
Description of the American University in Cairo's

System Used for MUC-7

Christian R. Huyck

The American University in Cairo

c.huyck@mdx.ac.uk

INTRODUCTION AND BACKGROUND

Portions of the American University in Cairo's MUC-7 system, MUC7-Plink, have par-

ticipated in every Message Understanding Competition since MUC-4. The Plink parser was

developed at the University of Michigan where it formed the core of the systems entered in

MUC-4 [2] and MUC-5 [1]. Recently, the Plink parser was added to GATE [6] to facilitate

interaction between language processing modules. Most of the modules used in MUC7-Plink

were already in GATE having been imported from the LaSIE system used in MUC-6 [8].

GATE provides an environment that greatly simpli�es the reuse of existing natural language

models. When the call for participation in MUC-7 was made, I was a faculty member at the

American University in Cairo, and had several students who were considering participating along

with me in MUC-7. I could have easily divided the tasks and had, for instance, one student

work on the Gazetteer, one work on coreference and perhaps a small group work on discourse

interpretation. Along with the existing Plink parser this would have comprised a largely new

system. Unfortunately, I left Cairo, and had only a very small amount of time to develop the

system. Furthermore, I had to develop the system at home on my PC. Fortunately, GATE

already had all of the modules that I needed, and ran (albeit slowly) on my PC. I did have

to modify some things, but with a very small amount of e�ort, I developed a working MUC-7

system.

Sadly, due to the lack of resources, the results of the system were poor, and by no means

re
ect the ceiling of the technology. They do however show how easy it is to perform relatively

well with virtually no development time.

The MUC7-Plink system is largely that of the She�eld system. It di�ers largely by the use

of an on-line lexicon, and the use of a di�erent parser. This parser was used for the University

of Michigan's MUC-5 entry, but the grammar and parsing heuristics have been rewritten to take

advantage of the on-line lexicon, the Gazetteer, and the automated part of speech tagger. The

parser also produces signi�cantly di�erent output for the XI discourse interpreter [17].

In the rest of this document I will �rst describe the system; this will include a module by

module description of the components, and a brief description of GATE. I will then describe the

performance of the system; this will include a summary of MUC7-Plink's scores on the TE, TR

and ST tasks, a brief summary of how development time was spent, and a walk through of the

sample article. I will conclude with a few observations.

SYSTEM DESCRIPTION

Architecture Overview

1

The MUC7-Plink system was composed of ten modules which were run in succession on each

text. In order, they were:

� Tokenizer

� Sentence Splitter

� Tagger (Brill)

� Gazetteer

� Morphological Analyzer

� On-Line Lexicon

� Plink Parser

� Name Matcher

� Discourse Interpreter

� Template Writer

Eight of these modules were used in the She�eld MUC-7 entry. The only ones that were

substantially di�erent were the Lexicon and the Parser. I will brie
y summarize the others and

give a more expansive description of the Lexicon and the Plink parser.

tokenizer

The tokenizer reads the input stream and segments it into small chunks that are roughly equiv-

alent to words. It is an executable �le compiled from a C program; the C program is generated

from a Lex [10] input �le. The token is the most commonly used unit of data for processing

in GATE, and the tokenizer guarantees a somewhat uniform representation. These tokens are

added to the GATE database; a separate database is maintained for each document. Addition-

ally the tokenizer adds section annotations to mark areas of the text.

Each of the GATE annotations have a start and end byte which de�ne a span. The span

speci�es the o�set in the document to which the annotation applies. So, the token associated

with \Ford" might have the span of byte 152 to 156, while a section might have the span of 0

and 562. Additional annotation speci�c information might be added to each annotation.

sentence splitter

The sentence splitter is a perl script which notes the sentence boundaries. These boundaries are

added as annotations into the GATE database; the annotation includes the o�set of the sentence

in the document (the span) and all of the tokens which are constituents of the sentence.

tagger

The Brill tagger [3] is a part of speech tagger that has been extensively trained on Wall Street

Journal Text. It annotates tokens with their part of speech. Since an annotation already exists

2

for each token, more information is simply added to each token annotation thus consolidating

information.

