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Abstract
This paper presents a recurrent neural network model to automate the analysis of students’ computational thinking in problem-solving
dialogue. We have collected and annotated dialogue transcripts from middle school students solving a robotics challenge, and each
dialogue turn is assigned a code. We use sentence embeddings and speaker identities as features, and experiment with linear chain
CRFs and RNNs with a CRF layer (LSTM-CRF). Both the linear chain CRF model and the LSTM-CRF model outperform the naı̈ve
baselines by a large margin, and LSTM-CRF has an edge between the two. To our knowledge, this is the first study on dialogue segment
annotation using neural network models. This study is also a stepping-stone to automating the microgenetic analysis of cognitive
interactions between students.
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1. Introduction
Microgenetic analysis is an observational research tech-
nique in which the researcher attends closely to the dis-
course interactions and the use of tools within the learning
environment in order to understand the genesis (or the ori-
gins) of cognitive change (Wertsch, 1991). It has a broad
impact on the design and enactment of curriculum, the de-
sign of learning environments, as well as pedagogical prac-
tices. Microgenetic Learning Analytics (MLA) (Sullivan
et al., 2015) requires the collection and analysis of all in-
teractions among students over a given period of time. It
has been noted that the robustness of microgenetic analy-
sis derives from high-density observation (Siegler, 2006).
However, it is the time-consuming nature of collecting and
analyzing high-density observations that has restricted the
application of microgenetic analysis to small case studies.
This paper is an initial attempt to identify computational
methods that will allow for automation of MLA of conver-
sational data. Such automation will transform educational
researchers’ ability to perform microgenetic analysis.
This paper presents a pilot study to automate the analysis
of cognitive interactions in dialogue. We have transcripts
of the dialogues from middle school students solving a
robotics challenge (Sullivan et al., 2015). Dialogue turns
(utterances) are annotated with carefully designed labels,
known as the “computational thinking codes (CT codes)”.
We need to build computational models to assign the codes
to dialogue turns automatically. In a broader sense, this is a
dialogue action (DA) annotation task, with multiple agents
in the dialogue. It is also related to the sequential sentence
labeling task, in which a series of sentences need to be la-
beled.

2. Related Work
Many different classification algorithms have been used for
dialogue act annotation. The most popular ones use sup-
port vector machines (SVM) (Margolis et al., 2010; Tavafi
et al., 2013), Hidden Markov models (HMM) (Kim et al.,

2010; Tavafi et al., 2013), conditional random fields (CRF)
(Kim et al., 2010; Tavafi et al., 2013), and decision trees
(Moldovan et al., ; Samei et al., 2014). These methods re-
quire handcrafted features, and their performance depends
on the application domain. Few if any works to date have
used the recently popular neural network-based approaches
for dialogue segment labeling.
We can also consider DA annotation a special case of se-
quential sentence labeling, in which every sentence is an
utterance. Existing systems for sequential sentence la-
beling are mostly based on traditional statistical machine
learning methods too, such as Naı̈ve Bayes (Huang et al.,
2013), SVM (McKnight and Srinivasan, 2003; Hirohata et
al., 2008), HMM (Lin et al., 2006), and CRF (Hirohata
et al., 2008; Hassanzadeh et al., 2014). Recently, popu-
lar approaches use neural networks with word embeddings
(Socher et al., 2013; Kim, 2014) and/or character embed-
dings (Zhang et al., 2015; Conneau et al., 2016) to train
sentence encoders, and then perform classification. Those
neural networks use either convolutional layers or recur-
rent layers to learn deep representations, and often produce
better results than older systems. However, one drawback
of most of the models is that they do not make use of con-
text, but focus on representing each sentence independently
(Dernoncourt et al., 2016). Moreover, the sequence of la-
bels are not directly modeled like in CRF, although RNNs
can capture that indirectly.
Dernoncourt et al. (2016) tries to combine the properties of
RNN and CRF. They use character and token embeddings
to train a sentence encoder, and use an output sequence op-
timization layer to incorporate transition probabilities of la-
bels. However, their data is from medical paper abstracts,
which have a strong tendency to follow certain styles of
writing, and are much shorter than dialogues. They only
have 5 classes, all with very distinctive semantic proper-
ties. Our 10 labels demand deeper understanding to be dis-
tinguished.
In fact, the same technique has been used in name entity
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recognition and other token-based sequence tagging tasks
(Huang et al., 2015; Dernoncourt et al., 2017). The se-
quence optimization layer is also called a CRF layer. Sen-
tences are much longer than name entities and contain more
complex meanings, and thus sequential sentence labeling is
a more difficult task.

