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Abstract
This paper investigates the use of semi-supervised clustering for Short Answer Scoring (SAS). In SAS, clustering techniques are an
attractive alternative to classification because they provide structured groups of answers in addition to a score. Previous approaches use
unsupervised clustering and have teachers label some items after clustering. We propose to re-allocate some of the human annotation
effort to before and during the clustering process for (i) feature selection, (ii) for creating pairwise constraints and (iii) for metric
learning. Our methods improve clustering performance substantially from 0.504 kappa for unsupervised clustering to 0.566.
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Prompt (ASAP dataset): During the story, the reader gets
background information about Mr. Leonard. Explain the
effect that background information has on Paul. Support
your response with details from the story.

Answer (2 points): Paul sees himself in Mr. Leonard. They
both can’t read but both are good at track.

Answer (0 points): He (the narrator) finds out that Mr.
Leonard was once a star athelete at his college but dropped
out because of grades.

Prompt (PG dataset): What did the Declaration of Inde-
pendence do?

Answer (correct): declare independance from britain
Answer (incorrect): protect the constitution and people

Figure 1: Example prompts and answers

1. Introduction

In an educational context, short answer questions are a type
of exercise asking for short free-form answers of a few
words or sentences in response to a given prompt. They oc-
cur, for example, in the form of science questions or read-
ing comprehension exercises and can address both native
speakers, such as high school students, and foreign lan-
guage learners. Automatic Short Answer Scoring (SAS) is
the task of automatically assigning a score to such answers,
either in numeric form (points) or by a binary true/false
label. Figure 1. shows two example prompts with some
scored answers.

Automatic scoring of short answer exercises is a challenge:
in contrast to multiple choice or simple gap-filling exer-
cises, SAS has to assess the semantic correctness of an-
swers, and it is thus related to fields such as natural lan-
guage understanding, paraphrase detection or textual en-
tailment. In addition, it has to deal with noisy user input
containing spelling and grammar errors.

Most approaches to SAS consider automatic scoring as a
classification task, relying on supervised machine learning
(ML) techniques which require manually labeledtraining
data In contrast Basu et al. (2013),Brooks et al. (2014) and
Horbach et al. (2014) have focused on the use of clustering
techniques for SAS. The rationale behind this procedure is
that answers that are similar to each other — and therefore
end up in the same cluster — are also likely to receive the

same label for scoring and can thus be scored in one grad-
ing step by a teacher. Ideally, a teacher has to label only a
single answer representative for the whole cluster which is
then propagated to all members of the cluster.

An added value of clustering is that it provides valuable
structural information, while ML classifiers just assign a
score (Brooks et al., 2014). As an example, automatic clus-
tering of the answers for the question from the PG dataset,
“What is one right or freedom from the First Amendment
of the U.S. Constitution?” yields different groups of cor-
rect and incorrect answers, such as, {freedom of speech,
the right of free speech, to have freedom of speech, ...}
or {freedom of religion, freedom to practise religion, the
Sfreedom of religion, ...}, {to bear arms, the right to bare
arms, right to arms, ...}. The first two clusters contain
correct answers referring to different facts, the last one con-
tains answers making the same error. Teachers may use the
output clusters to identify common misconceptions among
students and assign feedback to whole groups of answers.
Some amount of human scoring is required for both super-
vised ML and clustering: annotation of training data in the
one case and annotation of representative cluster members
as a basis for propagation in the other case. Zesch et al.
(2015) compared the performance of clustering with that
of ML methods, keeping the number of manually labeled
items constant. They carried out their study on the PG
dataset and in addition on the ASAP dataset (see below,
Section 3.). They reported that clustering proved benefi-
cial only on the short and simple answers (a few words) of
the PG dataset. On the ASAP dataset with more complex,
longer answers, clustering falls far behind ML methods in
their experiments.

