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INTRODUCTION

LSI's Data Base Generation (DBG) approach to natural language understanding is characterized by three
main features: First, the DBG system is comprehensive. It performs full-scale lexical, syntactic, semantic, and
discourse analyses of the entire message text being processed and produces a complete knowledge representation
of the text. Second, the DBG system is modular and flexible. The modular and transparent system architecture
ensures easy extension, maintenance, and upgrading of the system. And, third, the DBG system is generic but at
the same time domain-sensitive. It applies domain modeling to text interpretation, which enables the extension
of the system to any number of new domains. In addition, it provides a powerful capability for handling unk-
nown data in familiar domains. DBG’s development has been based on analysis of large volumes of message
traffic (thousands of Air Force and Army messages) in five domains, as described below. The system can
currently process a large number of messages in each of these domains and has been formally tested on previ-
ously unseen messages in three of these, with competitive tests against humans performing the same task in two
domains. The functional flow of the DBG system is shown in Figure 1 (actually Figure 1 of our site report
[Language Systems Inc: MUC-3 Test Results and Analysis] in this proceedings).

THE DBG APPROACH TO NATURAL LANGUAGE PROCESSING

Foundational aspects of our approach include the use of frame hierarchies based on principles of mathemati-
cal logic for the knowledge representation; the incorporation of elements of discourse structure using insights on
narrative structure from linguistics, anthropology, and sociology; and a multifunctional integrated unexpected
inputs (UX)-subsystem to deal with unknown input and that in addition grades the system on its performance.
More recently, we have developed a bottom-up parser based on principles of government-binding (GB) theory,
and a flexible mechanism for integrating and distributing lexical and semantic information. Several of these
aspects have anticipated developments in the field of natural language understanding, whereas others, such as the
(UX) subsystem, are, as far as we know, original with us. Other key aspects of DBG, for example, the incor-
poration of the sublanguage approach first defined by Zellig Harris in [5] and further developed by Naomi Sager
and the NYU Linguistic String Project in [10], have made use of existing specialized natural language under-
standing techniques to solve the particular problems that we have faced, such as the challenge of building a gen-
eric system that could process messages from a variety of specialized military domains.

From a conceptual linguistic perspective, our system is principle-based. This is most obvious in the sentence
processing mechanisms (versus mechanisms employed in processing larger units of language), wherein we rely
heavily, though not exclusively on recent work in the Government and Binding grammatical framework ([2] and
[31). Underlying our system design is a conviction that there is a strong isomorphism between syntactic struc-
ture and semantic composition. The system attempts to take maximal advantage of this isomorphism to produce
greater comprehension and efficiency in processing. An example of a parse-tree built using GB-based principles
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is shown in Figure 2.

This isomorphism requires a strong linkage between the lexical/syntactic and semantic knowledge for words
and phrases. We have created an external representation for words and concepts which encodes lexical, syntac-
tic and semantic knowledge in a single structure. This representation allows an application developer to con-
cisely express the knowledge required by the system during syntactic and semantic processing. The representa-
tion is read into the DBG system by a mechanism which formulates and distributes entries to the appropriate
database (lexical/syntactic or semantic), linking corresponding lexical and semantic entries. During processing,
the links between words and theéir conceptual representations allow the system to validate the semantic "correct-
ness” of a word’s attachment into the parse tree. An example of the translation from external to internal
frame/lexicon entries is shown in Figure 3.

DBG SYSTEM ARCHITECTURE

The system architecture reflects the approach described above. From the outset, the DBG system was
created to handle actual messages. As the core system was ported to new applications, with new domains and
messages, enhanced capabilities were usually required. These capabilities were added to the core system, thus
providing us with a steadily improving system with increased functionality and robustness. Although our
research on natural language understanding systems goes back almost 20 years, the actual implementations for
the individual components of the system are all quite recent, generally occurring within the last two to four
years. The modularity of the DBG system has allowed the individual components to be improved and in several
cases completely redesigned without requiring changes in the underlying system architecture. The present major
redesign of the parser, accomplished in the course of the MUC-3 effort, has involved the redistribution of pro-
cessing tasks and re-integration of information shared among four of the main system modules (lexical, syntac-
tic, semantic, and knowledge representation), however the basic system architecture has remained the same.

