
The Generic Information Extraction Syste m

Jerry R. Hobbs

Artificial Intelligence Center
SRI International

Menlo Park, CA 9402 5

INTRODUCTIO N

An information extraction system is a cascade of transducers or modules that at each step add structur e

and often lose information, hopefully irrelevant, by applying rules that are acquired manually and/or auto-

matically .

Thus, to describe an information extraction system is to answer the following questions :

• What are the transducers or modules?

• What are their input and output? Specifically ,

– What structure is added?

– What information is lost ?

• What is the form of the rules ?

• How are the rules applied?

• How are the rules acquired?

As an example, consider the parsing module . The parser is the transducer . The input is the sequence of

words or lexical items that constitute the sentence . The output is a parse tree of the sentence . This adds

information about predicate-argument and modification relations . Generally, no information is lost . The

rules might be in the form of a unification grammar and be applied by a chart parser . The rules are generall y
acquired manually .

Any system will be characterized by its own set of modules, but generally they will come from th e

following set, and most systems will perform the functions of these modules somewhere .

1. Text Zoner, which turns a text into a set of text segments .

2. Preprocessor, which turns a text or text segment into a sequence of sentences, each of which is a

sequence of lexical items, where a lexical item is a word together with its lexical attributes .

3. Filter, which turns a set of sentences into a smaller set of sentences by filtering out the irrelevant ones .

4. Preparser, which takes a sequence of lexical items and tries to identify various reliably determinable ,

small-scale structures .

5. Parser, whose input is a sequence of lexical items and perhaps small-scale structures (phrases) an d

whose output is a set of parse tree fragments, possibly complete .

87



6. Fragment Combiner, which tries to turn a set of parse tree or logical form fragments into a parse tre e

or logical form for the whole sentence .

7. Semantic Interpreter, which generates a semantic structure or logical form from a parse tree or from

parse tree fragments .

8. Lexical Disambiguation, which turns a semantic structure with general or ambiguous predicates into a

semantic structure with specific, unambiguous predicates .

9. Coreference Resolution, or Discourse Processing, which turns a tree-like structure into a network-lik e

structure by identifying different descriptions of the same entity in different parts of the text .

10. Template Generator, which derives the templates from the semantic structures .

I will elaborate on each of these modules in turn .

TEXT ZONIN G

This module "parses" the text into text segments . At a minimum it would separate the formatted from th e

unformatted regions . Some systems may go farther and segment the unformatted text into topic areas, either

by looking for discourse particles like "meanwhile", or by statistical means . The header is the only formatted

region in the Tipster texts . This module in MUC-5 systems will store the date and source information from

the header for entry into the template, and the date will be used to interpret temporal deictics like "las t

month" during subsequent processing . Some header information is often thrown away as irrelevant .

Few if any systems have a systematic treatment of text zoning—only ad hoc code that is develope d

manually.

PREPROCESSOR

This module takes the text as a character sequence, locates the sentence boundaries, and produces for eac h

sentence a sequence of lexical items . The lexical items are generally the words together with the lexica l

attributes for them that are contained in the lexicon . This module minimally determines the possible part s

of speech for each word, and may choose a single part of speech . It makes the lexical attributes in the

lexicon available to subsequent processing. It recognizes multiwords . It recognizes and normalizes certain

basic types that occur in the genre, such as dates, times, personal and company names, locations, currenc y

amounts, and so on . It handles unknown words, minimally by ignoring them, or more generally by tryin g

to guess from their morphology or their immediate context as much information about them as possible .

Spelling correction is done in this module as well .

The methods used here are lexical lookup, perhaps in conjunction with morphological analysis ; perhaps

statistical part-of-speech tagging ; finite-state pattern-matching for recognizing and normalizing basic entities ;

standard spelling correction techniques ; and a variety of heuristics for handling unknown words .

The lexicon might have been developed manually or borrowed from another site, but more and more the y

are adapted from already existing machine-readable dictionaries and augmented automatically by statistica l

techniques operating on the key templates and/or the corpus .