In this paper, we show that semi-supervised clustering can
substantially improve clustering results. While existing
clustering approaches use manually labeled data only for
post clustering label propagation, we distribute human ef-
fort and use human-labeled data in multiple ways before,
during and after clustering:

o Feature selection: We use labeled items for feature
selection before the actual clustering, as lustering al-
gorithms are known to suffer more from noisy features
than supervised learning algorithms that can select the
features relevant for a task (Alelyani et al., 2013).
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e Clustering with constraints: We employ two meth-
ods of using labeled instances as seeds during the clus-
tering: (i) for guiding the clustering process through
relational constraints, that indicate whether two in-
stances cannot or must belong to the same cluster, and
(i) for metric learning, i.e. adapting the distance met-
ric according to those constraints. We reuse the items
labelled for feature selection as seeds, so the second
step does not require additional annotation effort.

e Label propagation: We use label propagation after
clustering to assign a label to each cluster based on
the teacher-assigned label of just one item of the clus-
ter. Following Horbach et al. (2014), we annotate the
the item closest to the centroid and propagate its la-
bel to all cluster members, as this procedure selects
prototypical instances and is superior to propagating a
random label.

To the best of our knowledge, we are the first to use semi-
supervised clustering for SAS. We show that the multi-
purpose usage of labeled instances can overcome half of
the the gap between clustering and supervised ML meth-
ods, also for the complex ASAP dataset. We conclude that
clustering with label propagation is an alternative to super-
vised ML methods, since it has the advantage of providing
teachers with structured sets of answers.

After this introduction, Section 2. report about related
work. We then present in Section 3. the used data and fea-
ture set. We describe our experiments in Section 5. and
conclude with Section 6..

2. Related Work

A variety of approaches for automatic SAS have been pro-
posed (see Burrows et al. (2014) for an overview), ranging
from rule-based systems, (Sukkarieh and Pulman, 2005), to
ML systems using various kinds of automatically extracted
features. ML-based approaches can be generally classified
in two ways: those that assess an answer based on the simi-
larity with some sort of teacher-specified target answer and
those where a target answer is not used or not even avail-
able. Approaches of the first type create feature vectors for
each answer that express their similarity to the target an-
swer based on semantic similarity or lexical overlap. The
resulting classifier is not restricted to answers for just one
question, but generalizes to different prompts (Mohler et
al., 2011; Meurers et al., 2011). Approaches that do not
compare to a target answer build one classifier per prompt
using features based on the content of individual answers,
such as lemma or character n-grams or dependency triples
occurring in an answer. With our work, we follow the fea-
ture extraction of the second approach by creating feature
vectors for clustering representing the content of each an-
swer and clustering answers per prompt.

Our work is related to studies that address the number of an-
swers needed as training data for SAS. Heilman and Mad-
nani (2015) show that — as in many ML scenarios — the SAS
task profits from larger training set sizes. Active learning
(AL) is an ML technique that aims at selecting training in-
stances in such a way that the classifier can learn most from

them (Settles, 2010); AL methods have been used success-
fully in a variety of NLP tasks. In the SAS context, Hor-
bach and Palmer (2016) explore active learning methods to
select ML training instances and find that uncertainty sam-
pling methods have an advantage over random sampling of
training instances.

Within the field of clustering for SAS, the most prominent
contribution is the Powergrading (PG) study by Basu et al.
(2013) who use k-medoids and LDA clustering for answers
to US citizenship exam questions. They learn a similarity
metric between answers on a part of the data which contains
gold standard information about semantic equivalence be-
tween answers. As features for this decision, they use var-
ious kinds of similarities between answers including both
surface similarity on string and lemma level and wikipedia-
based LSA similarity. They use a two-layered clustering
technique that separates the answer space into clusters and
subclusters.

