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Abstract

In this paper we present (1) a processing architecture used to collect multi-modal sensor data, both for corpora collection and real-time
processing, (2) an open-source implementation thereof and (3) a use-case where we deploy the architecture in a multi-party deception
game, featuring six human players and one robot. The architecture is agnostic to the choice of hardware (e.g. microphones, cameras,
etc.) and programming languages, although our implementation is mostly written in Python. In our use-case, different methods of
capturing verbal and non-verbal cues from the participants were used. These were processed in real-time and used to inform the robot
about the participants’ deceptive behaviour. The framework is of particular interest for researchers who are interested in the collection
of multi-party, richly recorded corpora and the design of conversational systems. Moreover for researchers who are interested in
human-robot interaction the available modules offer the possibility to easily create both autonomous and wizard-of-Oz interactions.
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1. Introduction

Recording group interactions is an essential step towards a
better understanding of the mechanisms of multi-party in-
teraction both between humans and between humans and
robots. In such interactions, humans communicate via a
number of different channels. Expressions in any modal-
ity, as well as the interactions between modalities and par-
ticipants, need to be reliably captured to enable a proper
analysis of how humans communicate in group settings.
Capturing multi-modal and multi-party interaction is still
a tremendous challenge in terms of hardware and software
development. Recordings of this kind generate very large
amounts of data. Ensuring synchronisation between sensor,
audio and video streams is crucial for reliable analysis.
When it comes to recording multi-modal datasets or imple-
menting multi-modal dialogue system:s, it is difficult to find
a framework that has been widely adopted by the commu-
nity. Given that there are a lot of constraints imposed by the
hardware, often the only option left is to develop a frame-
work around that same hardware. In addition, such cus-
tom frameworks frequently lack detailed documentation.
There were previous attempts to develop frameworks that
support multi-modal dialogue systems, for instance (Bohus
and Horvitz, 2009) and IrisTK (Skantze and Al Moubayed,
2012). IrisTK enables the recording of multi-modal data
collections, however, data stream synchronisation is not
fully solved. Mint.tools (Kousidis et al., 2013) tackle syn-
chronisation problems and perform recordings in an anno-
tation friendly manner, however this framework does not
close the loop into a dialogue system and is not, to our
knowledge, publicly available.

An artificial agent needs to have additional methods of per-
ceiving human behaviour in order to be context aware in
human-robot interaction (Turk, 2014). Apart from natu-

ral language understanding, several shallow input modali-
ties such as eye gaze or body posture can be used to de-
tect different patterns of human behaviour and reason to-
wards generating appropriate agent behaviour and feed-
back. Open source frameworks for real-time recognition
of social signals from many sensors exist (Wagner et al.,
2013) also featuring machine learning and pattern recog-
nition tools. Such modules can be included in dialogue
system pipelines. (Thompson and Bohus, 2013; Bohus
et al., 2017) provide a platform for analysis and develop-
ment of multimodal interactive systems that is extensible
and deployable for many situated intelligence tasks such as
speech recognition leveraging multimodal signals, human-
robot interaction supported with face recognition and so on.
The platform is restricted however to sensors provided by
one software company.

2. Goals

In this paper, we first describe the proposed architecture.
By architecture we mean an abstract conceptualisation of
how the components of the system interplay. Next, we
present a framework that implements the aforementioned
architecture.

Our goal is to tackle the problems encountered in previ-
ous attempts and present an open-source framework specif-
ically developed to handle multi-party, multi-modal data
recordings. The framework is modular, lending flexibility
to different future applications. It has been designed to be
modality agnostic, meaning that several modalities can be
added or removed depending on the sensor data available
and the perception models to be used. Both code and docu-
mentation are available for download !.

! https://github.com/kth-social-robotics/

multisensoryprocessing
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As a test case for the framework, we present an application
scenario involving the Furhat robot-head (Al Moubayed et
al., 2012) as a participant in a role-playing game “Were-
wolf”. In the scenario, we include several input modalities
of verbal and non-verbal human cues that can lead to better
understanding of the context and situational awareness of
the conversation: speech, gaze and body posture and move-
ment. In the case study, as we describe in Section 5., we
start by collecting low level sensor data that we further ag-
gregate in near-real time to higher level decision making
models. We use such models in order to reason effectively
how to generate appropriate agent behaviour. Note that in
our implementation, we do not support e.g. incremental
processing, such as the approach presented in (Kennington
et al., 2017), but rather, after aggregating gathered data, we
make a decision on what the current state or intent of the
participant is.