The DBG system consists of a series of modules that process message text in stages, and each major level of
analysis is contained in a separate module. The system is organized such that the output data structure gen-
erated by each module serves as input to the succeeding module, and is then available to all later modules. The
individual modules contain domain-independent processing mechanisms as well as rule sets that allow the incor-
poration of domain-sensitive features, which aid in processing and in many cases are essential for the correct
interpretation of the message. The functional flow of the system is illustrated in Figure 1 (which is actually Fig-
ure 1 of our site report [Language Systems Inc: MUC-3 Test Results and Analysis] in this proceedings).

In processing, the message is first extracted from the message stream and the message text is segmented into
distinct words and sentences. Successive lexical, syntactic, and semantic modules then analyze the individual
sentences. In each sentence, the lexical definitions of the words and multi-word phrases are found in the lexicon
(or derived from Unexpected Input processing, as described below), yielding a lexicalization for the sentence.
The lexicalization is then passed to the Government Binding-based parser.

The parser mechanism works by projecting incoming words to maximal X-bar projections (three-level node-
graphs), examining successive node pairs, performing various syntactic and semantic checks, and then attaching
valid node pairs. The parse structure which is built up through these attachments is represented as an acyclic,
directed graph. The mechanism can be thought of as a "window" which moves through the emerging parse-
graph of the sentence, examining/attaching a pair of nodes at a time. The parser attaches theta-role information
(similar to case frames) to properly attached verb-argument nodes.

The parse structure/graph for a sentence is then passed to the functional parse module which traverses the
graph to extract semantic elements and their relations based on the local graph structure, theta-role assignment,
and semantic labels derived from the underlying semantic hierarchy.

At the final stage, the sentential semantic parses of a message are searched for data elements having the
appropriate category and relations to other clements to instantiate output frames. At this stage data elements
from more than one sentence may be combined in the output knowledge representation, depending on the narra-
tive structure of the messages in the particular domain. The knowledge representation is in the form of frame
structures specifying the properties of events and entities in particular domains and the relations of these events
and entities to one another. In particular, the hierarchical organization of these frames enables the explicit
representation of the relations of various event types to one another (i.e., domain events and meta-events,
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Figure 2: Parse Tree for Test Set 1 - Message 99 - Sentence 1
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FLEX (Integrated Frame/Lexicon Definition)

Representation
and
Translation to Frame and Lexicon Databases

FLEX definition for "bombing":

bombing(
isa(attack), == —=——=————————— e —— ——— 9

selects(patient(physical_object), instrument(explosive)), — —— ==
""" noun(bombing),
...... noun(bomb, type(object), isa(explosive_device))). — = ————}

Entries to Frame database:

f(bombing, isa, value, attack). I(. ____________ J
f(bombing, frame_type, value, class), |
f(bombing, external _arg, theta_role, agent).
f(bombing, internal_arg, theta_role, patient). < - -
f(bombing, oblique_arg, theta_role, agent). % pp(by) | !
f(bombing, patient, selection, physical_object). -]
f(bombing, instrument, selection, explosive).

I
. . |
% inherited: i
{ f(bombing, agent, selection, [human, organizational_entity]). } |
|
|

f(bomb, isa, value, explosive_device).
f(bomb, frame_type, value, class). |j——-————————
f(bomb, type, value, object). .

Entries to Lexicon database:

1(<BaseAtom>, <BaseChars>, <LLexCat>, <Subcats>, <FrameRef>).

[ 1(bomb, "bomb", infin, [strict(np)], bombing).
';')r_l(bombing, "bombing", noun, [}, bombing).

i)[l(bomb, "bomb"”, noun, [], bomb).

Figure 3: Sample FLEX Entry
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described in [6]). Domain information is stored in a frame subsystem and information implicit to the message is
provided by a mechanism of inheritance built into the frame subsystem. The system thus has the capability of
incorporating domain information not explicitly contained in the message, thus representing a deeper understand-
ing of the message text.