Basu et al. (2013) propose a novel measure to evaluate their
clustering approach: they count the number of “actions” a
teacher has to take in order to label a complete (sub)-cluster
with one label for all cluster members or to label individ-
ual answers until all answers in a clustering are correctly
graded. This approach is not directly comparable to label
propagation. Also, it does not provide a fully realistic mea-
sure of the teacher’s effort because teachers do not know in
advance which individual answers within a cluster are in-
correctly labeled and therefore need to inspect all answers
in a cluster in order to identify those which they need to
re-label. Their evaluation is more comparable to an oracle
variant of label propagation where we propagate the major-
ity label of a cluster instead of the one closest to the cen-
troid: when assigning a label to a complete cluster in the
style of Basu et al. (2013), a teacher will select the label
that fits the majority of the data. We also calculate the re-
sults of majority-based propagation as an oracle condition,
but retain centroid-based propagation as the relevant evalu-
ation method.

3. Datasets

We run experiments on two datasets:

ASAP: We use the 10 individual prompts from the ASAP
2 dataset! from the Kaggle automatic scoring competition.
Each prompt contains around 1800 items with humanly an-
notated scores from 0 to 2 or 3 (depending on the dataset) in
steps of 1.0. Answers are between one and a few sentences
in length. The average number of tokens per prompt varies
between 26 and 66.

PG: The PG dataset consists of 10 annotated answer sets
(out of a total of 20 prompts) from immigration tests that
tend to be very short (average number of tokens per prompt
between 1.3 and 5) and therefore also much more repeti-
tive. While the ASAP dataset does not contain duplicates,
they occur very frequently in PG. Answers are annotated as
either correct or incorrect.

Thttps://www.kaggle.com/c/asap-sas
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4. Method
4.1. Features and Feature Selection

In congruence with previous work, we concentrate mainly
on lexical features as they are highly predictive for this
task. In the Kaggle competition for the ASAP dataset, the
top 5 best-performing systems used mainly lexical features
for scoring (Higgins et al., 2014) (the best-performing sys-
tem (Tandalla, 2012) was indeed one that additionally used
hand-crafted regular expressions for each prompt). For the
more complex answers of ASAP, which usually consist of
complete sentences instead of short phrases, we use lemma
and character n-grams, and dependency subtrees as fea-
tures. For the PG dataset with very short phrasal answers,
dependency parsing provided unsatisfying results, so we re-
stricted ourselves to character and word n-gram features.
We use the labeled seeds to perform supervised feature se-
lection, as clustering is particularly sensitive to noisy fea-
tures (Alelyani et al., 2013).

We use Weka’s information gain-based attribute selection
and test different numbers of features including the full fea-
ture set. For most prompts, we reach optimal clustering re-
sults with either 200 or 100 features. We use the optimal
size of feature sets per prompt in all experiments for both
clustering and supervised ML. We tried other linear feature
selection algorithms but found no significant differences in
performance. We also explored subset evaluation as an al-
ternative, using Weka’s Cfs Subset evaluation and found it
to be less suitable than Information Gain.

4.2. Semi-supervised Clustering

Clustering algorithms aim at grouping similar objects to-
gether, where similarity is measured by a distance metric.
Standard clustering algorithms work completely unsuper-
vised, only based on the distance metric. Semi-supervised
clustering makes use of seed data gained through human
annotation. Seed data can either be given in the form of la-
beled items expressing cluster membership, or as relational
information stating that two items should or should not be-
long to the same cluster.

In our SAS scenario, we assume that there is a one-to-
many rather than a one-to-one relation between scores and
clusters. I.e. one score (out of the maximum of 4 differ-
ent scores for the ASAP dataset) can contain answers that
fall into different groups of semantically similar answers
(see the example given in Section 1.). Especially for low-
scoring answers there is certainly more than one way to “get
it wrong”, and thus we cluster into more clusters than there
are labels. Answers with different scores should definitely
go into different clusters, answers with the same score may
or may not belong to the same cluster, dependent on their
semantic relatedness. Therefore, we cannot use categorical
seed information to estimate the number of clusters and to
initialize seed clusters as it is done for instance by Basu et
al. (2002), but have to use relational information. Since
scoring of individual answers is a much more natural task
for teachers than assessing the similarity between different
answers, we derive the relational pairwise constraints re-
quired for semi-supervised clustering from individually la-
beled items, the seeds. More specifically, we create a can-
not link (CL) constraint stating that two answers should not

go into the same cluster for each pair of seeds with differ-
ent scores. In general, semi-supervised clustering can also
use must link constraints stating that two items belong two
the same cluster. We cannot derive reliable must link in-
formation from answer scores, so we employ cannot links
only.

