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Abstract
Recent approaches based on artificial neural networks (ANNs) have shown promising results for named-entity recognition (NER). In
order to achieve high performances, ANNs need to be trained on a large labeled dataset. However, labels might be difficult to obtain for
the dataset on which the user wants to perform NER: label scarcity is particularly pronounced for patient note de-identification, which
is an instance of NER. In this work, we analyze to what extent transfer learning may address this issue. In particular, we demonstrate
that transferring an ANN model trained on a large labeled dataset to another dataset with a limited number of labels improves upon the
state-of-the-art results on two different datasets for patient note de-identification.
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1. Introduction
Electronic health records (EHRs) have been widely adopted
in some countries such as the United States and represent
gold mines of information for medical research. The major-
ity of EHR data exist in unstructured form such as patient
notes (Murdoch and Detsky, 2013). Applying natural lan-
guage processing on the unstructured data in conjunction
with analyzing the other EHR data can lead to a better un-
derstanding of health and diseases (Liao et al., 2015), and
a more accurate phenotyping of patients to compare tests
and treatments (Ananthakrishnan et al., 2013; Pivovarov
and Elhadad, 2015; Halpern et al., 2016).
However, before patient notes can be shared with medical
investigators, some types of information, referred to as pro-
tected health information (PHI), must be removed in order
to preserve patient confidentiality. In the United States,
the Health Insurance Portability and Accountability Act
(HIPAA) (Office for Civil Rights, 2002) defines 18 different
types of PHI, ranging from patient names and ID numbers
to addresses and phone numbers. The task of removing PHI
from a patient note is referred to as de-identification. The
essence of de-identification is recognizing PHI in patient
notes, which is a form of named-entity recognition (NER).
Existing de-identification systems are often rule-based ap-
proaches or feature-based machine learning approaches.
However, these techniques require additional lead time for
developing and fine-tuning the rules or features specific to
each new dataset. Meanwhile, recent work using ANNs
have yielded state-of-the-art performances without using
any manual features (Dernoncourt et al., 2016). Compared
to the previous systems, ANNs have a competitive advan-
tage that the model can be fine-tuned on a new dataset with-
out the overhead of manual feature development, as long as
some labels for the dataset are available.
However, it may still be inefficient to mass deploy ANN-
based de-identification system in practical settings, since
creating annotations for patient notes is especially difficult.
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This is due to the fact that only a restricted set of individ-
uals is authorized to access original patient notes; the an-
notation task cannot be crowd-sourced, making it slow and
expensive to obtain a large annotated corpus. Medical pro-
fessionals are therefore wary to explore patient notes be-
cause of this de-identification barrier, which considerably
hampers medical research.
In this paper, we analyze to what extent transfer learning
may improve de-identification performances on datasets
with a limited number of labels. By training an ANN model
on a large dataset (MIMIC) and transferring it to smaller
datasets (i2b2 2014 and i2b2 2016), we demonstrate that
transfer learning allows to outperform the state-of-the-art
results.

2. Related Work

Transfer learning has been studied for a long time. There
is no standard definition of transfer learning in the litera-
ture (Li, 2012). We follow the definition from (Pan and
Yang, 2010): transfer learning aims at performing a task
on a target dataset using some knowledge learned from a
source dataset. The idea has been applied to many fields
such as speech recognition (Wang and Zheng, 2015) and
finance (Stamate et al., 2015).
The successes of ANNs for many applications over the last
few years have escalated the interest in studying transfer
learning for ANNs. In particular, much work has been done
for computer vision (Yosinski et al., 2014; Oquab et al.,
2014; Zeiler and Fergus, 2014). In these studies, some of
the parameters learned on the source dataset are used to
initialize the corresponding parameters of the ANNs for the
target dataset.
Fewer studies have been performed on transfer learning for
ANN-based models in the field of natural language process-
ing. For example, Mou et al. (2016) focused on transfer
learning with convolutional neural networks for sentence
classification. To the best of our knowledge, no study has
analyzed transfer learning for ANN-based models in the
context of NER.
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3. Model
The model we use for transfer learning experiments is
based on a type of recurrent neural networks called long
short-term memory (LSTM) (Hochreiter and Schmidhuber,
1997), and utilizes both token embeddings and character
embeddings. It comprises six major components:

1. Token embedding layer maps each token to a token
embedding.

2. Character embedding layer maps each character to a
character embedding.

3. Character LSTM layer takes as input character em-
beddings and outputs a single vector that summarizes
the information from the sequence of characters in the
corresponding token.

4. Token LSTM layer takes as input a sequence of token
vectors, which are formed by concatenating the outputs
of the token embedding layer and the character LSTM
layer, and outputs a sequence of vectors.

5. Fully connected layer takes the output of the token
LSTM layer as input, and outputs vectors containing the
scores of each label for the corresponding tokens.

6. Sequence optimization layer takes the sequence of
vectors from the output of the fully connected layer and
outputs the most likely sequence of predicted labels, by
optimizing the sum of unigram label scores as well as
bigram label transition scores.

Figure 1 shows how these six components are intercon-
nected to form the model. All layers are learned jointly us-
ing stochastic gradient descent. For regularization, dropout
is applied before the token LSTM layer, and early stopping
is used on the development set with a patience of 10 epochs.