A key feature of the system that increases its flexibility and provides a built-in means of extending the sys-
tem to new material is the Unexpected Inputs (UX) subsystem. The UX subsystem, which is a fully integrated
part of the DBG system, automatically handles new or erroneous material at all levels, including lexical, syntac-
tic, and semantic/discourse unexpected input. At the same time, it tallies the number of times it is invoked, the
number of error hypotheses utilized, and the type and degree of deviance of the data it processes in order to pro-
vide the user with a measure of its performance and a check on the system output.

The UX subsystem accomplishes its task by intelligently relaxing the well-formedness constraints on textual
data that the system normally requires and by providing tools for adding new words to the system. At the lexi-
cal level, the Lexical Unexpected input module (LUX) corrects errors by allowing partial matches between
words in the text and the lexical entries stored in the lexicon. These partial matches are based on a set of error
hypotheses relating to typographical and Baudot code transmission errors. New or unidentified material is
passed to the on-line Word Acquisition Module (WAMI1) for preliminary classification by the user by means of
menu selection; alternatively, the system can operate in an autonomous mode, wherein a word class is assigned
based on the system’s morphological analysis of the word. The new words can also be stored for later incor-
poration into the system by means of a second, more extensive mode of the Word Acquisition Module (WAM?2),
which operates off-line to allow periodic lexicon update by the System Administrator,

Unknown syntactic material is processed by the Parsing Unexpected Inputs processor (PUX). This module
constructs parse fragments using the same syntactic grammar rules as the normal syntactic parser but allowing
output of other than complete sentences. The semantic rules can then operate on these parse fragments to extract
meaningful data. At the discourse level, the Template Unexpected Input module (TUX) searches for expected
information missing in the final output knowledge representation from among leftover or unused semantic infor-
mation. Since such information can include unidentified strings -- e.g., the name of a new terrorist group in the
MUC-3 domain -- TUX provides a means for recognizing unknown proper names and specifying their function
in a text. Finally, the Self-Evaluation Module (SEM) rates the overall processing by the UX Subsystem by com-
bining reports for the other UX modules and numerically rating the accuracy of processing performed by them.

Due to the close integration of syntactic and semantic checking required by the parser, a facility is also pro-
vided which reads integrated frame/lexicon representations (human writable/readable) and converts them into
entries for the system-internal lexicon and frame databases. This mechanism ensures that lexical entries contain-
ing syntactic data are properly linked to frame entries containing semantic data. As mentioned before, an exam-
ple of the translation from external to internal frame/lexicon entries is shown in Figure 3.

DBG runs on all Sun workstations (including Sun3, Sun4 and Sun386i models) under the SunOS (UNIX)
operating system using Quintus Prolog.

FORMAL TESTING OF THE DBG SYSTEM AND EXTENSION TO NEW DOMAINS

We have conducted formal tests of the DBG system on previously unseen messages from two domains,
Space Event and Long Range Air. In these tests, the system’s performance was measured in comparison both to
ideal output and to humans performing essentially the same task as the system-- extracting information from
message text and generating application- oriented output templates(*) containing that information. We then col-
lected and evaluated the test data, including the output frames, SEM scores, and the processing time, and
analyzed and categorized the system errors. For both domains, the mean percentage scores for correctly filled
output vector (an application oriented output structure similar to the MUC-3 templates) slots were above 90%.
The results of these tests appear in {7] for the Space Event domain and in [11] for Long Range Air.

(*) It is important to note that the term "template” in the DBG system is a label for the generic message level semantic and pragmatic
representational units, not an application oriented structure like the MUC-3 templates. It is the glass box output or internal
representational output, as opposed to the MUC-3 templates, which are black box outputs mapped to the external representation required
by a given application.
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The five domains to which the DBG system has so far been applied are subdomains of the Air Force, Army,
and Navy. Although these domains have in common the fact that they are military, the event and object types
of the individual domains exhibit considerable variation and the message structures are of correspondingly vary-
ing degrees of predictability. Ranged along an axis of predictability, the domains are:

<-- More predictable Less predictable -->
¢)) @ 3
Space Event AirLand Battle Management Ft. Riley/voice
Long Range Air MUC-2/Navy