These parts of speech are not entirely compatible with the results of the Gazetteer or the

Lexicon. These con
icts are resolved before parsing begins.

gazetteer

The majority of nominal semantics in the system comes from the Gazetteer. It is a Lex

[10] based system of 44 lists. Each list represents a di�erent semantic category. The lists

include companies, airlines, aircraft manufacturers, cities, provinces, titles, �rst names,

bodies of water and aircraft names among many other things. There are about 200,000

bytes of text in the lists making roughly 10,000 entries. The system is relatively easy to

modify. Addition of new elements to the list is simple, and the addition of a new list is

also simple.

In addition to lists of proper names, some are lists of key words that signal certain

semantic categories. For instance there is a list of organization signal words such as

University, Hospital and Laboratory. These words alone are not su�cient to mark an

organization, but if they occur next to an unknown proper noun they suggest that that

proper noun is an organization. This adjacency, and thus categorization, is noted in the

parser.

The Gazetteer was largely the one used in the She�eld system. However, near the

end of development, I had to freeze the lists while they were slightly modi�ed at She�eld.

In general this did not matter, but a large number of launch event speci�c changes were

not completely incorporated. The largest problem here was that spacecraft were not

incorporated. Since rockets were needed for the scenario template task, virtually no

scenario templates were generated.

GATE is not a strictly linear system. Module A must be run before Module B when

B needs information from A. However, if neither is dependent on the other they can be

run independently. 1 Since the Gazetteer does not depend on morphological analysis, it

could be run before or after the tagger.

morphological analyzer

The morphological analyzer takes all nouns and verbs and returns the root form and the su�x.

The root form is often used as a semantic primitive. So the semantics for \report" is the same

as the semantics for \reports" or \reporting". The analysis is done by some regular expression

rules and a list of several thousand irregular exceptions derived from the exception list used in

Wordnet [16].

lexicon

The version of Plink used for MUC-4 and MUC-5 had a hand-crafted lexicon. Each lexical entry

Theoretically, independent modules can be run in parallel, but the current GATE system does not

implement this feature.

3

was a complex feature structure, and was rather di�cult to construct. Words that were not

speci�cally in the lexicon were assumed to be proper nouns of no particular semantic category.

It would be more e�ective if an on-line lexicon could be used to reduce the work load because

the lexicon would both ease transition to a new domain, and reduce the time need to maintain

Plink's own lexicon.

Longman's Dictionary of Contemporary English (LDOCE) [9] has electronic versions. One

of these versions was selected, and added to GATE. The desired word (root form) was passed to

LDOCE and it returned the de�nitions of the word that it found. Each of these de�nitions were

added as there own tokens to the GATE database, with spans that corresponded to the token.

Initially, each de�nition of the word was left in as an annotation. Plink was allowed to choose

between the de�nitions. Unfortunately, on medium size documents the large number of lexical

entries tended to slow my machine down due to memory limitations. This meant that some

pruning had to be done before addition to the GATE database.

The Plink grammar that I developed roughly follows the HPSG [14] formalism. This requires

rather sophisticated lexical entries. The addition of LDOCE has enabled me to begin to develop

a more complex lexical system. Eventually, these de�nitions will include semantic and complex

syntactic features which should enable more e�ective parsing, and more useful semantic results

which can be passed along to discourse analysis.

The version of LDOCE that I used has semantics and selectional restrictions, but they seem

to be inconsistently entered. Thus the information gathered from LDOCE is currently not very

useful.

plink

The PLINK parser was designed for the �fth Message Understanding Competition (ARPA-93).

PLINK does full
edged parsing creating exactly one syntactic-semantic representation of a

given sentence. Additionally, PLINK parses in linear time thus speeding parsing. PLINK is

closely related to the Marcus parser [13] using a stack of constituents. Plink uses a heuristic

rule selection mechanism based on the contents of the stack to select which grammar rule to

apply at each step. These heuristics have access to elements of the partially completed parse

and select the rules based on a preference mechanism. The preferential mechanism is based on

a small number of rankings (currently 6), so the system can select several rules and rank them.