3. Dataset
The dataset consists of dialogues of middle school students
solving a robotics challenge together. There are two collab-
orative teams. Team A has 1 boy and 2 girls, and Team B
has 2 boys. All students wore wireless microphones, and
their interactions were videotaped. In this study, we ob-
tained the transcribed dialogues and use text data for anal-
ysis.
In order to use RNNs to process sequences of sentences, we
need to train a sentence encoder. Given the small dataset,
we also tried external resources. Conneau et al. (2017)
proposed a model to produce “universal sentence represen-
tations”. They train sentence encoders on Natural Lan-
guage Inference (NLI) task and claim such a process in-
volves high-level understanding of text, and thus generates
better sentence embeddings than other supervised or un-
supervised learning methods. In our experiments, we use
their pre-trained sentence encoder to represent sentences.
The encoder is trained on SNLI (Bowman et al., 2015) and
MultiNLI (Williams et al., 2017).

3.1. Computational Thinking Coding Scheme
The dialogue of each team is segmented into 20-minute
conversation chunks. Eventually we have 10 chunks for
Team A and 9 for Team B. Then the dialogue turns of the
19 files are fully annotated. We developed a computational
thinking coding scheme, as shown in Table 1.

Code Category Description
A Analysis Planning, developing ideas

ATO Algorithmic thinking Discussing programming functions
-operation

ATV Algorithmic thinking Discussing quantities to use
-variable

D Design Building additions to the robot
DO Debugging observations Describing movement of robot

NSTO Non-specific test outcome
QB Query building Questions about using the Legos
QS Query software Ques. about software capabilities
QR Query robot Ques. about operations of robot
O Other Anything else

Table 1: Computational thinking coding scheme.

Every dialogue turn is labeled with one of the codes in
Table 1. A dialogue turn is an utterance generated by a
speaker. Occasionally a turn is split and assigned with two
different labels, when the speaker expresses two ideas. In
this case we describe it as two dialogue turns from the same
speaker. In total we annotated 5723 dialogue turns from the
19 files. Utterances from individuals who are not the team
members are excluded from analysis.
The code “QB” does not exist in any data we use, so it is ig-
nored. The remaining classes are heavily imbalanced. For
example, 58% of the dialogue turns have “O” label but only
0.6% have the “QS” label. Some techniques are commonly

used to deal with imbalanced data, such downsampling, up-
sampling, setting weights etc., driven by specific purposes.
In our experiment, we do not employ any of the techniques,
but train our models on raw data.

3.2. 5-folds cross validation
Since the dataset is relatively small and the classes are im-
balanced, we use 5-fold cross validation to evaluate the fi-
nal results. In each iteration of training/testing, 15 out of
19 files are chosen as training set, and the remaining 4 files
as test set. In the five iterations, the test sets are all differ-
ent without overlapping, except that one file is used twice
(because 4× 5 = 20).
One may argue the files reflect different stages of the
robotics challenge, and are not independent. However, we
investigate the data in details and find local context much
more relevant than long-distance context, so treating the
files independently should not create significant errors.
Hyper-parameters are tuned on one split of data only. The
15 training files are divided as training and validation set by
13:2.

