The LINK System:
MUC-4 Test Results and Analysis

Steven L. Lytinen, Sayan Bhattacharyya, Robert R. Burridge,
Peter M. Hastings, Christian Huyck, Karen A. Lipinsky,
Eric S. McDaniel, and Karenann K. Terrell
Artificial Intelligence Laboratory
The University of Michigan
Ann Arbor, MI 48109
E-mail: lytinen@caen.engin.umich.edu

Results

The University of Michigan’s natural language processing system, called LINK, was used
in the Fourth Message Understanding System Evaluation (MUC-4). LINK’s performance on
MUC-4’s two test corpora is summarized in figure 1.

Although we only tested LINK in a single configuration, there were several parameters that
could have been varied in the system. They include the following:

1. What to do with undefined words. When the system identified a group of undefined
words as a likely noun phrase, it was assumed that this noun phrase referred to some kind
of HUMAN or PLACE.! Thus, these noun phrases were potential candidates to fill the
LOCATION, PERP, PHYS TGT, or HUM TGT fields of a template.

2. When to generate templates. A template was only generated if an appropriate filler
for the PERP, PHYS TGT or HUM TGT field had been extracted from the text.

3. When to merge templates. Every time a new template was generated for an article,
the system considered merging it with existing templates. A merge was performed if
another template with the same INCIDENT TYPE already existed, and if there were no
explicit contradictions between the existing template’s filled fields and the new template.
For example, if the two templates had different DATE fields, they were not merged. In
addition, BOMBING and ATTACK templates were merged if they had no contradictory
fields.

Amount of effort

We estimate that 1.5 person-years were spent on our MUC-4 effort. Figure 2 shows the
breakdown of this effort on different parts of the system.

Prior to MUC-4, LINK had been used in several smaller-scale applications, including the
extraction of information from free-form textual descriptions of automobile malfunctions and
the repairs that were made to fix them; as well as an application involving free-form textual
instructions for assembly line workers.

Little modification was required of the parser itself for MUC-4. However, several new mod-
ules were built around the parser. In particular, since both of our prior applications involved

1See our accompanying system summary paper for details.

159

TST3 SLOT POS ACT|COR PAR INC|ICR IPA|SPU MIS NOK}REC PRE OVG FAL

-+ 3 -+ +

MATCHED/MISSIKG 1540 11031557 185 141} 1011250 687 1071| 41 58 23

6
MATCHED/SPURIOUS 1117 1688|657 155 141] 6 101]735 264 1135| 57 40 46
MATCHED ONLY 1117 1103|557 156 341] 6 1011250 264 668} 57 58 23
ALL TEMPLATES 1540 1588|557 155 141] 6 101|735 687 1538| 41 40 46
SET FILLS ONLY 741 5491303 58 63| 0 36)125 317 4881 46 60 23 1
STRING FILLS ONLY 398 249/118 20 40| 4 20| 71 220 299) 32 51 28
P&R 2P&R P&2R
F-MEASURES 40.49 40.2 40.8
TST4 SLOT POS ACT|COR PAR INC|ICR IPAISPU MIS KOK|REC PRE OVG FAL
MATCHED/MISSING 1188 7301374 121 99! 8 63]136 594 802| 36 60 19
MATCHED/SPURIOUS 764 12641374 121 991 8 631670 170 976] 57 34 53
MATCHED ONLY 764 7301374 121 991 8 631136 170 473) 57 60 19
ALL TEMPLATES 1188 12641374 121 99| 8 63[670 594 1305| 36 34 53
SET FILLS ONLY 580 3571211 35 491 3 14| 62 285 362 39 64 17 0
STRING FILLS ONLY 307 171] 88 19 25| 1 18| 39 175 227] 32 57 23
P&R 2P&R P&2R
F-MEASURES 34.97 34.38 35.58

Figure 1: LINK’s performance on the TST3 and TST4 corpora

reading only single-sentence texts, with no need to monitor context, there was a need to en-
hance the system so that multi-sentence texts could be processed. The reader is referred to our
accompanying system summary paper for a description of each module.

Development time was definitely the limiting factor in our system’s performance. Although
we felt that our knowledge base was approaching completion toward the end of the development
time, considerably more effort could have been expended toward improving our system’s ability
to handle multi-sentence input had more time been available. We will discuss this further in
section .

Tokenizer 2
Preprocessor 2
Knowledge base development 9
Postprocessor:
Template generation 3
Template merging 1
Reference resolution 1

Figure 2: Breakdown of MUC-4 effort by module (person-months)

160

Training of the system

We used the MUC-3 development corpus answer keys to help develop the knowledge base
for our system. Some of this development was partially automated, although not as much as we
had originally hoped. The answer keys contained a great deal of information about how various
lexical items should map to the HUM TGT, PHYS TGT, and INSTRUMENT TYPE fields in the
MUC-4 templates. For example, the appearance of LAW ENFORCEMENT: "POLICEMEN”
in field 20 of several answer key templates, along with PLURAL: "POLICEMEN?” in field 21,
suggested that "POLICEMEN?” should be defined in our lexicon as a plural noun which means
LAW ENFORCEMENT. We were able to use this information to define a substantial percentage
of the nouns in our lexicon.

