titles (Mr., Dr., Sen.), and definite contexts such as those in Figure 2.

At this stage our MUC system treats information from the lists as likely rather than definite and always
checks if the context is either suggestive or non-contradictive. For example, a likely company name with
a conjunction is left untagged at this stage if the company is not listed in a list of known companies: in
a sentence like “this was good news for China International Trust and Investment Corp”, it is not clear
at this stage whether the text deals with one or two companies, and no markup is applied.

Similarly, the system postpones the markup of unknown organizations whose name starts with a sentence
initial common word, as in “Suspended Ceiling Contractors Ltd denied the charge”. Since the sentence-
initial word has a capital letter; it could be an adjective modifying the company “Ceiling Contractors
Ltd”, or it could be part of the company name, “Suspended Ceiling Contractors Ltd”.

Names of possible locations found in our gazetteer of place names are marked as location only if they
appear with a context that is suggestive of location. “Washington”, for example, can just as easily be
a surname or the name of an organization. Only in a suggestive context, like “in the Wahington area”,
will it be marked up as location.

ENAMEX: 2. Partial Match 1

After the sure-fire symbolic transduction the system performs a probabilistic partial match of the en-
tities 1dentified in the document. This is implemented as an interaction between two tools. The first



Context Rule Assign | Example

Xxxx+ is a? JJ* PROF PERS Yuri Gromov is a former director
PERSON-NAME is a? JJ* REL PERS John White is beloved brother
Xxxx+, a JJ* PROF, PERS White, a retired director,
Xxxx+ ,? whose REL PERS Nunberg, whose stepfather
Xxxx+ himself PERS White himself

Xxxx+, DD+, PERS White, 33,

shares of Xxxx+ ORG shares of Eagle

PROF of/at/with Xxxx+ ORG director of Trinity Motors
in/at LOC LOoC in Washington

Xxxx+ area Loc Beribidjan area

Figure 2: Examples of sure-fire transduction material for ENAMEX. Xxxx+ is a sequence of capitalised
words; DD is a digit; PROF is a profession (director, manager, analyst, etc.); REL is a relative (sister,
nephew, etc.); JJ* is a sequence of zero or more adjectives; LOC is a known location; PERSON-NAME
is a valid person name recognized by a name grammar.

tool collects all named entities already identified in the document. It then generates all possible partial
orders of the composing words preserving their order, and marks them if found elsewhere in the text.
For instance, if at the first stage the expression “Lockheed Martin Production” was tagged as organi-
zation because it occurred in a context suggestive of organisations, then at the partial matching stage
all instances of “Lockheed Martin Production”, “Lockheed Martin”, “Lockheed Production”, “Martin
Production”, “Lockheed” and “Martin” will be marked as possible organizations. This markup, however,
is not definite since some of these words (such as “Martin”) could refer to a different entity.

This annotated stream goes to a second tool, a pre-trained maximum entropy model. It takes into
account contextual information for named entities, such as their position in the sentence, whether these
words exist in lowercase and if they were used in lowercase in the document, etc. These features are
passed to the model as attributes of the partially matched words. If the model provides a positive
answer for a partial match, the match is wrapped into a corresponding ENAMEX element. Figure 3 gives
an example of this.

.. .<W C=IN>of<W> <W C=NNP _M=’+’>Lockheed<W> <W C=NNP L=d _M=0RGANIZATION>Production<W> <W C=IN>in<W>

Figure 3: Partially matched organization name “Lockheed Production”. The attribute M specifies that
“Lockheed” is a part but not a terminal word of the partial match and that “Production” is the terminal
word and the class of the match is ORGANIZATION. This kind of markup allows us to pass relevant
features to the decision making module without premature commitment.

ENAMEX: 3. Rule Relaxation

Once this has been done, the system again applies the symbolic transduction rules. But this time the
rules have much more relaxed contextual constraints and extensively use the information from already
existing markup and lexicons. For instance, the system will mark word sequences which look like person
names. For this it uses a grammar of names: if the first capitalised word occurs in a list of first names
and the following word(s) are unknown capitalised words, then this string can be tagged as a PERSON.
Here we are no longer concerned that a person name can refer to a company. If the name grammar
had applied earlier in the process, it might erroneously have tagged “Philip Morris” as a PERSON instead
of an ORGANISATION. However, at this point in the chain of ENAMEX processing, that is not a problem



anymore: “Philip Morris” will by now already have been identified as an ORGANISATION by the sure-fire
rules or during partial matching. If the author of the article had also been referring to the person
“Philip Morris”, s/he would have used explicit context to make this clear, and our MUC system would
have detected this. If there had been no supportive context so far for “Philip Morris” as organisation
or person, then the name grammar at this stage will tag it as a likely person, and check if there is
supportive context for that hypothesis.

