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THE PROTEUS SYSTE M

History

The Proteus system which we have used for MUC-5 is largely unchanged from that
used for MUC-3 and MUC-4 . It has three main components : a syntactic analyzer, a
semantic analyzer, and a template generator .

The Proteus syntactic analyzer was developed starting in the fall of 1984 as a
common base for all the applications of the Proteus Project . Many aspects of it s
design reflect its heritage in the Linguistic String Parser, previously developed an d
still in use at New York University .

	

The current system, including the Restriction
Language compiler, the lexical analyzer, and the parser proper,

	

comprise
approximately 4500 lines of Common Lisp .

The semantic analyzer was initially developed in 1987 for the MUCK- I
(RAINFORMs) application, extended for the MUCK-II (OPREPS) application, and ha s
been incrementally revised since . It currently consists of about 3000 lines o f
Common Lisp (excluding the domain-specific information) .

The template generator was written from scratch for the MUC-5 joint ventur e
task; it is about 1200 lines of Common Lisp .

Stages of processing

The text goes through the five major stages of processing : lexical analysis ,
syntactic analysis, semantic analysis, reference resolution, and template generation
(see figure 1) . In addition, some restructuring of the logical form is performed bot h
after semantic analysis and after reference resolution (only the restructuring after
reference resolution is shown in figure 1) . Processing is basically sequential: each
sentence goes through lexical, syntactic, and semantic analysis and referenc e
resolution ; the logical form for the entire message is then fed to template generation .
However, semantic (selectional) checking is performed during syntactic analysis ,
employing essentially the same code later used for semantic analysis .
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Figure 1 . Proteus System Structure .
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Lexical Analysis

Dictionary Forma t

Our dictionaries contain only syntactic information :

	

the parts of speech for each
word, information about the complement structure of verbs, distributiona l
information (e .g., for adjectives and adverbs), etc . We follow closely the set o f
syntactic features established for the NYU Linguistic String Parser . This informatio n
is entered in LISP form using noun, verb, adjective, and adverb macros for the open -
class words, and a word macro for other parts of speech :

(ADVERB "ABRUPTLY" :ATTRIBUTES (DSA) )

(ADJECTIVE "ABRUPT" )

(NOUN :ROOT "ABSCESS" :ATTRIBUTES (NCOUNT) )

(VERB :ROOT "ABSCOND" :OBJLIST (NULLOBJ PN (PVAL (FROM WITH))) )

The noun and verb macros automatically generate the regular inflectional forms .

Dictionary

	

Files

The primary source of our dictionary information about open-class words (nouns ,
verbs, adjectives, and adverbs) is the machine-readable version of the Oxfor d
Advanced Learner's Dictionary ("OALD") . We have written programs which take th e
SGML (Standard Generalized Markup Language) version of the dictionary, extrac t
information on inflections, parts of speech, and verb subcategorization (including
information on adverbial particles and prepositions gleaned from the examples), an d
generate the LISP-ified form shown above. This is supplemented by a manually-coded
dictionary (about 1500 lines, 900 entries) for closed-class words, words not adequatel y
defined in the OALD, and a few very common words . In addition, we used severa l
specialized dictionaries for MUC-5, including a location dictionary (with al l
countries, continents, and major cities (CITY1 or , PORT1 in the gazetteer), a dictionary
of corporate designators, a dictionary of job titles, and a dictionary of currencies .

Looku p

The text reader splits the input text into tokens and then attempts to assign to eac h
token (or sequence of tokens, in the case of an idiom) a definition (part of speech an d
syntactic attributes) . The matching process proceeds in five steps : dictionary
lookup, lexical pattern matching, spelling correction, prefix stripping, and defaul t
definition assignment . Dictionary lookup immediately retrieves definitions assigne d
by any of the dictionaries (including inflected forms) . The specialized dictionarie s
are stored in memory, while the main dictionary is accessed from disk (using hashe d
index random access) .

Lexical pattern matching is used to identify a variety of specialized patterns, suc h
as numbers, dates, times, and possessive forms . The set of lexical patterns was
substantially expanded for MUC-5 to include various forms of people's names ,
company names, locations, and currencies .

	

The lexical patterns are further discusse d
below, in the "What's new for MUC-5" section .

