
HUGHES TRAINABLE TEXT SKIMMER :

DESCRIPTION OF THE TTS SYSTEM AS USED FOR MUC-3

Charles P. Dolan

	

Seth R. Goldman
Thomas V. Cuda

	

Alan M. Nakamura

Hughes Research Laboratorie s
3011 Malibu Canyon Road M/S RL96

Malibu, CA 90265

OVERVIEW OF CAPABILITIE S

The objective of the Hughes Trainable Text Skimmer (TTS) Project is to create text skimming
software that: (1) can be easily re-configured for new applications, (2) improves its performanc e
with use, and (3) is fast enough to process megabytes of text per day . The TTS-MUC3 system i s
our first full scale prototype .

TTS-MUC3 incorporates semi-automated lexicon generation and almost fully automated phras e
pattern generation. Associative retrieval from a case memory provides raw data for computing se t
fills and string fills . TTS-MUC3's modular process model integrates the results of case memor y
retrieval over sentences from multiple stories, extracts the date and location of incidents, an d
computes cross-reference information for various slots .

SYSTEM COMPONENT S

The TTS-MUC3 system incorporates a number of different modules shown below :

TEXT

	

TEXT DATABASE

PROCESS +

SENTENCE CLASSIFICATIO N
TOPIC GROUPING
DATE PROCESSING
LOCATION PROCESSING
TEMPLATE GENERATIO N

a
TEMPLATES

Figure 1 : Hughes 'ITS System Block Diagram

PARSING
LEXICAL ELABORATIO N
PHRASE BRACKETIN G

FEATURES PARSED
TEMPLATES

STORIES

1

FEATURE S

4PREVIOUS

SENTENCE

CASES

MEMORY
ASSOCIATIVE LOOKU P
FEATURE MATCHIN G

155

Text Database

The text database provides the capability to retrieve a fragment of text from a large collection tha t
may be spread over multiple disk files . In 'ITS-MUC3, the text database was used to store : (1) the
database of training stories, (2) the database of testing stories, (3) the database of training template s
for user browsing, and (4) the database of parsed templates for use by the associative cas e
memory. Retrievals from the text database may return : (1) a raw text string (used for templates) ,
(2) a recursive token structure with individual words at the leaf nodes (used for stories), or (3) a n
s-expression (used for parsed templates) .

Phrasal Parse r

The phrasal parser is a fast, shallow, conceptual parser . The parser accepts a token structure, a
lexical hierarchy, and a phrase pattern set. The parser returns an ordered list of text features . A
text feature includes: (1) a member of the concept hierarchy, (2) the string covered by the phrase ,
and (3) a recursive token structure spanning the tokens covered by the phrase .

Lexicon entries are created by adding word stems to a concept hierarchy as follows ,

(ks :isa h-lex "PRIEST" :religious-individual-w)
(ks :isa h-lex "MISSIONARY" :religious-individual-w)
(ks :isa h-lex "CONFERENCE" :conference-w)
(ks :isa h-lex "SUMMIT" :conference-w)
(ks :isa h-lex "RECEPTION" :conference-w)

Phrasal patterns may reference either elements of the concept hierarchy, or specific words :

(ph :defpattern (net ? h-con) (:determiner :small-numbe r
unidentified-w :human-group-w)

civilian)

(ph :defpattern (net ? h-con) (:civilian-w "FROM"

	

:number-w
spanish-name-w "AREA")

civilian)

(ph :defpattern (net ? h-con) (:public-w :communication-device-w
building-w)

communications)

The features are extracted using a depth first search of the patterns, with a preference for pattern s
that have specific words over those the have only concept names and a preference for longe r
patterns.

Case Memory

The case memory takes an ordered list of text features and returns the K-nearest neighbors . For
TTS-MUC3, K was 12 and the metric was the Euclidean distance in a binary vector space . The
case memory also accepts a set of slots to fill (set fill and string fill) . For each sentence, the case
memory returns weighted suggestions for filling each of the requested slots . Case indices are kept
in main memory . Parsed templates, used for computing slot fillers, are loaded as needed .