4. Experiments
4.1. Datasets
We use three de-identification datasets for the trans-
fer learning experiments: MIMIC, i2b2 2014, and i2b2
2016. The MIMIC de-identification dataset was introduced
in (Dernoncourt et al., 2016), and is a subset of the MIMIC-
III dataset (Johnson et al., 2016; Goldberger et al., 2000;
Saeed et al., 2011).The i2b2 2014 and 2016 datasets were
released as part of the 2014 i2b2/UTHealth shared task
Track 1 (Stubbs et al., 2015) and the 2016 i2b2 CEGS
N-GRID shared task, respectively. Table 1 presents the
datasets’ sizes.

MIMIC i2b2 2014 i2b2 2016
Vocabulary size 69,525 46,803 61,503

Number of notes 1,635 1,304 1,000

Number of tokens 2,945,228 984,723 2,689,196

Number of PHI instances 60,725 28,867 41,142

Number of PHI tokens 78,633 41,355 54,420

Table 1: Overview of the MIMIC and i2b2 datasets. PHI
stands for protected health information.

4.2. Transfer learning
The goal of transfer learning is to leverage the information
present in a source dataset to improve the performance of an
algorithm on a target dataset. In our setting, we apply trans-
fer learning by training the parameters of the ANN model
on the source dataset (MIMIC), and using the same ANN
to retrain on the target dataset (i2b2 2014 or 2016) for fine-
tuning. We use MIMIC as the source dataset since it is the
dataset with the most labels. We perform two sets of exper-
iments to gain insights on how effective transfer learning is
and which parameters of the ANN are the most important
to transfer.1

Experiment 1 Quantifying the impact of transfer learn-
ing for various train set sizes of the target dataset. The pri-
mary purpose of this experiment is to assess to what extent
transfer learning improves the performances on the target
dataset. We experiment with different train set sizes to un-
derstand how many labels are needed for the target dataset
to achieve reasonable performances with and without trans-
fer learning.
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Figure 1: ANN model for NER. For transfer learning ex-
periments, we train the parameters of the model on a source
dataset, and transfer all or some of the parameters to initial-
ize the model for training on a target dataset.

1Code: https://github.com/Franck-Dernoncourt/NeuroNER
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(a) i2b2 2014
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Figure 2: Impact of transfer learning on the F1-scores. Baseline corresponds to training the ANN model only with the
target dataset, and transfer learning corresponds to training on the source dataset followed by training on the target dataset.
The target train set size is the percentage of train set in the whole dataset, and 60% corresponds to the full official train set.
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(b) i2b2 2016
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Figure 3: Impact of transferring the parameters up to each layer of the ANN model using various train set sizes on the target
dataset: 5%, 10%, 20%, 40%, and 60% (official train set). “CRF” refers to the sequence optimization layer in Figure 1.

Experiment 2 Analyzing the importance of each param-
eter of the ANN in the transfer learning. Instead of trans-
ferring all the parameters, we experiment with transferring
different combinations of parameters. The goal is to un-
derstand which components of the ANN are the most im-
portant to transfer. The lowest layers of the ANN tend to
represent task-independent features, whereas the topmost
layers are more task-specific. As a result, we try transfer-
ring the parameters starting from the bottommost layer up
to the topmost layer, adding one layer at a time.

5. Results
Experiment 1 Figure 2 compares the F1-scores of the
ANN trained only on the target dataset against the ANN
trained on the source dataset followed by the target dataset.
Transfer learning improves the F1-scores over training only
with the target dataset, though the improvement diminishes
as the number of training samples used for the target dataset
increases. This implies that the representations learned
from the source dataset are efficiently transferred and ex-
ploited for the target dataset.
Therefore, when transfer learning is adopted, fewer annota-

tions are needed to achieve the same level of performance
as when the source dataset is unused. For example, on the
i2b2 2014 dataset, performing transfer learning and using
16% of the i2b2 train set leads to similar performance as
not using transfer learning and using 34% of the i2b2 train
set. Transfer learning thus allows to cut by half the number
of labels needed on the target dataset in this case.
For both the i2b2 2014 and 2016 datasets, the performance
gains from transfer learning are greater when the train set
size of the target dataset is small. The largest improvement
can be observed for i2b2 2014 when using 5% of the dataset
as the train set (consisting of around 2k PHI tokens out of
50k tokens), where transfer learning increases the F1-score
by around 3.1 percent point, from 90.12 to 93.21. Even
when all of the train set is used, the F1-score improves
when using transfer learning, albeit by just 0.17 percent
point, from 97.80 to 97.97.

Experiment 2 Figure 3 shows the importance of each
layer of the ANN in transfer learning. We observe that
transferring a few lower layers is almost as efficient as
transferring all layers. For i2b2 2014, transferring up to
the token LSTM shows great improvements for each layer,
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but there is less improvement for each added layer beyond
that. For i2b2 2016, larger improvements can be observed
up to the character LSTM and less so beyond that layer.
The parameters in the lower layers therefore seems to
contain most information that are relevant to the de-
identification task in general, which supports the common
hypothesis that higher layers of ANN architectures contain
the parameters that are more specific to the task as well as
the dataset used for training.
Despite the observation that transferring a few lower layers
may be sufficient for efficient transfer learning, it is inter-
esting to see that adding the topmost layers to the transfer
learning does not hurt the performance. When retraining
the model on the target dataset, the ANN is able to adapt
to the target dataset quite well despite some the higher lay-
ers being initialized to parameters that are likely to be more
specific to the source dataset.

6. Conclusion
In this work, we have studied transfer learning with ANNs
for NER, specifically patient note de-identification, by
transferring ANN parameters trained on a large labeled
dataset to another dataset with limited human annotations.
We demonstrated that transfer learning improves the per-
formance over the state-of-the-art results on two datasets.
Transfer learning may be especially beneficial for a target
dataset with small number of labels.
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