Implementation Setup We use the Weka implementa-
tion (Hall et al., 2009) of the unsupervised k-means algo-
rithm (KM) (Lloyd, 1982) as our baseline algorithm, as do
Zesch et al. (2015): k-means minimizes an objective func-
tion that sums over the squared distances of each item to
its cluster centroid. We use as distance metric Euclidian
distance between feature vectors.

For semi-supervised clustering, we use extensions of k-
means introduced in the metric pairwise constrained k-
means (MPCKM) algorithm by Bilenko et al. (2004), who
integrate the usage of pairwise constraints and metric learn-
ing into the k-means algorithm and provide an extension of
the Weka API for that.”> Constraints are integrated into the
clustering in the form of penalties for constraint violations
that are added to the objective function. Each constraint is
associated with an importance weight.

Metric learning is done in the MPCKM algorithm after each
k-means iteration by adjusting the weights of individual
features in two ways: first, by moving existing clusters from
the previous iteration further away from each other and sec-
ond, by increasing the distance between items with violated
CL constraints.

4.3. Label Propagation

For our experiments, we assume the following scenario: a
teacher is given one item per cluster for scoring, and the
score is propagated to all members of the cluster. Accord-
ingly, we evaluate our experiments using label propaga-
tion following both Horbach et al. (2014) and Zesch et al.
(2015).

We use centroid propagation as a realistic method, where
the label for all answers in a cluster is based on just one
labeled instance. We select an item for labelling which is
prototypical for its cluster by selecting the one closest to
the cluster centroid.

We consider majority propagation to provide an upper
bound of performance that we could reach when labeling
a cluster based on the label of one instance: the scoring of
a cluster is optimal if the one labeled element belonged to
the majority class for that cluster. This evaluation is an or-
acle condition that indicates the quality and potential of a
given clustering, as there is no reliable way to automatically
select such an element.

4.4. Treatment of Duplicate Items in Clustering

The PG dataset contains high numbers of duplicate an-
swers; there are 2434 unique answer for a total of 6980
individual answers. Multiple annotation of duplicates does
not add any information. Hence, we make sure that we
never select duplicates when sampling answers for human
annotation. However, the negative impact of performance
is higher if we get a very frequent answer wrong compared

Zhttp://www.cs.utexas.edu/users/ml/risc/
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to erring on an answer that is only given by one student.
Therefore we do not remove duplicates for cluster on all
answers, such that multiple occurrences of an answer have
more influence in the clustering process, as they have, e.g.,
a higher probability to be selected for centroid-based label
propagation.

4.5. Baselines

We compare our clustering results to two baselines: un-
supervised k-means clustering on the full feature set and
supervised ML. To enable meaningful comparison between
the methods, we keep the number of annotated instances n
constant across all experimental conditions. Thus we cre-
ate n clusters in unsupervised k-means clustering as all hu-
man annotation effort can be used to label cluster centroids,
we create fewer clusters in the semi-supervised case, where
some annotations are used for labeling seeds. Accordingly,
the ML baseline, implemented by Weka’s SMO algorithm
(Hall et al., 2009), is trained on n labeled items, as done in
Zesch et al. (2015).

In addition to their approach, we do not only calculate the
baseline with the complete feature set. Supervised ML al-
gorithms also profit from feature selection and it would be
an unfair comparison to optimize features just for cluster-
ing. We also performed feature selection for ML and report
results for the best configuration per prompt. We randomly
sample the data for the classifier 100 times and report aver-
age results. For the optimized feature set we also report the
best individual run as an upper bound.