PLINK uses a standard-uni�cation based grammar or UBG [15], and is derived from the

LINK parser [11]. The use of a UBG enables PLINK to encode grammar rules that have both

syntactic and semantic components. Since the parser has access to syntax and semantics, it can

take advantage of both types of knowledge to make parsing decisions. This allows parsing to

proceed in one-pass and eliminate a great deal of ambiguity. PLINK also includes an inheritance

hierarchy of semantic components. A more thorough discussion of PLINK and the MUC-5

system can be found in [7].

The grammar that was used was hand-crafted. Though it does not adhere to any speci�c

linguistic theory, it is similar to the HPSG grammar of Pollard and Sag [14]. The grammar

rules are quite standard except in many cases they are more amenable to one-pass parsing. For

instance left-recursion is avoided. These rules still recognize the same language, but some gram-

4

matical manipulation improves one-pass parsing. Rules to handle agrammatical phenomenon

were derived with HPSG in mind, though of course, they di�er from standard HPSG rules.

The parsing model is based around a stack and selection rules. The stack is a standard

parsing stack. Constituents were added to the stack, and when appropriate a grammar rule was

applied to the stack modifying the top elements of the stack. I tried to keep the stack small, and

in earlier experiments the stack never exceeded a size of seven constituents when it was parsing

grammatical phenomena.

At any given time a number of actions could take place. A new element could be pushed

onto the stack or one of a number of grammar rules could be applied. Selection rules were used

to choose the next action. Like the grammar rules themselves, the selection rules are themselves

UBG rules. The selection rules inspect the stack, and give a preference weighting to each of the

valid options. For example:

...

det

noun

period

Example 1. A Sample Stack

Here "..." represents other elements lower on the stack and period (the punctuation mark)

represents the most recently added element. All of the selection rules are uni�ed with the stack

and (for the sake of example) two selection rules match.

(Selection-Rule 1 (Selection-Rule 1

(good NP-from-det-noun) (best abbrev-eats-period)

((1) = det) ((1) = noun

(2) = noun (2) = period))

(3) = nil))

Example 2. Selection Rules that Match the same stack.

If the NP-from-det-noun rule was applied the stack would be changed to

...

NP

period

Example 3. Stack If the First Rule is Successfully Applied

5

If the abbrev-eats-period (abbreviation absorbs a period) rule was applied the stack would

be changed to:

...

NP

period

Example 4. Stack If the Second Rule is Successfully Applied

Which of the two rules is actually selected? Grammar rules are selected based on a preference

ranking. In the current system the ranking is best, good, fair, last, spec-agram and gen-agram.

The best rule is applied �rst. When the stack is as it is in example 1, the abbrev-eats-period

rule is applied �rst. If it succeeds a new round of rule selection begins. If it fails, then rules from

the next level, in this case NP-from-det-noun are applied. This continues until all rules fail. If

multiple grammar rules are selected with the same preference ranking, then they are ordered

randomly.

If no rule succeeds a new constituent is pushed onto the stack. This is could be implemented

by the selection rule:

(Selection-Rule 1 (gen-agram push))

This rule always succeeds and the keyword push is used to push a constituent onto the stack.

Other selection rules may take advantage of the push mechanism, when more lexical information

is needed to make a parsing decision.

This parsing mechanism allows no backtracking. Consequently, this assures that the parse

occurs in linear time. There is evidence that humans backtrack when parsing [4], [5]. In this

sense PLINK is not a full-
edged model of human parsing.

In example 2, I actually speci�ed the names NP-from-det-noun and abbrev-eats-period. This

is the actual name of the grammar rule; that is the selection rules actually encode the grammar

rule by name. The name of the grammar rule is speci�ed in the grammar rules (pref name)

feature. The grammar rule for NP-from-det-noun looks like example 5.

(Grammar-Rule NP

(((1) = det

(2) = N

(2 head syn type) = common

(pref name) = NP-from-det-noun)))

Example 5. A Sample Grammar Rule

6

The MUC-7 domain is an open ended domain of newspaper articles. These articles often have

grammatical and spelling errors. Furthermore, the lexical mechanisms are not always correct.

For example, occasionally words are mis-tagged. Consequently, the domain is ideal for robust

parsing techniques. The simple technique that PLINK uses for robustness is low ranked rules.