156

Process Mode l

The process model has four phases : (1) memory access, (2) topic grouping, (3) slot filling, and (4)
template generation. There is also an initial training phase which initializes the case memory .

Training Phase

The training phase uses the provided templates to build up the phrase lexicon and the case memory .
Phrases are generated from the fillers for the template slots . Cases are generated from th e
sentences that provided the fillers . The word lexicon is generated by performing a word frequency
analysis on the raw text. For TTS-MUC3, all words that occurred between 10 and 105 times wer e
included in the lexicon .

Memory Access

For each sentence of a story, the memory access phase queries the case memory to obtai n
suggestions for all slots . The resulting structure contains all the weighted suggestions and th e
source cases .

Topic grouping and relevance assessmen t

Topic grouping (analogous to discourse processing) is based on the TYPE OF INCIDENT slot .
The weight for each type of incident is computed for every sentence . The weights are then passed
through a competitive filter, resulting in binary signals . The competitive filter first normalizes th e
topic weights using a Gaussian mask on a sentence by sentence basis, then computes the bes t
topic. A topic is a set of contiguous sentences with the same computed value for TYPE OF
INCIDENT .

Figure 2 shows the inputs and outputs to the topic grouping process . Note that moderately high
evidence of kidnapping throughout the story is suppressed in favor of the bombing interpretation ,
which turns out to be correct . This filter used is topic grouping is designed to pick out signals tha t
are high but that "drop out" from time to time, as one can see in the smoothing over the arson
signal .

Figure 2: Input and output to topic grouping for TST-MUC3-0099

157

Slot filling

Slot filling consists of five parts : (1) pure set fills, (2) string fills, (3) cross-referenced slots, (4)
date extraction, and (5) location extraction. The first three parts consider only relevant sentences .
A relevant sentence shares the same topic with the previous sentence or contains no competin g
topic. There are two distinct types of processing for slot filling. Most slots are filled using
hypotheses returned by the associative memory, two, date and location, are filled by domai n
specific procedures. Three types of slots are filled from the associative memory :

1.

	

Set fills—Pure set fills are computed by averaging the weights over all sentence s
for a given topic and picking the highest score .

2. String fills—String fills are computed in a similar manner to set fills . The
difference is that the suggestions returned by the case memory are subject to a
threshold on the weights . For the official run of TTS-MUC3, the string fil l
threshold was set at 0.1 .

3. Cross reference generation—Cross reference generation is performed by choosing
the most likely tag (as suggested by the case-memory) for the sentence that contain s
the string fill.

Date processing

For date extraction, all sentences within a topic are scanned for absolute or relative date references .
Absolute date references are combined into a range . Absolute dates are preferred over relativ e
dates within a given sentence. Relative date references are interpreted with respect to either th e
current date specification for a story (if one has been found) or the story date line .

Location processing

For location extraction, all sentences within a topic are scanned for known location names . The
resulting list of location names is then searched for a maximal, legal, location containment chain .

EXAMPLE RUN

For the first sentence in TST-MUC3-0099 ,

"[TEXT] POLICE HAVE REPORTED THAT TERRORISTS TONIGHT BOMBE D
THE EMBASSIES OF THE PRC AND THE SOVIET UNION . "

TTS-MUC3 extracts the following features ,

((feature :police-w "POLICE" #<token :POLICE>)
(feature :statement-w "REPORTED" #<token :REPORTED>)
(feature :terrorist-act-indiv "TERRORISTS "
#<token-terrorist-act-indiv>)
(feature :time-of-day-w "TONIGHT" #<token :TONIGHT>)
(feature :explosive-w "BOMBED" #<token :BOMBED>)
(feature :embassy-w "EMBASSIES" #<token :EMBASSIES>)
(feature :place-name "PRC" #<token-place-name>)
(feature :place-name "SOVIET UNION" #<token-place-name>))

158

Based on semantic features such as : POLICE-W and : PLACE-NAME, the following template
(along with approximately 11 others) is retrieved from memory .

