
SRI INTERNATIONAL FASTUS SYSTEM

MUC-4 TEST RESULTS AND ANALYSIS

Douglas E. Appelt, John Bear, Jerry R . Hobbs, David Israel, and Mabry Tyso n

SRI International
Menlo Park, California 94025

appelt©ai .sri .com
(415) 859-6150

INTRODUCTION

The system that SRI used for the MUC-4 evaluation represents a significant departure from syste m
architectures that have been employed in the past . In MUC-2 and MUC-3, SRI used the TACITUS tex t
processing system [I], which was based on the DIALOGIC parser and grammar, and an abudctive reasone r
for horn-clause logic . In MUC-4, SRI designed a new system called FASTUS (a permutation of the initia l
letters in Finite State .Automata-based Text Understanding System) which we feel represents a significant
advance in the state of the art of text processing . The system shares certain modules with the earlie r
TACITUS system, namely modules for text preprocessing and standardization, spelling correction, Hispani c
name recognition, and the core lexicon . However, the DIALOGIC system and abductive reasoner, which wer e
the heart and soul of the previous system, were replaced by a system whose architecture is based on cascade d
finite-state automata . Using this system we were capable of achieving a significant level of performance on
the MUC-4 task with less than one month devoted to domain-specific development . In addition, the system
is extremely fast, and is capable of processing texts at the rate of approximately 3,200 words per minute ,
measured in CPU time on a Sun SPARC-2 processor . (Measured according to elapsed real time, the system
about 50% slower, but the observed time depends on the particular hardware configuration involved . )

OVERVIEW OF THE FASTUS ARCHITECTUR E

The architecture of the FASTUS system is described in detail in the associated system summary . It can
be summarized as a three-phase process . The first phase consists of scanning the text to identify prope r
names, correcting spelling, and similar preprocessing tasks to ensure that the text is in a standardized forma t
for the remainder of the processing .

The second phase consists of a finite-state machine that accepts the sequence of words from the text, an d
produces as output a sequence of linguistic consituents — noun groups consisting of determiners, prenomi-
nals and head noun, verb groups consisting of auxilliaries plus the main verb together with any intervenin g
adverbs, and particles, which is a catch-all category including prepositions, conjunctions, and genitive mark-
ers . The output of the second pass is filtered to include only the longest consitutents spanning any give n
portion of the sentence .

The linguistic consituents from the second phase are given as input to another finite-state machine . The
transitions of this third-phase machine are based on the head of each constituent, and each transition build s
some piece of an "incident." structure, which can be thought of as a "proto-template ." When a final state
of the machine is reached, the incident, structure that has been produced through that point is saved, an d
merged with all other incident structures produced by the same sentence . (There may be several, because
the machines are non-deterministic) . These incident structures are then merged with incident structure s
from the rest of the text according to a set of merging heuristics . The incident structures are converted to
the format of MUC-4 templates in a post-processing phase .

143



CONTROLLING THE FASTUS SYSTE M

In the course of designing the system, we paramaterized a number of characteristics of the system's oper-
ation because we believed that the parameterized behavior would reflect tradeoffs in recall versus precision .
Subsequent testing revealed that many of these parameters result in both higher recall and higher precision
when in one state or the other, and therefore we left them permanently in their most advantageous state .
Those parameters that seemed to affect recall the the expense of precision were set to produce a test ru n
in which we attempted to maximize the system's recall . The effect of these parameters could be described
in general as distrusting the system's filters' ability to eliminate templates corresponding to stale dates ,
uninteresting countries, and military incidents . We observed a small but measurable increase in recall at the
expense of precision by distrusting our filters .

The following parameters were implemented and tested on 300 texts before arriving at the decisions fo r
the settings on the final run .

• Conservative Merging. When this option is selected, the system would not merge incidents that ha d
non-overlapping targets with proper names . When not selected, any merges consistent with the inciden t
types were permitted . Testing revealed that merging should always be conservative .