High priority rules handle grammatical and speci�c phenomena; medium priority rules handle

grammatical and general phenomena; low priority rules handle agrammatical phenomenon.

A working version of the Plink parser existed by the time of the dry run. The parser was

in GATE, and was receiving input from earlier modules via the GATE database. However, the

grammar was designed to recognize general noun phrases. Some modi�cations had to be made to

generate the appropriate semantic category. For instance, the parser might encounter \Robert

R. Smith". This would be correctly recognized as an NP, but it would not state that it was a

person. For the purposes of all of the MUC tasks, this information was needed. Consequently,

new grammar rules had to be added. Since Robert is in the Gazetteer, the semantic type of

\Robert" would be person and an NP formed from it would also be person. However, the type

of \R." and \Smith" would be unknown. Thus a grammar rule Example 6. was needed.

(Grammar-Rule NP

(((1) = NP

(2) = N

(1 head sem) = person

(pref name) = ng-from-NGperson-N

(head sem) = person)))

Example 6. A Semantically Speci�c Grammar Rule

Example 6. of course con
icted with an already existing grammar rule which took the exact

same constituents, but took the semantics from the second noun. A higher ranking parsing

heuristic was made for the ng-from-NGperson-N grammar rule and it was always selected �rst.

It only succeeded when the semantics were correct, so non-person NPs were una�ected.

A total of 11 grammar rules, and 13 selectional rules were added for the MUC task. All

of these were developed during the training phase and were thus specialized for the aircraft

accident domain. It would be valid to say that this was the only work done on MUC7-Plink for

MUC-7. These rules were written in a few hours over several afternoons. One of the advantages

of the Plink approach is the simple integration of domain speci�c grammar rules.

The main modi�cations from the MUC-5 system were a new grammar for a new tag set,

and the introduction of lazy uni�cation to speed heuristic rule selection. The new grammar

was needed since the tag set had changed. The MUC-5 tag set was speci�c to our hand-crafted

lexicon. It now uses a combination of the tags used by the Brill tagger, the Gazetteer, and

LDOCE. This has been combined with a hierarchy of syntactic classes, to enable more general

rules to be written. For example, instead of one syntactic class for comma, and one for each of

the other punctuations, I have combined this into symbol, but each symbol has a head feature

which is the symbol. A general rule can be written to look at the lexical class `sym', or a speci�c

7

rule can be written to look at the lexical class `sym' which has a head feature dollar for the

dollar sign.

Lazy uni�cation is now used during rule selection. In the MUC-5 system full uni�cation was

used, and this lead to large structures being built unnecessarily. A future improvement would

introduce lazy uni�cation into grammar rule application. There is evidence that this would

further improve parsing performance [12].

Finally, a great deal of modi�cation was needed to produce the correct input for the XI

discourse interpreter. Fortunately, this was mostly a matter of post-processing. Plink standardly

produces a list of verb frames. XI wants a list of quasi-logical predicates. It is relatively simple

to change the frames into predicates. However, the XI system that was used needed a certain

set of predicates. A large amount of work was needed to assure that the correct predicates were

being produced. This is where the majority of work for MUC7-Plink happened. What was

produced was a list of entities and relations between entities. The entities could be based on

nouns or on verbs.

name matcher

This is a C++ program used as part of the coreference mechanism. If a name, or part of name,

occurs in the list of entities, they are combined into one entity. This is a useful preprocessing

step for the Discourse Interpreter.

discourse interpreter

The discourse interpreter was developed using the XI knowledge representation language [17].

The input to the interpreter was a series of entities and relations between entities. The interpreter

had rules which built new relations and reclassi�ed the entities. One particular important set

of entities and relations was the MUC-7 speci�c Element, Relations and Scenarios.

The only work done for MUC7-Plink was to produce the appropriate input for the discourse

interpreter. Unfortunately, this work was incomplete, particularly for the �nal test domain.

This lead to very low recall measures in all three tasks.