If neither dictionary lookup nor lexical pattern matching is successful, spellin g
correction and prefix stripping are attempted. For words of any length, we identify
an input token as a misspelled form of a dictionary entry if one of the two has a
single instance of a letter while the other has a doubled instance of the letter (e .g . ,
"mispelled" and "misspelled") . The prefix stripper attempts to identify the token as a
combination of a prefix (e .g.,"un") and a word defined in the dictionary .
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If all of these procedures fail, we assign a default definition . In mixed case text ,
undefined capitalized words are tagged as proper nouns ; undefined lower case words
are tagged as common nouns . In monocase text, all undefined words are tagged a s
proper nouns .

Syntactic Analysis

Syntactic analysis involves two stages of processing: parsing and syntactic
regularization. At the core of the system is an active chart parser . The grammar i s
an augmented context-free grammar, consisting of BNF rules plus procedura l
restrictions which check grammatical constraints not easily captured in the BN F
rules. Most restrictions are stated in PROTEUS Restriction Language (a variant of th e
language developed for the Linguistic String Parser) and translated into LISP ; a few
are coded directly in LISP [1] . For example, the count noun restriction (that singular
countable nouns have a determiner) is stated as

WCOUNT = IN LNR AFTER NVAR :
IF BOTH CORE Xcore IS NCOUNT AND Xcore IS SINGULAR
THEN IN LN, TPOS IS NOT EMPTY .

Associated with each BNF rule is a regularization rule, which computes th e
regularized form of each node in the parse tree from the regularized forms of its
immediate constituents. These regularization rules are based on lambda-reduction, a s
in GPSG. The primary function of syntactic regularization is to reduce all clauses to a
standard form consisting of aspect and tense markers, the operator (verb o r
adjective), and syntactically marked cases . For example, the definition of assertion ,
the basic S structure in our grammar, i s

<assertion>

	

<sa> <subject> <sa> <verb> <sa> <object> <sa>
:(s !(<object> <subject> <verb> <sa*>)) .

Here the portion after the single colon defines the regularized structure .

Coordinate conjunction is introduced by a metarule (as in GPSG), which is applie d
to the context-free components of the grammar prior to parsing . The regularization
procedure expands any conjunction into a conjuntion of clauses or of noun phrases .

The output of the parser for the first sentence of 0592, "BRIDGESTONE SPORTS CO .
SAID FRIDAY IT HAS SET UP A JOINT VENTURE IN TAIWAN WITH A LOCAL CONCERN AND A
JAPANESE TRADING HOUSE TO PRODUCE GOLF CLUBS TO BE SHIPPED TO JAPAN . " i s
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(SENTENCE
(CENTERS
(CENTER
(ASSERTION
(SUBJECT
(NSTG
(LNR (NVAR (NAMESTG (LNAMER (N "BRIDGESTONE" "SPORTS" "CO" " .")))))) )

(VERB (LTVR (TV "SAID")) )
(SA (SA-VAL (NSTGT (NSTG (LNR (NVAR (N "FRIDAY")))))) )

(OBJECT
(ASSERTION (SUBJECT (NSTG (LNR (NVAR (PRO "IT")))) )

(VERB (LTVR (TV "HAS")) )
(OBJECT

(VENO (LVENR (VEN "SET" "up") )
(OBJECT
(NSTGO
(NSTG
(LNR (LN (TPOS (LTR (T "A")))) (NVAR (N "JOINT" "venture") )

(RN
(RN-VAL
(PN (P "IN" )
(NSTGO (NSTG (LNR (NVAR (NAMESTG (LNAMER (N "TAIWAN")))))))) )

(MORE-RN
(RN-VAL
(PN (P "WITH" )
(NSTGO
(NSTG
(LNR
(LNR

(LN (TPOS (LTR (T "A")) )
(APOS (APOSVAR (AVAR (ADJ "LOCAL")))) )

(NVAR (N "CONCERN")) )
(CONJ-WORD ("AND" "AND") )
(LNR
(LN (TPOS (LTR (T "A")) )
(APOS (APOSVAR (AVAR (ADJ "JAPANESE")))) )

(NVAR (N "TRADING" "house"))))))) )
(MORE-RN

(RN-VAL
(TOVO (TO ("TO" "TO")) (LVR (V "PRODUCE") )
(OBJECT
(NSTGO
(NSTG
(LNR (LN (NPOS (NPOSVAR (N "GOLF"))) )
(NVAR (N "CLUBS"))))) )