0 . MESSAGE ID

	

DEV-MUC3-0174 (BELLCORE)
1. TEMPLATE ID

	

1
2. DATE OF INCIDENT

	

16 APR 8 9
3. TYPE OF INCIDENT

	

ATTEMPTED BOMBIN G
4. CATEGORY OF INCIDENT

	

TERRORIST ACT
5 . PERPETRATOR : ID OF INDIV(S)

	

"MIGUEL RODOLFO AGUILAR FLORES "
"WOUNDED MAN"

6. PERPETRATOR: ID OF ORG(S)

	

"HONDURAN LEFT "
7 . PERPETRATOR : CONFIDENCE

	

SUSPECTED OR ACCUSED BY GOVERNMENT :
"HONDURAN LEFT "

8. PHYSICAL TARGET : ID(S)

	

"U .S . EMBASSY WAREHOUSE "
9. PHYSICAL TARGET : TOTAL NUM

	

1
10 . PHYSICAL TARGET : TYPE(S)

	

DIPLOMAT OFFICE OR RESIDENCE :
"U .S . EMBASSY WAREHOUSE "

11. HUMAN TARGET : ID(S)
12. HUMAN TARGET : TOTAL NUM
13. HUMAN TARGET : TYPE(S)
14. TARGET : FOREIGN NATION(S) UNITED STATES :

"U .S . EMBASSY WAREHOUSE "
15. INSTRUMENT : TYPE(s)

	

*
16. LOCATION OF INCIDENT

	

HONDURAS : TEGUCIGALPA (CITY)
17. EFFECT ON PHYSICAL TARGET(S)

	

NO DAMAGE : "U .S . EMBASSY WAREHOUSE "
18. EFFECT ON HUMAN TARGET(S)

	

-

Stored along with the story are the features extracted from DEV-MUC3-0174 that were used t o
index the template.

((feature (feature :police-w "POLICE")
(feature :statement-w "BELIEVE")
(feature :explosive-w "BOMB")
(feature :depart-w "GOING")
(feature :place-name "U .S .")
(feature :embassy-w "EMBASSY")
(feature :commercial-target-w "WAREHOUSE")
(feature :human-individual-w "MEMBERS")
(feature :terrorist-act-org "THE HONDURAN LEFT")
(feature :civilian-w "PEOPLE")
(feature :month-name-w "APRIL")
(feature :favoring-w "FOR")
(feature :place-name "UNITED STATES"))

Comparing the strings in the retrieved template with the strings for the indexing features, TTS-
MUC3 looks for a feature in the new sentence that matches the features (FEATURE : EMBASSY-
W "EMBASSY") . Using the semantic feature, :EMBASSY-W, TTS-MUC3 proposes (FEATURE
: EMBASSY-W "EMBASSIES" #<TOKEN : EMBASSIES>) , as a hypothesis for the physica l
target in the new story.

159

Processing proceeds in a like manner for the rest of the story to produce the following template ,

0 . MESSAGE ID
1. TEMPLATE ID
2. DATE OF INCIDEN T
3. TYPE OF INCIDENT
4. CATEGORY OF INCIDENT
5. PERPETRATOR : ID OF INDIV(S)
6. PERPETRATOR : ID OF ORG(S)
7. PERPETRATOR : CONFIDENCE
8. PHYSICAL TARGET : ID(S)

9. PHYSICAL TARGET : TOTAL NUM
10. PHYSICAL TARGET : TYPE(S)

11. HUMAN TARGET : ID(S)
12. HUMAN TARGET : TOTAL NUM
13. HUMAN TARGET : TYPE(S)
14. TARGET : FOREIGN NATION(S)
15. INSTRUMENT : TYPE(S)
16. LOCATION OF INCIDENT
17. EFFECT ON PHYSICAL TARGET(S)

18. EFFECT ON HUMAN TARGET(S)

TST1-MUC3-009 9
1
25 OCT 198 9
BOMBING
TERRORIST ACT
*
"SHINING PATH "
CLAIMED OR ADMITTED : "SHINING PATH "
"PRC EMBASSY "
"CAR"
"VEHICLES "
"USSR EMBASSY "
PLURAL
DIPLOMAT OFFICE OR RESIDENCE :

"USSR EMBASSY "
OTHER : "VEHICLES "
OTHER : "CAR"
DIPLOMAT OFFICE OR RESIDENCE :