An additional problem was that the coreference mechanism, which was largely implemented

in the discourse interpreter, assumed that entities had a particular property. However, this

relation was added by the Plink parser. This lead to a reduction in precision particularly in the

Template Element task because entities that corefered in reality were not associated by discourse

interpretation.

template writer

The template writer is a prolog program that simply scans through the discourse model. It looks

for certain types of entities and relations, formats the information for them in an appropriate

manner, and generates the templates which are the results of the system.

General Architecture for Text Engineering

This whole system was developed as a system of the General Architecture for Text Engineering

or GATE [6]. Text processing modules are added to GATE, and these modules can be combined

8

into a system. Once modules are added they can be combined in di�erent ways to form new

systems.

GATE provides a Tipster compatible database mechanism. The database store is organized

around documents. Each document has its own set of annotations. Modules take input from the

database, process the input, and generate output which is then usually placed into the database.

The simplest way to add a new module to GATE is by writing a wrapper that interacts

directly with the database. The wrapper gets annotations from the database and writes it to a

�le; the code for the module is then called with the �le as input. It then produces an output

�le which is read by the wrapper and put into the database. Some modules, such as the name

matcher, do not communicate this way. However, integrating a module in this fashion is not

very di�cult, and it allows the module to run without GATE if an input �le exists.

GATE currently has about 40 modules with complete wrappers. Addition of a new module

varies in complexity, but can be done in well under an hour for simple systems, and in 2 days

for complex systems such as the ANLT parser. Since processing can be independent of GATE,

the source language of the new module is irrelevant. MUC7-Plink has modules written in C, C

derived from Lex, C++, Lisp, Perl and Prolog.

SYSTEM PERFORMANCE

Scores

Recall Precision P&R

ST 1 43 1.45

TR 14 75 23.66

TE 36 68 47.40

Table 1. System Results

MUC7-Plink generated scores for the Scenario task, the Template Relations task and the

Template Element task. The scores were lower than expected, but not much lower. No devel-

opment was done on the Launch Event domain. A small amount of work could have raised the

P&R scores to 20 for ST, 40 for TR, and 60 for TE; these are roughly the scores on the tasks in

the Aircraft Accident domain on texts that were run blindly. Of course a reasonable amount of

work on the system could have raised the scores much higher.

Development Time

The only way that MUC7-Plink excelled for the MUC-7 competition was development time. No

time was spent on the Launch Event domain, and very little time was spent on the Aircraft

Accident domain. A summary of the time spent in development is below.

� 15 hours development on Aircraft Accidents

� 0 hours development on Launch Events

9

� 48 hours on integration into the GATE/LaSIE Discourse Interpreter

� 80 hours spent adding Plink and LDOCE to GATE

� 90 hours running the �nal test

There was no time spent on development in the �nal test domain. The TE and TR scores

are reasonable because some time was spent in development on the similar training domain of

Aircraft Accidents. 48 hours was spent on modifying the output of the Plink parser to �t with

the XI discourse interpreter that was used. This could reasonably be considered part of the

MUC-7 e�ort. Roughly 80 hours were spent in adding Plink and LDOCE to GATE, in the

summer of 1996. The integration process has been improved since then, and adding two similar

modules would probably take under 40 hours e�ort.

The majority of the time was spent on running the �nal tests. I was running on a PC-586 at

90 MHz, with 16 Meg of RAM. This lead to very slow processing. The longest article took over 6

hours to process. An average article to 30 minutes to process up to the discourse interpreter. 10

minutes was spent on parsing, and 5 minutes was spent on lexical lookup. Roughly 10 minutes

of the remaining time was spent interfacing with the GATE database. This is clearly a weakness

of the GATE model and needs to be improved.

Discourse analysis was taking much too long, and there would have been no way to run all

of the texts on my PC. Fortunately the GATE approach of reading from the database, writing

to a �le and then calling the module was very helpful; it enabled me to write input �les for the

discourse interpreter, ftp them to a Sun workstation and run them there. Roughly half of the

texts were run this way, and almost all of the texts over 4000 bytes.

The major problem with this long running time was that it left no time for development on

the Launch Event domain. An overnight run of texts would have enabled development of the

MUC7-Plink system to have much higher results. Still it is quite remarkable that one can enter

MUC-7 on a system almost solely run and developed on a low-end PC.