At this stage the system will also attempt to resolve the “and” conjunction problem noted above with
“this was good news for China International Trust and Investment Corp”. The system checks if possible
parts of the conjunctions were used in the text on their own and thus are names of different organizations;
if not, the system has no reason to assume that more than one company is being talked about.

In a similar vein, the system resolves the attachment of sentence initial capitalised modifiers, the problem
alluded to above with the “Suspended Ceiling Contractors Ltd” example: if the modifier was seen with
the organization name elsewhere in the text, with a capital letter and not at the start of a sentence,
then the system has good evidence that the modifier is part of the company name; if the modifier does
not occur anywhere else in the text with the company name, it is assumed not to be part of it.

At this stage known organizations and locations from the lists available to the system are marked in the
text, again without checking the context in which they occur.

ENAMEX: Partial Match 2

At this point, the system has exhausted its resources (name grammar, list of locations, etc). The
system then performs another partial match to annotate names like “White” when “James White” had
already been recognised as a person, and to annotate company names like “Hughes” when “Hughes
Communications Ltd.” had already been identified as an organisation. As in Partial Match 1, this
process of partial matching is again followed by a probabilistic assignment supported by the maximum
entropy model.

ENAMEX: Title Assignment

Because titles of news wires are in capital letters, they provide little guidance for the recognition of
names. In the final stage of ENAMEX processing, entities in the title are marked up, by matching or
partially matching the entities found in the text, and checking against a maximum-entropy model trained
on document titles. For example, in “MURDOCH SATELLITE EXPLODES ON TAKE-OFF” “Murdoch” will
be tagged as a person because 1t partially matches “Rupert Murdoch” elsewhere in the text.

ENAMEX: Conclusion

The table in Figure 4 shows the progress of the performance of the system through the five stages.

Stage ORGANIZATION PERSON LOCATION
Sure-fire Rules R:42 P: 98 R:40 P:99 | R:36 P:96
Partial Match 1 R:75 P:98 R:80 P:99 | R:69 P:93
Relaxed Rules R: 83 P:96 R:90 P:98 | R:8 P:93
Partial Match 2 R: 8 P:96 R:93 P:97 | R:88 P:93
Title Assignment R:91 P:95 R:95 P:97| R:95 P:93

Figure 4: Scores obtained by the system through different stages of the analysis. R = recall; P = preci-
sion.




As one would expect, the sure-fire rules give very high precision (around 96-98%), but very low recall—in
other words, it doesn’t find many ENAMEX entities, but the ones it finds are correct. Note that the sure-
fire rules do not use list information much; the high precision is achieved mainly through the detection
of supportive context for what are in essence unknown names of people, places and organisations. Recall
goes up dramatically during Partial Match 1, when the knowledge obtained during the first step (e.g.
that this is a text about Washington the person rather than Washington the location) is propagated
further through the text, context permitting. Subsequent phases of processing add gradually more and
more ENAMEX entities (recall increases to around 90%), but on occasion introduce errors (resulting in a
slight drop in precision). Our final score for ORGANISATION, PERSON and LOCATION is given in the bottom
line of Figure 4.

WALKTHROUGH EXAMPLES

<ENAMEX TYPE="PERSON">MURDOCH</ENAMEX> SATELLITE FOR LATIN PROGRAMMING
EXPLODES ON TAKEOFF

The system correctly tags “Murdoch” as a PERSON, despite the fact that the title is all capitalised, and
there is little supportive context. The reason for this is that elsewhere in the text there are sentences
like “dealing a potential blow to Rupert Murdoch’s ambitions”, and the system correctly analysed
“Rupert Murdoch” as a PERSON, on the basis of its grammar of names (see ENAMEX: Relaxed Rules).
During Partial Match 2, the partial orders of this name are generated and any occurrences of “Rupert”
and “Murdoch” are tagged as PERSONs (e.g. in the string “Murdoch-led venture”), context permitting.
During the Title Assignment phase, “Murdoch” in the title 1s then also tagged as PERSON, since there is
no context to suggest otherwise.

<ENAMEX TYPE="PERSON'">Llennel Evangelista</ENAMEX>, a spokesman
for <ENAMEX TYPE="ORGANIZATION">Intelsat</ENAMEX>, a global
satellite consortium ...