4. Experiments
We built two models. One is a conventional CRF model,
and the other is an RNN with a CRF layer.

4.1. Linear Chain CRF model
Until very recently, linear chain CRFs have been the pre-
ferred choice for sequence labelling tasks in NLP. We ran
this model as a baseline to compare to. This model esti-
mates the conditional probability of a label sequence, as-
suming that a label at a certain time step depends on its pre-
ceding label as well as input data. The objective is to find
the feature weights that maximize the conditional probabil-
ity as shown in equation 1.

p(y|x) ∝ exp

(
T∑

t=1

(
D∑
i=1

wifi(yt, yt−1, X)

))
(1)

In our case, every time step t is corresponding to a dialogue
turn with a label. The input X can be the whole series of
input data although in practice we only use a portion of the
whole input at each time step. Naturally, we can use the text
of each dialogue turn, and possibly of nearby turns. There-
fore we rewrite the feature function as fi(yt, yt−1, xt).
Here fi uses the previous label yt−1, current label yt and
current input text representation xt as input. D is the di-
mensionality of the feature space. wi is the set of parame-
ters to be trained. In order to make this model a baseline for
direct comparison, we used a pre-trained model to generate
sentence embeddings, folllowing the work of Conneau et al.
(2017). Each sentence is represented as a 4096-dimensional
vector. In addition to that, we also add another feature to
indicate if the speaker has changed from the previous time
step. As a result, the feature space has 4097 components. In
our dataset, two consecutive turns are from different speak-
ers in the vast majority of cases, but occasionally an ut-
terance from the same speaker are split, usually due to a
change of idea. Our implementation used the Python wrap-
per for the CRFSuite library (Okazaki, 2007).
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The features used in the linear chain CRF model do not
create an adequate context representation. Adding features
from neighboring sentences to the model can potentially
improve it, however, it increases feature dimensionality
rapidly, making it difficult to capture long-distance depen-
dencies. Recurrent neural networks models provide a more
elegant solution to this issue.

4.2. LSTM Model with CRF Layer
LSTM uses gated cells to preserve memory through multi-
ple time steps. Therefore it is possible to incorporate con-
textual information. Neural networks also tend to process
high-dimensional representations better than some of the
more conventional statistical machine learning methods.
We add a CRF output layer to the model, which allows us to
jointly model the output labels. The CRF layer essentially
maximizes the label sequence score s, computed as follows:

s(y1:T ) =

T∑
t=2

A[yt−1, yt] +

T∑
t=1

a[yt] (2)

where A is the matrix of transition probabilities, and a
represents the individual probability of a label. Dialogue
turn representations are fed into a bidirectional LSTM (Bi-
LSTM) layer. The output of the Bi-LSTM layer is concate-
nated with the speaker identity input, and then followed by
two fully connected hidden layers.
The full model architecture is shown in Figure 1. The
bottom row shows the sequence of input utterances, with
sentence embeddings and speaker identities. 1 means the
speaker is the same as the previous one, and 0 otherwise.
Backward and forward LSTMs are shown in blue, followed
by the concatenation layer in green. Yellow blocks are hid-
den layers. The top row is the CRF layer. In this example
three output labels are shown (A = “Analysis”, DO = “De-
bugging operation”, ATV = “Algorithmic thinking / Vari-
able”). Rightward arrows indicate that each label depends
on its preceding label.

Figure 1: Bi-LSTM-CRF model.

We experimented different ways to obtain sentence en-
coders. (1) We use the same sentence encoder as in 4.1.,
so the sentence vectors fed into the Bi-LSTM layer are the
same as before. (2) We train our own sentence encoder. For
each sentence, pre-trained word embeddings are fed into a

Bi-LSTM layer, followed by a Maxpooling layer. The en-
coder is co-trained with the classifier. (3) We combined the
encoders from (1) and (2), concatenating the outputs of the
two. In each case, we also supplement it with speaker iden-
tity.
Ideally the model should be time-variant and uses time step
as variable too, because the time/stage of a dialogue may
have an impact on the labels. However, currently we only
have the full dialogues of two teams and there is no suffi-
cient data to train a time-variant model.