"PRC EMBASSY"
*
*
*
*
*
PERU : LIMA (DEPARTMENT)
SOME DAMAGE : "USSR EMBASSY "
SOME DAMAGE : "VEHICLES "
SOME DAMAGE : "CAR"
SOME DAMAGE : "PRC EMBASSY "
*

TTS-MUC3 produces a reasonably good fill for this template . Three features are worth noting.
First, the string fills "PRC EMBASSY" and "USSR EMBASSY" are extracted from sentence s
after the introductory sentence ,

"A CAR-BOMB EXPLODED IN FRONT OF THE PRC EMBASSY, WHICH IS I N
THE LIMA RESIDENTIAL DISTRICT OF SAN ISIDRO . MEANWHILE, TWO
BOMBS WERE THROWN AT A USSR EMBASSY VEHICLE THAT WAS PARKED
IN FRONT OF THE EMBASSY LOCATED IN ORRANTIA DISTRICT, NEA R
SAN ISIDRO . "

The second feature worth noting is that "CAR" is picked up as a target, even though it is actually a
part of the instrument "CAR-BOMB" . The reason for this mistake is a deficiency in the phrase s
that pick out semantic features .

The third feature is that TTS-MUC3 produced only one template where there should have been tw o
bombings . This merging of templates with the same incident type is an inevitable result of th e
topic grouping used in TTS-MUC3.

SENSITIVITY TO TRAINING SET

To test the sensitivity to different training sets, we loaded the associative memory with differen t
templates from the development corpus . To show the difference in performance, Table 1 show s
the overall recall and performance for the MATCH/MISSING row of the scoring, with variou s

160

portions of the training data loaded . Whenever a training set is loaded, the number of case with a
given incident type is limited to prevent sampling bias. For Table 1 the maximum cases per topic i s
10. Note that these training sets are much smaller than the full 1200 stories in the DEV corpus ,
and therefore the recall performance is substantially lower than the 31% achieved with the ful l
training set on TST2.

Training Stories Recall Precision

1-100 20 43

101-175 16 40

476-550 22 50

551-625 16 3 8

626-700 16 32

Table 1 : Recall and precision for various training sets with 10 cases per incident type

Training Stories Recall Precision

1-100 16 43

101-175 14 40

476-550 17 45

551-625 8 36

626-700 19 45

Table 2: Recall and precision for various training sets with 4 cases per incident type

Table 2 presents results similar to Table 1 but with a maximum of four (4) cases per topic .
Intuitively, one would imagine that recall at least would fall drastically . Table 2 confirms that
intuition as, for all but one training set, the recall drops when fewer cases per incident type ar e
loaded. Both Tables 1 and 2 are the result of running the first 10 stories in the TST1 corpus
through TTS-MUC3. The first ten stories contain two ARSON templates, and even after limiting
the number of cases per topic to 10, ARSON still has fewer than half as many cases as the more
common types : ATTACK, MUDER, BOMBING, and KIDNAPPING . However, when the numbe r
of cases per topic is limited to four (4), ARSON is perfectly balanced with the others . This under
representation of ARSON in the training data may account for the anomaly between Tables 1 and 2
for stories 626-700 .

16 1

SUMMAR Y

To understand the performance of TTS-MlUC3, one should look at the the inter-dependenc e
between the various processing modules.]Figure 3 shows these dependencies . Each module
points to the modules it depends on. Our contention is that improving a module will enable
improvement of the behavior of its dependents .

For example, the case memory
alone has recall and precision
rates above 50% . Subsequent
processing results in information
loss that accounts for our final
rates of 31% and 36% ,
respectively .

Figure 3 : Module Dependency Graph

We believe that this ability to analyze, from a system wide perspective, where the errors occur i s
unique to TTS . From Figure 3, we can see that even a perfect case memory would not completely
solve all performance problems, as every other component depends on topic grouping . Therefore
we conclude that topic grouping is the system component where the most work is needed . We
might also deduce that in topic group, we will find the largest leverage for adding knowledge to th e
processing . This conclusion concurs with conventional wisdom in natural language, that
understanding text across sentence boundaries requires more knowledge that understanding within
a sentence .

162