“Llennel Evangelista” is correctly tagged as PERSON. Our grammar of names would not have been able
to detect this, since it didn’t have “Llennel” as a possible Christian name; this again illustrates that
it 1s dangerous to rely too much on resources like lists of Christian names, since these will never be
complete. However, our MUC system detected that “Lennel Evangelista” is a person at a much earlier
stage: because of the sure-fire rule that in clauses like “Xxxx, a JJ* PROFESSION for/of/in ORG”, the
string of unknown, capitalized words Xxxx refers to a PERSON. Using partial matching, “Evangelista” in
“Evangelista said...” was also tagged as PERSON.

“Intelsat” was correctly tagged as an ORGANISATION because of the context in which if appears: “Xxxx,
a JJ* consortium/company/...”. During Partial Matching, other occurrences of “Intelsat” are marked
as ORGANISATION, e.g. in “Intelsat satellite”.

<ENAMEX TYPE="ORGANIZATION">Grupo Televisa</ENAMEX> and
<ENAMEX TYPE="ORGANIZATION'">Globo</ENAMEX> plan to offer...

“Grupo Televisa” was correctly identified as an ORGANIZATION. Elsewhere the same text mentions “

Grupo Televisa SA, the Mexican broadcaster”, which is recognised as an ORGANIZATION because it knows
that “Xxxx SA/NV/Ltd...” are names of organisations. Through partial matching, “Grupo Televisa”
without the “SA” is also recognised as an ORGANIZATION.

“Globo” is recognised as an ORGANIZATION because elsewhere in the text there is reasonably evidence
that “Globo” is the name of an organisation. In addition, there is a conjunction rule which prefers
conjunctions of like entities.



This conjunction rule also worked for the string “in UT7ited States and Russia”: “Russia” is in the list of
locations and in a context supportive of locations; because of the typo, “UTited States” was not in the
list of locations. But because of the conjunction rule, it is correctly tagged as a LOCATION nevertheless.

EVALUATION

Our system achieved a combined Precision and Recall score of 93.39. This was the highest score of the
participating named entity recognition systems. Here is a breakdown of our scores:

POS ACT| COR INC MIS SPU NON| REC PRE

________________________ e
SUBTASK SCORES | I

enamex | |

person 883 872| 842 24 17 6 4] 95 97
organization 1854 1784[1692 10 152 82 31| 91 95
location 1308 13261239 14 55 73 21| 95 93
timex | |

date 1201 107910863 3 135 13 61l 89 99
time 191 156| 151 4 36 1 29| 79 97
numex | |
money 216  210| 204 0 12 6 11| 94 97
percent 100  103] 100 0 0 3 0l 100 97
________________________ A S
P&R 2P&R P&2R

F-MEASURES 93.39 94 .51 92.29

Figure 5: LTG Scores for the Named Entity Recognition task.

In what follows, we will discuss our system performance in each of the Named Entity categories. In
general, our system performed very well in all categories. But the reason our system outperformed other
systems was due to its performance in the category ORGANIZATION where it scored significantly better
than the next best system: 91 precision and 95 recall, whereas the next best system scored 87 precision
and 89 recall. We attribute this to the fact that our system does not rely much on pre-established lists,
but instead builds document-specific lists on the fly, looking for sure-fire contexts to make decisions about
names of organisations, and on the use of partial orders of multi-word entities. This pays off particularly
in the case of organisations, which are often multi-word expressions, containing many common words.

ORGANIZATION

One type of error occurred when a company such as “Granada Group Plc” was referred to just as
“Granada”, and this word is also a known location. The location information tended to override the tags
resulting from partial matching, resulting in the wrong tag. The reason for this is that these metonymic
relations do not always hold: if a text refers to an organisation called the “Pittsburgh Pirates”, and it
then refers to “Pittsburgh”, it 1s more likely that “Pittsburgh” is a reference to a location rather than
another reference to that organisation. In the same vein, the system treats a reference to “Granada” as
a location, even after reference has been made to the organisation “Granada Group Plc” | in the absence
of clear contextual clues to the contrary.

A second type of error resulted from wrongly resolving conjunctions in company names, as in <ORG>Smith
and Ivanoff Inc.</0ORG> As explained above, the system’s strategy was to assume the conjunction



referred to a single organisation, unless its constituent parts occurred on its list of known companies
or occurred on their own elsewhere in the text. In some cases, the absence of such information led to
mistaggings, which are penalised quite heavily: you lose once in recall (since the system did not recognise
the name of the company) and twice in precision (since the system produced two spurious names).

Many spurious taggings in ORGANIZATION were caused by the fact that artefacts like newpapers or
TV channels have very similar contexts to ORGANIZATIONSs, resulting in mistaggings. For instance, in
“editor of the Pacific Report”, the string “Pacific Report” was wrongly tagged as an ORGANISATION
because of the otherwise very productive rule which says that Xxxx in “PROF of/at/with Xxxx” should
be tagged as an ORGANIZATION.