88



FILTE R

This module uses superficial techniques to filter out the sentences that are likely to be irrelevant, thus turnin g

the text into a shorter text that can be processed more quickly . There are two principal methods used in thi s

module . In any particular application, subsequent modules will he looking for patterns of words that signa l

relevant events . If a sentence has none of these words, then there is no reason to process it further. This

module may scan the sentence looking for these keywords . The set of keywords may be developed manually ,

or more rarely if ever, generated automatically from the patterns .

Alternatively, a statistical profile may be generated automatically of the words or n-grams that charac-

terize relevant sentences . The current sentence is evaluated by this measure and processed only if it exceeds

some threshhold .

PREPARSER

More and more systems recently do not attempt to parse a sentence directly from the string of words to a ful l

parse tree . Certain small-scale structures are very common and can be recognized with high reliability. The

Preparsing module recognizes these structures, thereby simplifying the task of the Sentence Parser . Some

systems recognize noun groups, that is, noun phrases up through the head noun, at this level, as well a s

verb groups, or verbs together with their auxilliaries . Appositives can be attached to their head nouns wit h

high reliability, as can genitives, "of" prepositional phrases, and perhaps some other prepositional phrases .

"That" complements are often recognized here, and NP conjunction is sometimes done as a special proces s

at this level .

Sometimes the information found at this level is merely encapsulated and sometimes it is discarded . Age

appositives, for example, can be thrown out in many applications .

This module generally recognizes the small-scale structures or phrases by finite-state pattern-matching ,

sometimes conceptualized as ad hoc heuristics . They are acquired manually .

PARSER

This module takes a sequence of lexical items and perhaps phrases and normally tries to produce a pars e

tree for the entire sentence . Systems that do full-sentence parsing usually represent their rules either as a

phrase structure grammar augmented with constraints on the application of the rules (Augmented Transition

Networks, or ATNs), or as unification grammars in which the constraints are represented declaratively . The

most frequent parsing algorithm is chart parsing . Sentence are parsed bottom-up, with top-down constraint s

being applied . As fragmentary parsing becomes more prevalent, the top-down constraints cannot be use d

as much . Similar structures that span the same string of words are merged in order to bring the processin g

down from exponential time to polynomial time .

Recently more and more systems are abandoning full-sentence parsing in information extraction appli-

cations . Some of these systems recognize only fragments because although they are using the standar d

methods for full-sentence parsing, their grammar has very limited coverage . In other systems the parser

applies domain-dependent, finite-state pattern-matching techniques rather than more complex processing ,

trying only to locate within the sentence various patterns that are of interest in the application .

Grammars for the parsing module are either developed manually over a long period of time or borrowe d

from another site . There has been some work on the statistical inference of grammar rules in some areas o f

the grammar .

89



FRAGMENT COMBINATION

For complex, real world sentences of the sort that are found in newspapers, no parser in existence can fin d

full parses for more than 75% or so of the sentences . Therefore, these systems need ways of combining th e

parse tree fragments that they obtain . This module may be applied to the parse tree fragments themselves .

Alternatively, each fragment is translated into a logical form fragment, and this module tries to combine th e

logical form fragments . One method of combination is simply to take the logical form of the whole sentenc e

to be the conjunction of the logical form fragments . A more informative technique is to attempt to fit som e

of the fragments into unfilled roles in other fragments .
The methods that have been employed so far for this operation are ad hoc . There is no real theory of it .

The methods are developed manually.

SEMANTIC INTERPRETATIO N

This module translates the parse tree or parse tree fragments into a semantic structure or logical for m

or event frame . All of these are basically explicit representations of predicate-argument and modification

relations that are implicit in the sentence . Often lexical disambiguation takes place at this level as well . Some

systems have two levels of logical form, one a general, task-independent logical form intended to encode al l

the information that is in the sentence, and the other a more specifically task-dependent representation tha t

often omits any information that is not relevant to the application . A process of logical-form simplification

translates from one to the other .

The method for semantic interpretation is function application or an equivalent process that matche s

predicates with their arguments. The rules are acquired manually .