5. Experiments

Our experiments address the question how a set of answers
can be optimally graded with only a limited amount of
available human annotation effort:

Experiment 1 compares variants of the k-means algorithm
that correspond to different degrees of supervision to con-
firm the contribution of the individual components of the
MPCKM algorithm. Experiment 2 investigates the opti-
mal tradeoff for distributing a given amount of human an-
notations between labeling seeds before clustering and la-
beling cluster centroids after clustering. In Experiment 3
we cross-check that our semi-supervised results cannot be
reached with approaches that use unsupervised feature se-
lection. In Experiment 4 we investigate how human anno-
tation effort can be further minimized by reusing seeds for
label propagation.

5.1. Experimental Setup

Dataset Sizes In order to evaluate always on the same
number of answers per dataset, we use the first 1000 an-
swers to each ASAP prompt and all 698 answers to each
PG prompt.

Evaluation Metric We report Cohen’s quadratically
weighted kappa (Cohen, 1968) after label propagation. In
our grading scenario, where we want to measure the qual-
ity of the resulting grading of a set of answers and compare
to supervised classification methods. This type of evalua-
tion is more meaningful than evaluation measures applied
in other clustering tasks, such as the widely used bCubed
metric (Amigo6 et al., 2009).

5.2. Experiment 1: Different Degrees of
Supervision in Clustering

In our first experiment, we measure the influence of dif-
ferent levels of supervision. We go from unsupervised
k-means clustering (KM,;;), over k-means clustering that
uses seeds only for feature selection (KM,e;) and semi-
supervised clustering that additionally derives CL con-
straints from the seeds (KMCL), to the full MPCKM clus-
tering algorithm with feature selection, CL constraints, and
metric learning. We aim at investigating the effect of a
fixed “small” number n of labelled data on clustering per-
formance, which at the same time should be large enough
to induce clusters of reasonable quality. We decided for n =
150 (out of a total of 1,000 answers per question) for ASAP,
and n = 50 for PG (the comparably low number is due to
the high amount of duplicates in the answers). This over-
all number of annotation steps is split into those answers
that are used for both feature selection and constraints (the
seeds), and those that are used to label the centroid of each
cluster; i.e., the number of annotations for labeling clusters
centroids determines the number of clusters created.

In this experiment, the split of the n labelled items between
seeds and labelled cluster centroids is 110:40 for ASAP and
40:10 for PG. These proportions of seeds and cluster cen-
troids are selected as the optimal ones, based on the results
of Experiment 2 (see below).

Tables 1 and 2 show the results for the different k-means
variants. In addition to centroid-based label propagation,
we report majority propagation MPCKMj,,, for the full
MPCKM algorithm as an upper bound for clustering per-
formance.

We can learn the following from the experiment: first, in-
vesting labeled items into feature selection pays off (KM,
vs KMg,;) for the ASAP dataset. Second, we see that
adding constraints alone gives us an additional small im-
provement (KMCL vs KM,,;), while adding metric learn-
ing (MPCKM) adds substantially to the performance. The
improvement is consistent for centroid based label prop-
agation and for the majority propagation upper bound
MPCKMy.s:. Third, we see that the best clustering method
comes closer to the ML baseline trained on the full dataset
(M Lg;;. By making optimal use of the manually labelled
data, we could thus close more then half of the gap between
the performance of clustering and machine learning stated
in Zesch et al. (2015).

For the PG dataset, basic clustering already outperforms
ML methods, arguably because the very short answers of
the PG dataset yield an already small feature set that con-
tains little noise. For the following experiments, we there-
fore report results on the more challenging ASAP dataset
only. Note that our scores for ASAP are not directly com-
parable to the scores of the top performing systems from
the Kaggle competition, as the evaluation setup, especially
the number of training and test instances used, is different.