• Civilian Target Requirement. This filter would reject any template that did not have at least on e
non-military target, including templates that identified a perpetrator, but no physical or human targe t
at all . This option appears to produce a recall-precision tradeoff of about one or two points .

• Subjectless Verb Groups . This parameter would allow the system to generate an incident structur e
from a verb together with its object, even if its subject could not be determined . Although early tests
showed a recall-precision tradeoff, subsequent and more thorough testing indicated that this shoul d
always be done .

• Filter Many-Target Templates. This filter would disallow any template that had more than 100 targets ,
on the supposition that such templates often result from vague or general, and hence irrelevant, de-
scriptions . This turns out to be a correct heuristic, but only if the number of targets is evenly divisibl e
by 100 . (An airline bombing with 307 victims is certainly interesting, while "70,000 peasants hav e
been killed" is probably vague) .

• Military Filtering. This heuristic causes the system to eliminate all military targets from templates ,
on the belief that we may have incorrectly merged a military incident with a civilian incident and
incorrectly reported the union of the two . Tests show that this filtering improves precision slightly .

• Liberal Perpetrator Org. Setting this parameter would cause the system to pick any likely perpetrator
organization out of the text, ignoring whatever the text actually says . 'Testing showed that thi s
parameter had no effect, which was such a surprising result that we distrust it, and regard our testin g
as inconclusive .

• Spelling Correction This parameter controls how much spelling correction the system does . Our exper-
iments indicated that spelling correction hurts, primarily because novel proper names get corrected t o
other words, and hence lost . We tried a weaker version of spelling correction which would correct onl y
misspelled words that did not occur on a large list of proper names that we had assembled . This showe d
an improvement, but spelling correction still had a small negative effect . This was also a surprisin g
result, and we were not willing to abandon spelling correction, and ran all tests with weak spellin g
correction enabled, although to some extent a complete lack of spelling correction is compensated fo r
by the presence of common misspellings of important domain words like "guerrilla" and "assassinate"
in the lexicon .

• Stale Date Filtering . This parameter causes filtering of any template that has a date that is earlie r
than two months before the date of the article . Eliminating this filtering produces an increase in recal l

144



at the expense of precision, the magnitude of which depends on how well our date detection currentl y
works . We would expect about a one-point tradeoff .

• Weak Location Filtering . If the system's location dection finds that the location of an incident i s
impossible according to the system ' s location database, it eliminates the template . If this flag is set ,
the template will be produced using only the country as the location. Testing shows that this is always
desireable .

THE RESULTS ON TST3 AND TST4

On TST3, we achieved a recall of 44% with precision of 55% in the all-templates row, for an F-scor e
(3 = 1) of 48 .9 . On TST4, the test on incidents from a different time span, we observed, surprisingly, a n
identical recall score of 44%, however our precision fell to 52%, for an F-score of 47 .7 . It was reassuring to
see that there was very little degradation in performance moving to a time period over which the system
had not been trained . We also submitted a run in which we attempted to maximize the system's recal l
by not filtering military targets, and allowing incidents with stale dates . On TST3, this led to a two-point
increase in recall at the expense of one point in precision . On TST4, our recall did not increase, howeve r
our precision fell by a point, giving us a lower F-score on this run . These results were consistent with ou r
observations during testing, although our failure to produce even a small increase in recall on TST4 was
somewhat disappointing .

The runtime for the entire TST3 message set on a SPARC-2 processor was 11 .8 minutes (about 1 6
minutes of elapsed real time with our configuration of memory and disk) . These times are quite consisten t
with our runs over the development sets . During the course of development, the overall run time for 10 0
messages increased approximately 50%, but we attribute this increase to the decision to treat more sentence s
as relevant . It appears possible to increase the coverage of the system without an unacceptable increase i n
processing time .