(SA
(SA-VAL
(TOVO (TO ("TO" "TO")) (LVR (V "BE") )
(OBJECT
(OBJECTBE
(VENPASS (LVENR (VEN "SHIPPED") )
(SA
(SA-VAL
(PN (P "TO" )
(NSTGO
(NSTG
(LNR
(NVAR
(NAMESTG
(LNAMER

(N "JAPAN"))))))))))))))))))))))))))))))) )
(ENDMARK (" ." " .")) )

and the corresponding regularized structure i s
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(S SAY (VTENSE PAST )
(SUBJECT
(NP A-COMPANY SINGULAR (NAMES ("BRIDGESTONE" "SPORTS" "CO")) (SN NP154)) )

(OBJECT
(S SET-UP (SUBJECT (NP IT SINGULAR (SN NP156)) )
(OBJECT
(NP JOINT-VENTURE SINGULAR (SN NP258) (T-POS A )
(IN (NP A-COUNTRY SINGULAR (NAMES ("Taiwan")) (SN NP163)) )
(WITH
(AND (NP CONCERN SINGULAR (SN NP166) (T-POS A) (A-POS LOCAL) )

(NP TRADING-HOUSE SINGULAR (SN NP171) (T-POS A) (A-POS JAPANESE))) )
(RN-TOVO
(S PRODUCE (SUBJECT ANYONE )
(OBJECT
(NP CLUB PLURAL (SN NP180) (N-POS (NP GOLF SINGULAR (SN NP170)))) )

(IN-ORDER-TO
(S SHIP (SUBJECT ANYONE) (OBJECT PRO )
(TO (NP A-COUNTRY SINGULAR (NAMES ("Japan")) (SN NP177)))))))) )

(ASPECT PERF) (VTENSE PRESENT)) )
(TIMEPREP (NP FRIDAY SINGULAR (SN NP157))) )

The system uses a chart parser operating top-down, left-to-right. As edges are
completed (i .e., as nodes of the parse tree are built), restrictions associated with thos e
productions are invoked to assign and test features of the parse tree nodes .

	

If a
restriction fails, that edge is not added to the chart . When certain levels of the tree
are complete (those producing noun phrase and clause structures), th e
regularization rules are invoked to compute a regularized structure for the partia l
parse, and selection is invoked to verify the semantic well-formedness of th e
structure (as noted earlier, selection uses the same "semantic analysis" code
subsequently employed to translate the tree into logical form) .

One unusual feature of the parser is its weighting capability . Restrictions may
assign scores to nodes ; the parser will perform a best-first search for the parse tree
with the highest score. This scoring is used to implement various preferenc e
mechanisms :

• closest attachment of modifiers (we penalize each modifier by the number o f
words separating it from its head)

• preferred narrow conjoining for clauses (we penalize a conjoined claus e
structure by the number of words it subsumes )

• preference semantics (selection does not reject a structure, but imposes a heav y
penalty if the structure does not match any lexico-semantic model, and a lesser
penalty if the structure matches a model but with some operands or modifiers left
over) [2,3 ]

• relaxation of certain syntactic constraints, such as the count noun constraint ,
adverb position constraints, and comma constraints

• disfavoring (penalizing) headless noun phrases and headless relatives (this i s
important for parsing efficiency )

The grammar is based on Harris's Linguistic String Theory and adapted from th e
larger Linguistic String Project (LSP) grammar developed by Naomi Sager at NYU [4] .
The grammar is gradually being enlarged to cover more of the LSP grammar .

	

The
current grammar is 1600 lines of BNF and Restriction Language plus 300 lines of Lisp ;
it includes 186 non-terminals, 464 productions, and 132 restrictions .

Over the course of the MUCs we have added several mechanisms for recoverin g
from sentences the grammar cannot fully parse . For MUC-5, we found that the mos t
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effective was our "fitted parse" mechanism, which attempts to cover the sentenc e
with noun phrases and clauses, preferring the longest noun phrases or clauses
which can be identified

Semantic Analysis And Reference Resolutio n

The output of syntactic analysis goes through semantic analysis and referenc e
resolution and is then added to the accumulating logical form for the message.
Following both semantic analysis and reference resolution certain transformation s
are performed to simplify the logical form. All of this processing makes use of a
concept hierarchy which captures the class/subclass/instance relations in th e
domain .