5.3. Experiment 2: Finding a Tradeoff between
the Numbers of Seeds and the Number of
Clusters

In this experiment, we determine the optimal tradeoff be-
tween the number of seeds, which are used for feature se-
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Clustering supervised ML
40 cluster, 110 seeds 150 items
o KM,; | KMy, KMCL MPCKM MPCKMy,s: ‘ ML,; ML,y MLyt
1 0.462 0.541 0.547 0.593 0.668 0.651 0.673 0.711
2 0.432 0.47 0.469 0.496 0.574 0.571 0.571 0.62
3 0.343 0.378  0.377 0.379 0.451 0.384 0.384 0437
4 0.543 0.547  0.549 0.581 0.651 0.639 0.655 0.693
5 0.617 0.622  0.631 0.69 0.756 0.68 0.72 0.782
6 0.682 0.646 0.64 0.74 0.765 0.692  0.745 0.787
7 0.352 0.398  0.402 0.447 0.533 0.565 0.565 0.622
8 0.448 0.44 0.437 0.471 0.556 0.553 0.566  0.61
9 0.546 0.564  0.567 0.61 0.686 0.647 0.66 0.698
10 | 0.614 0.614 0.614 0.651 0.715 0.629 0.684 0.738
avg ‘ 0.5039 ‘ 0.522  0.5233 0.5658 0.6355 0.6011 0.6223 0.6698
Table 1: Result on the ASAP dataset
Clustering supervised ML
10 cluster. 40 seeds 50 items
p- KM.; | KMg; KMCL MPCKM MPCKMyqs: ‘ ML,; ML MLpest

avg | 0.7928 ‘ 0.7244 0.7493  0.7695

0.7864 ‘0.7001 0.7213  0.8848

Table 2: Average results on the PG dataset
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Table 3: Tradeoff between the number of seeds and the
number of clusters for different overall amounts of human
annotation steps.

lection and constraints before clustering, and the number
of clusters, where the centroid of each cluster is labeled
after clustering. To do so, we evaluate the effect of differ-
ent splits between labelled seeds and cluster centroids for
MPCKM clustering with centroid-based label propagation
for different sizes of n. The results obtained for n = 100,
150, 200, 250 are shown in the curves of Table 3; plotted
on the x-axis is the percentage of annotation steps used as
seeds. The curves cover distributions from O seeds (n clus-
ters) to n-10 seeds (10 clusters).

Unsurprisingly, we see that a higher overall number of an-
notated data yields a better clustering performance. As an
interesting result of the experiment, we observe that the
curves peak always between 75 and 80% of annotated data
used as seeds, i.e., we profit more from adding more seeds

then from adding more clusters.

5.4. Experiment 3: Comparison with
Unsupervised Dimensionality Reduction

In Experiment 1, we used labeled seeds for supervised at-
tribute selection. The clustering literature, however, also
proposes unsupervised dimensionality reduction methods
(Alelyani et al., 2013). Since this might have a similar ef-
fect without using any seeds, we compare our results on su-
pervised feature selection from Experiment 1 to two meth-
ods of unsupervised feature selection. Principal Compo-
nent Analysis (PCA, (Pearson, 1901)) is a dimensional-
ity reduction technique that converts high-dimensional data
into a smaller number of independent variables. We per-
formed PCA using the t-SNE toolkit (van der Maaten and
Hinton, 2008) for the ASAP dataset, reducing it to 500 fea-
tures. As a second option, we consider feature selection by
frequency, following the rationale that features occurring in
only a few items are less helpful: in the frequency-filtered
feature set condition, we only use features that occur in at
least 20 answers.

First, we compare whether these two feature selection
methods are beneficial for unsupervised k-means cluster-
ing, i.e., we compare to the unsupervised baseline KM,
with 150 cluster from Experiment 1 that uses all features.
To account for the fact that metric learning as used in the
MPCKM algorithm might be beneficial even in the absence
of constraints, we also evaluate using metric learning with-
out pairwise constraints (MKM). Results are presented in
the second and third column of Table 4.