Unfortunately, there was no such source of information for other types of words that were of
interest in the domain, such as verbs, adjectives, prepositions, etc. An INCIDENT: DESCRIP-
TION field in the template would have provided information for verbs, but no field existed in the
MUC-4 templates. Thus, the remainder of the lexicon was constructed entirely by hand. Our
test configuration system contained a total of 6700 lexical entries, with 7532 distinct definitions
(i.e., some words were defined with more than one sense).

The system’s grammar was also developed by hand. The grammar in the test configuration
of our system contained 565 rules. Although many rules were not related to the terrorism do-
main, and thus could presumably be used in a different domain, about half of the rules were
domain-specific, and could not transfer to a new domain without some inspection and modifi-
cation. For example, rules about combining noun groups often contained semantic information
which was specific to the domain (e.g., a noun meaning BOMB followed by a noun meaning
ATTACK maps to a BOMBING with the INSTRUMENT field filled by the BOMB noun).

What worked

In a large-scale natural language application such as MUC-4, it is virtually certain that an
NLP system will not be able to produce a complete syntactic and semantic analysis for multi-
sentence or multi-paragraph articles. Developing a complete lexicon, grammar, or set of semantic
interpretation rules for such an application is virtually impossible. Thus, it is very important
for a system to have strategies to deal with texts which cannot be completely processed. Our
system’s strategies for incomplete processing were vital to its ability to perform at the level that
it did. These strategies included the following;:

1. Preprocessing: identifying noun phrases. The preprocessor, explained in detail in our
system summary paper, grouped together words which were candidate noun phrases. These
NP’s often included words which were not in the system’s lexicon. As a result, undefined
words did not interfere with the system’s ability to parse a sentence. Although our lexicon
contained 6700 entries, we estimate that nearly 14,000 distinct lexical items appear in the
MUC-3 training corpus. Thus, an effective approach for dealing with undefined words was
critical to our system’s performance.

2. Identifying important partial parses. Even with the enhancement provided by the
preprocessor, our system did not succeed in parsing the majority of sentences that it
encountered. However, information was extracted from these sentences by examining the

lel

constituents that were built, even though they did not lead to a complete parse. This
ability was vital to the performance of our system, and is described in more detail in our
system summary paper.

What didn’t work

Our system’s ability to correctly integrate information extracted from multiple sentences was
its weakest point. Most of the decisions as to how information should be integrated were made
in the postprocessor; thus, this module is clearly the best candidate for rewriting.

Several problems existed in the postprocessor. First, its strategies for deciding when two tem-
plates should be merged were not very effective. As described earlier, this decision relied purely
on the information contained in the two templates which were being considered for merging. By
default, templates were merged unless the information they contained explicitly contradicted
each other. This resulted in templates being merged even when the text contained obvious cues
that two separate events were being described. For example, if a BOMBING template had al-
ready been generated for an article, a sentence beginning with “Another bombing occurred ...”
would not generate a second bombing template unless information about LOCATION, PHYS
TGT, etc., contradicted information in the first template.

Related to our system’s poor merging heuristics was its lack of a sophisticated reference
resolution strategy. Two kinds of reference resolution existed in the system, for names and
pronouns. Whenever a name of a person was identified in the text, a list was searched for
previous occurrences of that name, or of a longer name containing the new name. If a match was
found, additional information about the person, which could be used to fill the DESCRIPTION
or TYPE field, could be obtained from the prior mention of that person.

Pronominal reference in our system was extremely simplistic. When a pronoun was encoun-
tered, its referent was resolved to the most recent NP prior to it in the text which met simple
semantic restrictions. If the pronoun was assigned to be the PERP of an event, then its referent
had to be a type of TERRORIST. If it was assigned to be the HUM TGT, then its referent had
to be a HUMAN who was not a TERRORIST. These simple heuristics obviously could have
been improved greatly.

Finally, additional information about a template which appeared in a subsequent sentence
often was not extracted. Lists of victims, additional information about perpetrators or victims,
and so on that appeared in a separate sentence from the initial mention of a terrorist act were
not usually added to the template.

What we learned

Perhaps the most important lesson of MUC is that in a large-scale natural language applica-
tion, it is not yet possible to construct a knowledge base which will enable complete processing
of even a majority of input texts. The domain is simply too large, and the possible variations
in language too great. Thus, as we said earlier, it is very important for a system to have robust
strategies for dealing with texts which cannot be completely processed.

Due to time constraints, we devoted very little effort to discourse processing. The lesson we
learned here was twofold: on the one hand, we were a bit surprised that we could achieve even
40% recall with only the simplest heuristics for integrating information from multiple sentences.

162

Single sentences often contained enough information for our system to generate a template with
sufficient information to match the answer key. On the other hand, we felt that we were nearing
the maximum score that we could have achieved without further developing this aspect of our
system. Thus, in another MUC-like task our group would devote a great deal of our effort in
this area.

Finally, as we analyzed our system’s results during development, we realized that the recall
and precision scores used for evaluation would change significantly with relatively minor adjust-
ments in the criteria used by the scoring program. Perhaps the prime factor that affected our
own score was the criteria for what constituted a match between a response template and the
answer key. Our system often erroneously merged two templates into a single template. Thus,
correct fills of PHYS TGT and HUM TGT fields were often split between two templates in the
answer key. At other times, our system generated two or more templates when a single template
should have been generated. In this case, although correct information was split between the
response templates, the scoring program only allowed a single match between response templates
and the answer key, and counted additional response templates as spurious, even though they
might have contained information which matched some of the information in the single template
in the answer key.

163