Semantic analysis uses a set of lexico-semantic models to map the regularized
syntactic analysis into a semantic representation . Each model specifies a class o f
verbs, adjectives, or nouns and a set of operands ; for each operand it indicates th e
possible syntactic case markers, the semantic class of the operand, whether or no t
the operand is required, and the semantic case to be assigned to the operand in th e
output representation. For example, the model for "<entity> forms a joint venture wit h
<entity>" i s

(add-clause-model :id 'clause-form
:parent 'clause-any
:constraint 'W-form-venture
:class 'C-form
:adjuncts (list (make-specifier

:marker 'subject
:class 'C-muc5-entity
:case :agent )
(make-specifier
:marker 'with
:class 'C-muc5-entity
:case :company-list-2 )

(make-specifier
:marker 'object
:class 'C-joint-ventur e
:essential-required 'require d
:relaxable ni l
:case :joint-venture)) )

The models are arranged in a shallow hierarchy with inheritance, so tha t
arguments and modifiers which are shared by a class of verbs need only be stated
once. The model above inherits only from the most general clause model, clause-any ,
which includes general clausal modifiers such as negation, time, tense, modality, etc .
The MUC-5 system has 61 clause models, 2 nominalization models, and 45 other nou n
phrase models, a total of about 1700 lines . The class C -mu c 5 -entity in the clause model
refers to the concept in the concept hierarchy, whose entries have the form :

(defconcept C-muc5-entity )
(defconcept C-company :typeof C-muc5-entity )
(defconcept C-government-or-country :typeof C-muc5-entity )
(defconcept C-venture :typeof C-company )
(defconcept C-joint-venture :typeof C-venture )

This inheritance mechanism is also used to define word classes, such as the w -f or m -
venture class :
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(defconcept W-form-venture )
(defconcept form :typeof W-form-venture )
(defconcept establish :typeof W-form-venture )
(defconcept expand :typeof W-form-venture )
(defconcept launch :typeof W-form-venture )
(defconcept set-up :typeof W-form-venture )

There are currently a total of 154 concepts in the hierarchy .

	

The output of
semantic analysis is a nested set of entity and event structures, with argument s
labeled by keywords primarily designating semantic roles .

	

For the first sentence of
0593, the output is
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(EVENT
:IDENTIFIER E00 1
:TOP-LEVEL-FLAG T
:PREDICATE C-SAY
:TIME (ENTITY :SN NP15 7

:MODEL-ID TIME-VALU E
:IDENTIFIER N015
:CLASS FRIDAY )

:EVENT (EVEN T
:IDENTIFIER E003
:TOP-LEVEL-FLAG NI L
:PREDICATE C-FORM
:TENSE PRESEN T
:ASPECT PERF
:JOINT-VENTURE (ENTITY

:ACTIVITY (EVENT :IDENTIFIER E01 0
:TOP-LEVEL-FLAG NI L
:PREDICATE C-PRODUCE
:PATIENT (ENTITY :SN NP18 0

:MODEL-ID NP-ANY
:SET T
:IDENTIFIER N014
:CLASS CLUB )

:AGENT NIL
:MODEL-ID CLAUSE-PRODUCE )

:AGENT (ENTITY :IDENTIFIER N009
:CLASS C-MUC5-ENTIT Y
:SET T
:MEMBERS ((ENTITY :DETERMINER A

:SN NP16 6
:MODEL-ID NP-COMPANY- 2
:IDENTIFIER N007
:CLASS CONCERN )

(ENTITY :NATIONALITY JAPANES E
:DETERMINER A
:SN NP17 1
:MODEL-ID NP-COMPANY- 2
:IDENTIFIER N008
:CLASS TRADING-HOUSE)) )

:NATIONALITY (ENTITY :SN NP163
:NAMES ("Taiwan" )
:MODEL-ID NP-A-COUNTRY
:IDENTIFIER N00 6
:CLASS C-COUNTRY )

:DETERMINER A
:SN NP25 8
:MODEL-ID NP-JOINT-VENTURE- 1
:IDENTIFIER N00 5
:CLASS C-JOINT-VENTURE )