We see that neither of the unsupervised feature selection
methods helps for KM,;;. We also see that metric learn-
ing, which was beneficial in combination with constraints
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features KM,; MKM MPCKM
all features 0.504 0.566
PCA 0.323 0317 0.374
frequency-filtered 0.500 0.489  0.563

Table 4: Unsupervised feature selection for two versions of
completely unsupervised clustering: k-means (KM) and k-
means with metric learning (MKM) and unsupervised fea-
ture selection as a preprocessing step for semi-supervised
clustering (MPCKM).

in Experiment 1, does not help here: MKM performance
decreases compared to KM,;;. PCA shows in general a
much worse performance on both the KM,;; and MKM
conditions.

Next we explore whether a combination of unsupervised
feature reduction with semi-supervised clustering helps. To
do that we run the MPCKM algorithm from Experiment
1 including supervised feature selection, but with each of
the two unsupervised feature reduction methods as a pre-
processing step. We can see in the last column of Table
4 that we do not beat our previous results using PCA, but
reach very similar results with frequency-reduced features.
Such unsupervised feature selection methods thus provide
the additional benefit of reducing runtime substantially, and
we will investigate them in future work.

5.5. Experiment 4: Reusing Seeds for Label
Propagation

In this experiment, we examine how seeds selected before
clustering can be reused for labelling cluster centroids af-
ter clustering. In experiments 1 to 3, we have selected the
seeds for feature selection and constraints randomly; and
by chance some seeds will overlap with cluster centroids,
which have to be labeled for label propagation. Our goal
in this experiment is to select seeds in such a way that they
will have a higher overlap with the cluster centroids. For
random seed selection and our setting with 40 clusters and
110 seeds out of 1000 answers, we can expect to find on
average 11% of the cluster centroids among the seeds, i.e.,
on average 4.4 out of 40 centroids.

We increase this random overlap through an informed itera-
tive selection of seeds. We start with a small set of 20 initial
seed items for clustering. We then select one new seed at
a time based on the previous clustering, recluster, and re-
peat this procedure until 110 seeds (as in experiment 1) are
reached. We use a sampling strategy inspired by diversity
sampling in AL, cf. (Brinker, 2003) where the goal is to
cover the complete feature space. In order to cover as many
clusters as possible by our seeds, we select the cluster with
the lowest frequency of labeled items (and the bigger one
in case of ties) to choose the new seed for the next itera-
tion. In order to get a good representative for that cluster
that will be reusable in label propagation, we choose the
item closest to the centroid as the next one to be labelled.
To avoid artifacts of randomization, we average all results
over 5 random seed sets per prompt.

We find that selecting seeds through diversity sampling in-

creases the overlap between seeds and cluster centroids to
on average 11; the actual clustering performance does not
differ substantially from random sampling. Those saved 12
human annotation steps can of course be used as additional
seeds in our assumed setup of 150 available human anno-
tation steps. We thus use an additional annotation setup
where we keep adding seeds using diversity sampling un-
til the total number of labeling steps reaches or surpasses
a fixed number of labeling steps for the first time. (As the
number of actually labeled data does not always increase
completely linearly in each sampling step, we adapted this
value to 148 instead of 150 in order to make sure that we do
not label on average more than 150 items.) In that setup, we
get some further performance improvement up to on aver-
age 0.577, our overall best result for 150 human annotation
steps. 3

6. Conclusion

In this paper, we have examined semi-supervised clustering
methods for short answer scoring in a scenario where a set
of items has to be graded with a fixed limited amount of
human annotations. We have shown how this limited effort
can best be used in the form of seeds for feature selection
and constraints and post clustering for centroid-based label
propagation. We have found that using MPCKM cluster-
ing with pairwise CL constraints and metric learning com-
bined with supervised feature selection brings a large per-
formance boost that (i) cannot be reached using unsuper-
vised methods alone and (ii) comes closer to the perfor-
mance of supervised machine learning methods. Selecting
seeds based on diversity additionally reduces human effort
as such seeds can be efficiently used for label propagation
without having to label new examples.

As direction for future work, we will also explore the usage
of different similarity metrics such as sentence similarity
of answers pairs, which are potentially highly useful for
clustering but not applicable in an ML-based approach.
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