The misses consisted mostly of short expressions mentioned just once in the text and without a suggestive
context. As a result, the system did not have enough information to tag these terms correctly. Also,
there were about 40 mentions of the Ariane 4 and 5 rockets, and according to the answer keys “Ariane”
should have been tagged as organisation in each case, accounting for 40 of the 152 misses.

PERSON

The PERSON category did not present too many difficulties to our system. The system handled a few
difficult cases well when an expression “sounded” like a person name but in fact was not, e.g. “Gerard
Klauer” in “a Gerard Klauer analyst”—the example discussed above.

One article was responsible for quite a few errors: in an article about Timothy Leary’s death, “Timothy
Leary” was twice and “Zachary Leary” seven times recognised as a PERSON; but 11 other mentions of
“Leary” were wrongly tagged as ORGANIZATION. The reason for this was the phrase “..family members
with Leary when he died”. The system applied the rule PROFs of/for/with Xxxx+ ==> ORGANIZATION
. The word “members” was listed in the lexicon as a profession and this caused “Leary” to be wrongly
tagged as ORGANIZATION. This accounts for 11 of the 24 incorrectly tagged PERSONSs.

Most of the 17 missing person names were one-word expressions mentioned just once in the text, and
the system did not have enough information to perform a classification.

LOCATION

LOCATION was the most disappointing category for us. Just one word (“Columbia”) which was tagged
as location but in fact was the name of a space-shuttle was responsible for 38 of the 73 spurious assign-
ments. The problem arose from sentences like “Columbia is to blast off from NASA’s Kennedy Space
Center...”, where we erroneously tagged “Columbia” as a location. Interestingly, we correctly did not
tag “Columbia” in the string “space shuttle Columbia”; this was correctly recognised by the system as
an artefact. In the Named Entity Recognition Task one does not have to mark up artefacts, but it is
useful to recognise them nevertheless: using the partial matching rule, the system now also knew that
“Columbia” was the likely name of an artefact and should not be marked up.

Unfortunately, the text also contained the expression “a satellite 13 miles from Columbia”. This context
is strongly suggestive of LOCATION. That, and the fact that “Columbia” occurs in the list of placenames,
overruled the evidence that it referred to an artefact.

Out of the 55 misses, 30 were due to not assigning LOCATION tags to various heavenly bodies.

TIMEX

In the TIMEX category we have relatively low recall. Our failure to markup expressions was sometimes
due to underspecification in the guidelines and the training data; with the corrected answer keys our
recall for times went up from 79 to 85. Apart from this, we also failed to recognise expressions like “the
second day of the shuttle’s 10-day mission”, “the fiscal year starting Oct. 1”7 | etc, which need to be
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marked as timex expressions in their entirety. And we did not group expressions like “from August 1993
to July 1995” into one group but tagged them as two temporal expressions (which gives three errors).

NUMEX

In the NUMEX category most of our errors came from the fact that we preferred simple constructions over
more complex groupings. For instance, “between $300 million and $700 million” we didn’t tag as a single
NUMEX expression, but instead tagged it as

between <NUMEX TYPE="MONEY">$300 million</NUMEX> and <NUMEX TYPE="MONEY">$700 million</NUMEX>

CONCLUSION

One of the design features of our system which sets it apart from other systems is that it is designed
fully within the sGML paradigm: the system is composed from several tools which are connected via a
pipeline with data encoded in sGML. This allows the same tool to apply different strategies to different
parts of the texts using different resources. The tools do not convert from SGML into an internal format
and back, but operate at the sGML level.

Our system does not rely heavily on lists or gazetteers but instead treats information from such lists as
“likely” and concentrates on finding contexts in which such likely expressions are definite. In fact, the
first phase of the ENAMEX analysis uses virtually no lists but still achieves substantial recall.

The system is document centred. This means that at each stage the system makes decisions according to
a confidence level that is specific to that processing stage, and drawing on information from other parts
of the document. The system is truly hybrid, applying symbolic rules and statistical partial matching
techniques in an interleaved fashion.

Unsurprisingly the major problem for the system were single capitalised words, mentioned just once or
twice in the text and without suggestive contexts. In such a case the system could not apply contextual
assignment, assignment by analogy or lexical lookup.

At the time we participated in the MUC competition, our system was not particularly fast—it operated at
about 8 words per second, taking around 3 hours to process the 100 articles. This has now considerably
improved.
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