3. Architecture

The framework implements a modular message-oriented
architecture for sending, receiving and handling of sensory
data from multiple sources in a distributed manner. Beyond
the sensory hardware and software itself, the system is com-
posed of fours layers: Sensor API modules, sensor data pre-
processors, message processors and end consumers. Each
layer is composed of individual modules which send and/
or receive information from other modules asynchronously
via a message broker. Despite being published and con-
sumed in an asynchronous manner, each message includes
information from a central time server that enables mes-
sages published by different physical systems to be synced
to within a negligible margin of error.
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Figure 1: Interfaces between application layers.

Sensor modules interface with the sensory control soft-
ware (e.g. for sound cards or gaze-tracking equip-
ment), sending sensory data to any module which is
listening on its relevant socket. Upon initialisation,
each sensor module broadcasts information using the
message broker which is required to connect to it and
read socket data.

Pre-processors convert data streams from sensor modules
into individual messages, which are submitted to the

message queue for publishing to other modules. For
instance, the speech recognition result in the case of
the microphone sensors.

Processors process messages from other modules which
they have been registered to receive via the message
queue, e.g. performing dialogue act detection recogni-
tion on the data received from the speech recogniser
or predicting visual attention from gaze data.

Consumers use data handled by the framework for
domain-specific purposes, e.g. dialogue planning, lan-
guage generation or action planning for robots or vir-
tual agents.

The individual modules in each layer are only grouped con-
ceptually; A given module defines the module(s) it should
be listening to through the message queue, and thus is de-
pendent only on the message queue itself and the time
server to synchronise timestamps for messages as well as
raw data streams (see Figure 1).

3.1. Data Synchronisation

Data streams and messages are synchronised by offsetting
the timestamps using a delta function from a central time
server, ensuring that timestamps for data from each module
are comparable. When each module initialises, it requests
a time from the time server; The difference of this time
from the local time is then used to offset timestamps sent
with data from that module. Downstream modules, which
process data produced by other modules (i.e. all but sensory
modules), include the offset timestamp sent by the previous
module in the stream, thus allowing the original time of the
original sensory input to be easily reconstructed.

When using a local area network for sensory data transfer,
issues related to latency were negligible (see Section 5.).
However, the system architecture described here is agnostic
to the exact timestamp synchronisation algorithm used and
thus a more sophisticated one can be implemented in the
case that greater precision is required.

4. Framework

We implemented the aforementioned architecture into a
framework as a distributed system. The framework is writ-
ten in Python and gives the developer an easy way to define
sensors, preprocessors, processors and other consumers and
manages the communication and synchronisation of the
data streams for the user. The framework’s main respon-
sibilities are: (1) managing the messaging and the data
streams between the different components, (2) manage syn-
chronisation between data streams, and logging and record-
ing of the input signals. For the message queue Rabbit MQ
was chosen, and for the data sockets between the compo-
nents ZeroMQ was used. We present an example in Figure
2 for the case where only speech data is being recorded
from a single microphone (sensor), processed with auto-
matic speech recognition (ASR) and interpreted by the Nat-
ural Language Understanding (NLU) module.
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4.1. Communication Between Components

There are two primary ways of communication between the
components (see Figure 2): (1) messages through the mes-
sage broker, and (2) direct data streams between processing
units. The message broker is a centralised server which
other processes can connect to, subscribe to topics and re-
ceive messages sent out on those topics by other compo-
nents. The direct data streams are on the other hand a peer-
to-peer connection between components. This allows for
streaming data without straining the message broker with
a flood of messages for each packet. The main limitation
is that the receiver needs to know the IP address of the
sender. This is handled by each sensor sending out a mes-
sage through the broker with its own IP address and infor-
mation on what kind of data it is broadcasting. The commu-
nication via the message broker is performed by publishing
and listening for messages on given topics. A topic can,
for example, look like microphone.data.participant_A and
a listening process can subscribe to either exact topics or
use wildcards in order to receive a broader range of mes-
sages, e.g. microphone.data.* to receive microphone data
for all participants.
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Figure 2: We use a layered structure of data processing.
Using the framework we aggregate low-level sensor data to
high level information on the human’s state and intent from
verbal and non-verbal cues. In this example we present a
single-sensor usage of the framework that can update the
environment in real-time with the incoming utterances.

4.2. Synchronisation of Data Streams

The framework handles synchronisation of data streams in
a last in - first out fashion. We process sensor data and
aggregate to have a common frame rate amongst the sen-
sors that need to combine data streams. To ensure the data
streams have occurred in the same time, each node that
the data passes adds its own timestamp as meta-data to the
pack. As such the time the data is captured on sensor level
is kept on track to be able to handle the latency in the sys-
tem for differently processed data. Pre-processors listen to
messages from a sensor in which there is interest to receive
data from, but it can listen to many sensors at the same time
which creates the need for latency handling.