There are a number of variations in how the processing is spread across Modules 4-7 . It may be as I have

outlined here . The system may group words into phrases, and then phrases into parsed sentences, and then

translate the parsed sentences into a logical form . The more traditional approach is to skip the first of thes e

steps and go directly from the words to the parsed sentences and then to the logical forms . Recently, many

systems do not attempt full-sentence parsing . They group words into phrases and translate the phrases into

logical forms, and from then on it is all discourse processing . In a categorial grammar framework, one goes

directly from words to logical forms .

LEXICAL DISAMBIGUATIO N

This "module", if it is such, translates a semantic structure with general or ambiguous predicates into a

semantic structure with specific, unambiguous predicates . In fact, lexical disambiguation often occurs a t

other levels, and sometimes entirely so . For example, the ambiguity of "types" in "He types . " and "The
types . . ." may be resolved during syntactic processing or during part-of-speech tagging . The ambiguity of

. . rob a bank . . ." or " . . . form a joint venture with a bank . . ." may be resolved when a domain-dependent

pattern is found . The fact that such a pattern occurs resolves the ambiguity .

More generally, lexical disambiguation usually happens by constraining the interpretation by the contex t

in which the ambiguous word occurs, perhaps together with the a priori probabilities of each of the wor d
senses .

These rules are in many cases developed manually, although this is the area where statistical method s

have perhaps contributed the most to computational linguistics, especially in part-of-speech tagging.

90



COREFERENCE RESOLUTIO N

This module turns a tree-like semantic structure, in which there may be separate nodes for a single entity ,

into a network-like structure in which these nodes are merged . This module resolves coreference for basi c

entities such as pronouns, definite noun phrases, and "one" anaphora . It also resolves the reference for mor e

complex entities like events . That is, an event that is partially described in the text may he identified wit h

an event that was found previously ; or it may be a consequence of a previously found event, as a death is o f

an attack; or it may fill a role in a previous event, as an activity in a joint venture .

Three principal criteria are used in determining whether two entities can be merged . First, semanti c

consistency, usually as specified by a sort hierarchy . Thus, "the Japanese automaker" can be merged wit h

"Toyota Motor Corp ." For pronouns, semantic consistency consists of agreement on number and gender, and

perhaps on whatever properties can be determined from the pronoun 's context; for example, in "its sales" ,

"it" probably refers to a company .

Second, and more generally, there are various measures of compatibility between entities; for example, the

merging of two events may be conditioned on the extent of overlap between their sets of known arguments ,

as well as on the compatibility of their types.

The third criterion is nearness, as determined by some metric . For example, we may want to merge tw o

events only if they occur within n sentences of each other (unless they are in The Financial Times) . The

metric of nearness may be something other than simply the number of words or sentences between the item s

in the text . For example, in resolving pronouns, we should favor the Subject over the Object in the previous

sentence ; this is simply measuring nearness along a different path .

These rules have to be developed manually (and by "manually " I mean "cerebrally") . The sort hierarchy

used in consistency checking is usually developed manually, although it would be interesting to know i f

researchers have begun to use WordNet or other thesauri for sort hierarchy development, or have attempte d

to use statistical means to infer a sort hierarchy .

The term "discourse processin g" as used by MUC sites almost always means simply coreference resolution

of application-relevant entities and events . There have been no serious attempts to recognize or use the

structure of the text, beyond simple segmenting on the basis of superficial discourse particles for use i n

nearness metrics in coreference resolution .

TEMPLATE GENERATIO N

This module takes the semantic structures generated by the natural language processing modules and pro-

duces the templates in the official form required by the rules of the evalution . Events that do not pass th e

threshhold of interest defined in the rules are tossed out . Labels are printed, commas are removed from

company names, percentages are rounded off, product-service codes are pulled out of a hat, and so on . A-nd

on and on .

There are no automatic methods for developing the rules in this module . The only method available i s

long, hard work .

A FINAL WORD

In this overview of the generic information extraction system, I have described what seemed to be th e

principal methods used in the MUC-4 systems. The reader may find that the MUC-5 systems exhibi t

interesting innovations over and above what I have described .

91