4.3. Hyper-parameters
For the Linear chain CRF model, we set c1 = 1.0, c2 =
10−3. These are L1 and L2 regularizations. We tried differ-
ent number of max iterations and found 200 to be desir-
able. All other hyper-parameters are just default values of
the library.
For LSTM-CRF, our final model has 1024 LSTM units to
process sequences of sentence embeddings, and the hid-
den layers have 1024 and 512 neurons, respectively. Input
dropout for sentence embeddings is 0.4. The two hidden
layers both have a dropout rate 0.5. When a sentence en-
coder is trained, 512 LSTM units are used. After Maxpool-
ing, the results are concatenated with pre-trained sentence
embeddings. The configuration of other parts of the neural
network are intact.
There is no dropout for speaker identity input. All mod-
els are trained with 100 epochs. We found the results do
not have noticeable changes when the epochs are set in the
80∼200 range.
The glove.840B.300d word vectors1 are used for word
embeddings. It was trained on 840 billion tokens and rep-
resents tokens with 300d vectors.

4.4. Results
From 5-fold cross validation, the precision, recall and F1
scores of all 5 runs are calculated and averaged. Within
each run, the scores are the prevalence-weighted macro-
averages across classes. In other words, the scores are av-
eraged over all classes and weighted by their frequencies.
Using this method, recall will be the same as accuracy. It
should also be noted that F1 score is not necessarily be-
tween precision and recall in this method. We calculated
the standard deviation of F1 scores to check the stability of
the results.
We list two naı̈ve baselines to compare to. The majority
baseline assumes a model assigns the majority class “O” to
all occurrences. From the 5-fold CV, there are 5556 pre-
dicted labels and 3303 of them have “O” as the true label.
Therefore the majority baseline is 3303/5556=0.594. The
random baseline assumes a model assigns labels based on
their statistical distributions in training data. Then the ex-
pected accuracy will be

∑
i p

2
i where pi is the probability

of class i. In our case the value is 0.384.
All the results are shown in Table 2. Our models outper-
form the two naı̈ve baselines by a large margin. Judging
from F1 score, the LSTM-CRF model with pre-trained sen-
tence encoder has the best performance, although the recall

1https://nlp.stanford.edu/projects/glove/

4058



Model Prec Rec/Acc F1 F1 std
Majority - .594 -
Random - .384 -
CRF .653 .678 .644 .0319
CRF+neighbor .640 .675 .636 .0393
LSTM-CRF, pretrained .660 .677 .661 .0241
LSTM-CRF, co-trained .636 .654 .626 .0436
LSTM-CRF, combined .666 .666 .654 .0235

Table 2: Evaluation results. “Majority” means assigning
the majority label (“O” in our case) to all dialogue turns.
“Random” means randomly assigning labels based on their
statistical distributions. Precision, recall, and F1 scores are
the averages of the 5-fold cross validation evaluation, re-
spectively. “F1 std” is the standard deviation of the 5 F1
scores.

score is no better than that of the CRF model. LSTM-CRF
with co-trained sentence encoder does not perform very
well, probably because the training set is too small. Com-
bining the two encoders does not boost results. It may sug-
gest that the pre-trained sentence encoder is overall much
better.
“CRF+neighbor” refers to the CRF model with neighboring
sentence embeddings as input, in addition to current sen-
tence. Such a technique incorporates more context in the
model, but actually the performance is lower. Probably the
data dimensionality has become too high for a CRF model
to work properly.
Taking a close look, we find the CRF models tend to ig-
nore low-frequency classes. For example, the smallest class
QR (“query robot”) occurs 37 times in all the 5556 test in-
stances. The CRF model does not capture any of them (0 re-
call), but the LSTM-CRF model with pre-trained sentence
embeddings manages to identify 1 of them correctly. The
second smallest class QS (“query software”) occurs 116
times. The CRF model only identifies 1, but the LSTM-
CRF model finds 18 of them. Depending on the purpose,
there can be more specific ways to evaluate the results,
which will not be discussed in this paper.

5. Conclusion
In order to automatically label dialogue turns with compu-
tational thinking codes, we experimented with two com-
putational approaches: (1) a linear chain Conditional Ran-
dom Field (CRF) model, and (2) a recurrent neural network
model with a CRF layer. Both of them beat naı̈ve base-
lines by a large margin. Although our dataset is relatively
small, the RNN-based model seems to outperform the con-
ventional CRF model.
Our research is also a stepping-stone for microgenetic anal-
ysis of observational data. Eventually the analysis will help
us understand collaborative learning and working in a team
setup.
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