:AGENT (ENTITY :SN NP15 6
:MODEL-ID NP-ANY
:IDENTIFIER N004
:CLASS C-MUC5-ENTITY )

:MODEL-ID CLAUSE-FORM )
:AGENT (ENTITY :SN NP15 4

:NAMES ("BRIDGESTONE" "SPORTS" "CO" )
:MODEL-ID NP-COMPAN Y
:IDENTIFIER N000000000 2
:CLASS C-COMPANY )

:TENSE PAS T
:MODEL-ID CLAUSE-SAY)
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Reference resolutio n
Reference resolution is applied to the output of semantic analysis in order t o

replace anaphoric noun phrases (representing either events or entities) b y
appropriate antecedents . Each potential anaphor is compared to prior entities or
events, looking for a suitable antecedent such that the class of the anaphor (in the
concept hierarchy) is equal to or more general than that of the antecedent, the
anaphor and antecedent match in number, the restrictive modifiers in the anaphor
have corresponding arguments in the antecedent, and the non-restrictive modifier s
(e .g., apposition) of the anaphor are not inconsistent with those of the antecedent .
Special tests are provided for names, since people and companies may be referred to a
subset of their full names .

Logical form transformations

The transformations which are applied after semantic analysis and afte r
reference resolution simplify and regularize the logical form in various ways . The
transformations after semantic analysis primarily standardize the attribute structure
of entities so that reference resolution will work properly . The transformation s
after reference resolution simplify the task of template generation by casting th e
events in a more uniform framework and performing a limited number of
inferences. For example, we show here a rule which transforms the logical for m
produced from "X formed a joint venture with Y" into the equivalent for "X and Y
formed a joint venture" :

(((event :predicate ?predicat e
:identifier ?id l
:agent ?agent
:joint-venture (entity

. ?R1 )
(entity :identifier ?id2 . ?R3 )
(condition (isa '?predicate 'C-tie-up)) )

-->
((modify 1 (list :agent (conjoin-entitie s

'?agent '?company-list-2)) )
(modify 2 '( :agent nil :tied-up t))) )

There are currently 32 such rules . These transformations are written a s
productions and applied using a simple data-driven production system interprete r
which is part of the Proteus system .

Template generato r

Once all the sentences in an article have been processed through syntacti c
analysis, semantic analysis, and the logical form transformations, the resulting
logical forms are sent to the template generator . The logical form events and entities
produced by the transformations are in close correspondence to the template object s
needed for MUC-5, so the template generation is fairly straightforward . The greates t
complexity was involved in the procedures for accessing the two large data bases, the
gazetteer (for normalizing locations) and the Standard Industrial Classification (for
classifying industries) .

:class C-joint-venture
:tied-up ni l
:agent ?company-list- 2
:identifier ?id2
. ?R2 )
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OUR PERFORMANCE ON MUC- 5

Overall Performanc e

Score s

Our overall scores on the final evaluation were

Recall 22
Precision 59
F (P&R) 32

Learning

Error Rate

Curve

80

Figure 2 showns how our recall gradually improved over the development period .
Precision remained within a fairly narrow range, from 47 to 63, throughout the
testing. Five months were available for development (March - July) . One person was
assigned full-time for the entire period ; a second person assisted, approximately 2/ 3
time, for the last three months, for a total of about 7 person-months of effort (thi s
excludes time in August preparing for the conference) . March and April were
devoted to getting an initial understanding of the fill rules, making minimal lexica l
scanner additions so that we could parse the text, developing input code to handle the
different article formats, and developing some routines for larger-scale pattern
matching (which were eventually not used) . System integration and integrated
system testing did not begin until mid-May, a couple of weeks before the dry run .
Daily system testing began with a set of 25 articles, but shifted after the dry run t o
the first 100 dry-run messages (with the second 100 dry-run messages being used on
occasion as a blind test) .

Figure 2: Recall (Dry Run, part 1 )
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In comparison with earlier MUCs, the overhead of getting started - -
understanding the fill rules, handling the different article formats, generating the
more complex templates, and using the various data bases (gazetteer, SIC, currenc y
table, corporate designator table) -- was much greater than for prior MUCs, while th e
manpower we had for the project was in fact somewhat less. In consequence, our
system is relatively less developed than our MUC-3 system, for example. In
particular, the attribute structure for the principal entity types (for MUC-5 ,
companies) were less developed ;

	

this adversely impacted the performance of our
reference resolution component and hence our event merging .