The three degrees of predictability shown here correspond to characteristics of the domain. The most predict-
able type, the Space Event domain, has the most limited set of event and object types, i.e., the launch, orbit, and
deorbit of certain satellites. Long Range Air is similarly structured, although somewhat less limited, with a cer-
tain number of airplane types that can engage in several types of events (e.g., flying, refueling, performing vari-
ous missions, taking off, landing). Less predictable are the main battle events that take place on land and sea;
these are described in the messages of the AirLand Battle Management corpus and the MUC-2 naval corpus.
Least predictable are the ongoing events at the company and platoon levels, especially when these are described
in terms of spoken, rather than written message traffic. The Ft. Riley voice corpus, which consists of lower
echelon voice communications collected during the four days of a training exercise, exemplifies this degree of
predictability.

The medium of the message is also important. The messages from four of the domains are written. The
headers of the written messages are typically formatted and provide information about the message source, dis-
tribution and type; however, the main body of the message is free text, in some cases containing tabular data as
well. The message text typically contains at least three different kinds of discourse--title sentences (comparable
to the telegraphic style of newspaper headlines), reports of events in the domain, and analysis of those events.
We have described the role and different properties of these various kinds of discourse in [8].

In the fifth domain, the message corpus consists of transcribed Army radiotelephone dialogs from field-
training exercises. This voice data is highly unpredictable and complex to analyze. The message equivalent in
this corpus is the dialog, defined as continuous conversation between the same speaker/hearer(s), usually on a
particular topic. A major task in processing this corpus is to locate relevant dialogs and synthesize the informa-
tion within them.

Message structure also differs in these domains according to whether it is event-driven or topic-driven, or
both. Event-driven messages (Space Event and Long Range Air) are structured narratives of specific event
types; generally speaking, no message is sent unless a particular event of that type (e.g., a satellite launch)
occurs. The meaningful discourse unit for this type is the paragraph. Topic-driven (AirLand Battle Manage-
ment and MUC-2) are usually periodic status reports that have labeled or numbered portions of text with
predefined general topics (e.g., current location of forward elements); a context is established but the text is less
predictable. The main meaningful discourse unit is the sentence; sentences within the same paragraph may or
may not be related. Conversation, in addition to its other distinctive properties, combines the two other types.
The Ft. Riley corpus of transcribed voice data contains both event-driven (i.e., information about the battle as it
unfolds) and topic-driven (e.g., periodic spot reports) types of information, as well as a great deal of less predict-
able conversational material. (This corpus is described in [1], [4], and [9]).

In more recent work, we are attempting to exploit more fully the notion of text grammar or discourse model-
ing at all processing levels as well as in extending the system to new domains, such as the terrorist incident
messages of the MUC-3 corpus. A text grammar, following van Dijk [12], is a semantic and pragmatic model
of discourse. It specifies how domain information is expressed within the discourse at the phrase, sentence,
paragraph, message, and even intermessage levels. An example of a text grammar rule at the sentence level is
the following content rule for title sentences in launch messages from the Space Event corpus (elements in
parentheses are optional):

Sentence[title] --> Object (Booster) (Action) Launchsite (Time) Date

This information may be actualized in the title sentence of a message in a variety of lexicosyntactic
configurations. Knowledge and expectations concerning the kinds of information being processed at a certain
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point in the message can be crucial in efficiently processing and accurately representing that information and in
filling in gaps where there is new or erroneous information that is not understandable by other means (in the
case of DBG, by the UX subsystem processing). In the DBG system, it can direct template(*) generation and
filling and interpret unexpected input, as well as tracking possible antecedents for anaphoric references.

Currently, each application of DBG contains rules using slightly different strategies to generate and fill tem-
plates, depending on the various properties, as described above, of the domain, the domain sublanguage, and the
message type. We envision comprehensive high-level domain-sensitive text grammar rules, selected from a gen-
eric set of options, that would direct template-generation and filling and could be used to extend the system to
an entirely new domain. Because of the major redesign of the core system modules which is in the process of
being implemented and tested, we have not yet incorporated this more global model of text grammar into our
system. However, the flexibility and modularity of the DBG system makes such an approach feasible, and
MUC-3 provides a fertile ground for further development of DBG and for testing a more comprehensive text
grammar approach to message processing.
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