Walkthrough

I will concentrate on the sentence \The China Great Wall Industry Corp. provided the Long

March 3B rocket for today's failed launch of a satellite built by Loral Corp. of New York for

Intelsat. "

The tokenizer reads in the text and adds annotations like:

206 token 1118 1121

207 token 1122 1127

for the words The and China. 206 refers to the annotation number, and 1118 and 1121 is the

span of the token in the text.

The sentence splitter divided the document into sentences including the above sentence as

the annotation:

1139 sentence 1118 1275 constituents: 206 207

This annotation says it is a sentence that goes from 1118 to 1275 and has the tokens 206, 207

etc.

10

The tagger modi�es the token annotations by adding part of speech information.

206 token 1118 1121 (pos: DT)

207 token 1122 1127 (pos: NNP)

The Gazetteer looks up words and �nds among others:

5007 Lookup 1253 1259 (tag: location) (type:city)

5008 Lookup 1244 1249 (tag: organization) (type:company)

for New York, and Loral respectively. Note that New York does span two tokens, thus Lookup

can not be directly associated with tokens in the database.

The morphological analyzer adds root and su�x annotations to verbs and nouns.

231 token 1235 1240 (pos: VBD) (root: build) (a�x: ed)

232 token 1244 1249 (pos: NNP) (root: loral) (a�x:)

are the annotations for built and Loral.

LDOCE looks up words and adds rather complex annotations. An example is:

6428 ldoce entry 1172 1177 (homograph: 0) (sense: 0) (part of speech: -)

(grammar info: -) (subject code: -) (case info: -)

for the word March. As noted this information is not currently very useful but slots are left

open for a more e�ective lexical retrieval mechanism.

The Plink Parser is then run on the sentence and generates a syntactic structure for the

sentence, which we will ignore, and a semantic structure for the sentence. The annotation is:

7867 semantics 1118 1275 (qlf: [fail(e251), lobj(e251,e252), launch(e252)])

The quasi-logical forms that are of interest are: organization(e256), name(e256, o�set(1244,

1255)), city(e257), name(e257, 'new york'), apposed(e256,e257), of(e256,e257) This says that

Loral Corp. is an organization which has an of relation with the city New York.

In this particular text, the name matcher �nds no matches.

The discourse interpreter �nds an of relation between an organization and a location. The

interpreter has a rule that adds a location of predicate if this relation holds so a new predicate

location of(e256,e257) is added. The discourse interpreter in turn writes information back to

the database. An example is:

8132 xi instance 1118 1275 (class: e7 <{ city())) (props: location of(e6,e7),

country(e7, 'United States'), of(e6,e7)...)

The template writer reads these xi instance annotations and prints the appropriate template

elements and relations for in this case, Loral Corp. and New York.

OBSERVATIONS

GATE made MUC7-Plink possible. Without GATE it would have been impossible for me to

develop a system capable of participating in MUC in under a few weeks of work. GATE does

11

have some weaknesses: adding a new module to GATE while simple is not transparent; accessing

the database is quite slow. However, it has been a very useful development environment.

Plink has also shown to be quite useful. It was quite easy to add new rules for a new domain

to Plink. The end result of parsing is easily translated into the quasi-logical form needed by the

discourse interpreter. This comes from it being a full-parser which generates one interpretation,

and generates a full semantic interpretation along with a syntactic one.

MUC7-Plink can be most usefully seen as an example of how to build a system that can very

easily be moved to a new domain. Assuming a working system, for say the MUC-6 Succession

Event task, three main modules need to be modi�ed: the Gazetteer, the Parser and the Discourse

Interpreter. Using the modules in MUC7-Plink only domain speci�c data needs to be changed

and the actual programs remain constant.

The Gazetteer needed several lists changed. The parser needed to add several grammar

rules, and for Plink selection rules, to account for the lists. Switching to a new domain would

again call for new lists and new grammar rules. However, this data is all based around Noun

Phrases. The NE task requires the system to classify several Named Entities. If there was a

more di�cult task, an Entity task, which required all Entities to be classi�ed, the system would

be more domain independent. It would still be useful to add new lists and grammar rules to

switch domains, but the introductory work would have been done. Furthermore, without adding

new lists or grammar rules, some output could be generated.