This impact was evident in our performance on the walkthrough message, 0593 .
We identified the primary constituent events (the joint venture and the associate d
ownership relations), but we failed to identify several of the co-reference relations ,
because of

• a bug in the handling of appositional names followed by relative clauses

failure to do spelling correction on names (we only correct spellings to matc h
dictionary entries)

shortcomings in the attribute structure of company entitie s

Because of these problems and a weak event merging rule (compared to the mor e
detailed rules developed for MUC-4, for example), we generated two separate tie-ups
for the article, instead of one.

The system was also not tuned to any significant degree to take advantage of th e
MUC-5 scoring rules. Based on a suggestion by Boyan Onyshkevych, we conducted a
small experiment after the conference. Because one is told in advance that almost
every article in the corpus will have a reportable event, we modified the system t o
generate a tie-up between a Japanese company and an Indonesian company (the tw o
most frequent nationalities in the training corpus) whenever the text analysi s
components were not able to find a tie up. This simple strategy reduced our error
rate on the test corpus by 2% .

WHAT'S NEW FOR MUC- 5

Lexical Analyzer

The Proteus system has a pattern matcher based on regular expressions wit h
provision for procedural tests, which is intended for identifying lexical units before
parsing .

	

Prior to MUC-5, the system employed a small number of patterns, fo r
structures such as dates, times, and numbers .

	

The set of patterns was substantiall y
enlarged for MUC-5, to include patterns for diffeent types of currencies, for company
names, for people's names, for locations, and for names of indeterminate type . In
mixed-case text, we used capitalization as the primary indication of the beginning of
a name; in monocase text, we employed BBN's part-of-speech tagger and looked for
proper noun tags.

The lexical scanner and the constraints of the lexico-semantic models acted i n
concert to classify names. If there was a clear lexical clue (a corporate designator at
the end of a name, a title ("Mr.", "President", . . .) or middle initial in a personal name) ,
the type was assigned by the lexical scanner . If the type of a name could not be
determined by the scanner, but the name occurred in a context where only one typ e
was allowed (e.g., as the object of "own"), the type would be assigned as a side effect of
applying the lexico-semantic model .
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Semantic Pattern and Similarity Acquisitio n

We have spent considerable time over the last two years building tools to acquir e
semantic patterns and semantic word similarities from corpora [5, 6], and we had
hoped that these would be of significant benefit in our MUC-5 efforts, particularly i n
broadening our system's coverage. However, we did not have much opportunity t o
use these tools, since so much of our time was consumed in building an initial syste m
at some minimal performance level .

Nested Semantic Models

The lexico-sematic models as used previously specified a single level in th e
regularized parse tree structure : either a clause with its arguments and modifiers, or
an NP with its modifiers . We have found it increasingly valuable, however, to be abl e
to specify ' larger patterns which involve several parse tree levels, such as "X signe d
an agreement with Y to do Z", or "X formed a joint venture with Y to do Z" . We have
therefore extended our system in order to allow for such larger patterns, and permit
the developer to specify the predicate structure into which this larger pattern shoul d
be mapped.

Model Builder

Once we began to allow these larger patterns, we found that the task of writin g
such patterns correctly became quite challenging . Our long-term goal is to enable a
user to add such patterns, but we seemed (with the added complexity) to be moving
further from this goal . We therefore implemented a "model builder" interface whic h
allows the developer to enter a prototype sentence and the corresponding predicate
structure which should be produced . The interface then creates the required lexico-
semantic patterns and mapping rules .

For example, to handle constructs of the form "company signed an agreemen t
with company to . . .", the developer would enter the sentence

companyl signed (an agreement with company2 to act3) .

(where the braces, which are optional, indicate the NP bracketing) and would give
the corresponding predicate

(c-agree :agent companyl :co-agent company2 :event act3 )

The system would then create models and mapping rules appropriate to a sentenc e
such as "IBM signed an agreement with Apple to form a joint venture." Since these
rules apply to the syntactically analyzed sentence, they would also handle syntacti c
variants such as "The agreement to create the new venture was signed last week b y
IBM and Ford . "
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