DEVELOPMENT HISTORY

During December of 1991 we decided to implement a preprocessor for the TACITUS system, at whic h
point the FASTUS architecture was born . The system was originally conceived as a preprocessor for TACI-
TUS that could be run in a stand-alone mode . Considerably later in our development we decided that the
performance of FASTUS on the MUC-4 task was so high that we could make FASTUS our complete system .

Most of the design work for the FASTUS system took place during January . The ideas were tested ou t
on finding incident locations in February, and with some initial favorable results in hand, we proceded wit h
the implementation of the system in March . The implementation of the second phase of processing wa s
completed in March, and the general outline of phase three was completed by the end of April . On May
6, we did the first test of the FASTUS system on TST2, which had been withheld as a fair test, and we
obtained a score of 8% recall and 42% precision . At that point we began a fairly intensive effort to hill-clim b
on all 1300 development texts, doing periodic runs on the fair test to monitor our progress, culminating i n
a score of 44% recall, 57% precision in the wee hours of June 1, when we decided to run the official test . As
the chart in Figure 1 points out, the rate of progress was rapid enough that even a few hours of work coul d
be shown to have a noticeable impact on the score . Our scarcest resource was time, and our supply of it wa s
eventually exhausted well before the point of diminishing returns .

CONCLUSIONS

FASTUS was more successful than we ever dreamed when the idea was originally conceived . In retrospect ,

145



F-Score vs Date for TST2

efl

44R,AP

Best MUG-3 Performance (i3E)

SRI's MUG-3 Performance
30

30

10

•m,MG

so

.o

•

	

•

	

11

May
1e

	

20

	

23

	

V

	

30 :1

Figure 1 : Plot of F-Score versus Date for FASTUS Developmen t

we attribute its success to the fact that its processing is extremely well suited to the demands of the task .
The system's phase-3 works successfully because the input from phase-2 is already reliably processed . Phase
two does only the linguistic processing that can be done reliably and fast, ignoring all the problems of makin g
attachment decisions, and the ambiguity introduced by coordination and appositives . This input is adequate
for phase-3 because the domain pragmatics are sufficiently constrained that given this initial chunking, th e
relevant information can be reliably detected and extracted .

One source of frustration with the development of this system is that we never had the opportunity t o
produce a decent developer's interface . We believe that phase-2 is almost completely domain independent ,
with all the domain specific knowledge embedded in the phase-3 automata . We feel that with some carefu l
thought devoted to such an interface, we could produce a general text processing system that could b e
brought up to our current level of performance on a MUC-like or TIPSTER-like task in even less than th e
three and a half weeks of effort that we required .

Another discovery of this experience is that a MUG-like task is much easier than anyone ever thought .
Although the full linguistic complexity of the MUC texts is very high, with long sentences and interestin g
discourse structure problems, the relative simplicity of the information-extraction task allows much of thi s
linguistic complexity to by bypassed – indeed much more than we had originally believed was possible . The
key to the whole problem, as we see it from our FASTUS experience, is to do exactly the right amount of
syntax, so that pragmatics can take over its share of the load . For the MUC task, we think FASTUS display s
exactly the right mixture .

Finally, we point out that while FASTUS is an elegant engineering achievement,, the whole host o f
linguistic problems that were bypassed are still out there, and will have to be addressed eventually fo r
more complex tasks . and to achieve ever higher performance on simpler tasks . The nature of competitive
evaluations is that they force everyone to deal with the easiest problems first . However, the hard problems
cannot be ignored forever, and scientific progress requires that they be addressed .

146



ACKNOWLEDGEMENTS

This research was funded by the Defense Advanced Research Projects Agency under Office of Nava l
Research contracts N00014-90-C-0220, and by an internal research and development grant from SRI Inter -
national .

References

[1] Hobbs, J ., et al ., "Description of the TACITUS System as Used for MUC-3," Proceedings of the MUC- 3
Workshop, 1991, pp . 200-206 .

147