For example, in switching MUC7-Plink from Aircraft Accidents to Launch Events the gram-

mar and the Gazetteer provided no space for rockets. Therefore, rockets could never have

arrived as speci�c semantic output (except when speci�cally mentioned as a rocket). This is

why MUC7-Plink performed so badly on the ST task. It performed better on the TE and TR

task because large parts of those tasks (Organizations, Products and People) were accounted

for by the grammar and the Gazetteer. If the original system had considered rocket entities, the

scores would have been much higher.

There was no Discourse Interpretation work done as part of MUC7-Plink. I simply took

advantage of the work done at She�eld. Clearly, in switching to a new domain, some discourse

work would need to be done. However, the amount of work done at She�eld on the discourse

model was also small. To a large degree this work could be considered looking for speci�c phe-

nomenon in the text, speci�cally, those phenomena required by the ST, and TR tasks. Perhaps

the new SUMMAC tests will provide better insight into a general discourse interpretation mech-

anism which can easily be culled for speci�c information, but it seems likely a more sophisticated

all-purpose Scenario task would be needed.

References

[1] Advanced Research Projects Agency. 1993. Proceedings of the Fifth Message Understanding

Conference (MUC-5), Baltimore, MD. August 1993. San Mateo, CA: Morgan Kaufmann

Publishers.

12

[2] Defense Advance Research Projects Agency. 1992. Proceedings of the Fourth Message Un-

derstanding Conference, McLean VA. June 1992. San Mateo, CA: Morgan Kaufmann Pub-

lishers.

[3] Brill, E. 1994. Some advances in transformation-based part of speech tagging. Proceedings

of AAAI, 1994

[4] Crain, S. and M. Steedman. 1985 On not being led up the garden path: the use of context by

the psychological syntax processor. In Dosty, D., L. Kartunnen and A. Zwicky (eds.) Natural

Language Parsing: Psychological, Computational and Theoretical Perspectives. New York:

Cambridge University Press, pp. 320-358.

[5] Frazier, Lyn. 1983. Processing Sentence Structure. In Eye Movements in Reading Keith

Ranyor (ed.) New York, NY: Academic Press.

[6] Cunningham, H., Y. Wilks, and R. Gaizauskas. 1996. GATE: A General Architecture for

Text Engineering. CoLing 1996

[7] Huyck, Christian R. 1994. PLINK: An Intelligent Natural Language Parser. University of

Michigan technical report CSE-TR-218-94.

[8] Gaizauskas, R., T. Wakao, K. Humphreys, H. Cunningham, and Y. Wilks. 1995. Description

of the LaSIE System as Used for MUC-6. Proceedings of the Sixth Message Understanding

Conference (MUC-6). San Mateo, CA: Morgan Kaufmann Publishers.

[9] Proctor, P. 1978. Longman's Dictionary of Contemporary English. Longman Group.

[10] Levine, J. R., T. Mason, and D. Brown. 1992 Lex and Yacc. O'Reilly and Associates, Inc.

[11] Lytinen, Steven. 1992 A uni�cation-based, integrated natural language processing system.

Computers and Mathematics with Applications 23 (6-9), pp. 403-418.

[12] Lytinen, S and N. Tomuro. 1996 Left-corner Parsing for Uni�cation Grammars. Proceeding

of AAAI, 1996

[13] Marcus, Mitchell P. 1980 A Theory of Syntactic Recognition for Natural Language Cam-

bridge, MA: MIT Press.

[14] Pollard, C. and I. Sag. 1994. Head-Driven Phrase Structure Grammar Standford, CA:Center

for the Study of Language an Information.

[15] Shieber, Stuart M. 1986 An Introduction to Uni�cation-Based Approaches to Grammar

Stanford, CA:Center for the Study of Language an Information.

[16] Miller, G. 1990. Wordnet: An on-line lexical database International Journal of Lexicogra-

phy, 3(4).

[17] Gaizauskas. R. 1995. XI: A knowledge representation language based on cross-classi�cation

and inheritance. Research Memorandum CS-95-24, Dept. of Computer Science, University

of She�eld.

13