Using the same frame rate for combined sensors we can
track what frames are expected to be processed an if there
are any frames lost in the process. The timestamp of the
original data packet sent from a sensor is kept through-
out and is therefore are easily aligned. Our synchronisa-
tion strategy does not assume very timely latencies and will
therefore aggregate data streams from combined sensors
only when data from all sensors is available. For exam-
ple if a pre-processor expects data streams from two types
of sensors to aggregate and send to a processor, it will wait
until all sensors have completed their data streams before it
will pass the information to the next layer.

4.3. Data Transportation

The data streams are transported in local network for
smaller latencies, however in our distributed architecture,
several components can be part of the framework that are
either in the cloud or in remote repositories. As described
above the data packs are transported in two ways: through
a message broker and through peer-to-peer connections.
Each data pack transported across each layer is logged as
a message exchanged between components with the times-
tamps attached.

4.4. Logging and Recording of Data

The framework contains a module that can record and log
all of the data being sent between the components. This
is done by subscribing to all topics and writing the data
to file. It is possible to start multiple recording instances
to decrease the load on an individual data recorder, as the
quantity of data can become large with high-quality sensor
equipment.

As the framework adds a timestamp to each data packet,
it is also possible to visualise the flow of data and where
potential bottlenecks exists in the system. However, this
kind of visualisation is currently not implemented into the
framework.

Logging the data as messages adds another advantage to
post-processing the recordings. The messages can be re-
played as in real-real time in order to reproduce data cap-
tured from specific sensors. This helps debugging the
recording system, but also replicate human behaviour given
specified sensor data.

In the next section we describe how we made use of the pro-
posed architecture by implementing a framework and com-
ponents that can capture sensor data in a use case scenario
performing multi-party multi-modal spoken interaction be-
tween humans and a robot.

5. Use Case: The Werewolf Game

A good example for utilising the presented architecture is
a multi-modal, multi-party group interaction. This scenario
requires multitude of sensors to capture the entire dynamics
of the group interaction. In this study, we used the this ar-
chitecture for recording a multi-modal corpus of the “Were-
wolf” game. Werewolf is a multi-party role-playing social
game. Each player’s objective is to eliminate the oppos-
ing players by deceiving them regarding the player’s iden-
tity — a citizen or a Werewolf. Other studies have used this
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game before to study deceptive behaviour (Chittaranjan and
Hung, 2010) and gaze patterns (Oertel and Salvi, 2013).
The game is suitable for studying deceptive behaviour.
However, due to its engaging, multi-party nature, it is also
suitable for studying multi-party turn-taking phenomena,
and therefore provides the possibility to investigate other
research directions as well. For instance, the role of eye-
gaze coordination during turn-holds and turn-grabs in a
multi-party setting, or relation between participant engage-
ment aggregated eye-gaze patterns. The use of a robot in
this use-case poses further possibilities for analysing the
collected data. For example investigating how participants
react to the robot as one of the players. Are they ignoring
the robot or are they treating him as an equal entity? Would
they eliminate it more often or would prefer to let it stay
in the game? What do participants like about the robot’s
behaviour and where would they expect further improve-
ments?

5.1. Experimental Setup

Figure 3: Experimental setup of multi-party, multi-modal
interactions with a social robot in the “Werewolf” game.

The recording environment presented here is aimed for a
Wizard of Oz experimental setup. Although it can be ad-
justed to function without a wizard, these efforts are beyond
the scope of this work.

5.1.1. Multi-Sensory Data and Hardware Setup
During the game, the players sit around a table as shown in
Figure 3, so that each player can create a direct eye contact
with all the other players. In this setup, the moderator was
not seen by the players, but heard through a loudspeaker.
The setup was designed for a game with six human players
and one robot player. The number of participant is only lim-
ited by the amount of sensors available, as the architecture
can collect data for each sensor independently.

Each participant had a microphone for recording and recog-
nising their speech, a Kinect v22 camera or Tobii glasses’
for capturing eye gaze, gloves and a hat with motion cap-
ture reflective markers for capturing hand gestures and head
pose, and a - camera for capturing facial expressions. Each
of these hardware sensors had a equivalent software sensor
(see Table 1) to process and send the raw data to the rest
of the system. In addition, a video camera was positioned

2https://developer.microsoft.com/windows/
kinect
3https://www.tobiipro.com/

above the table to provide the wizard (who sat behind a cur-
tain) a live feed of the session. This camera’s data was not
sent to the rest of the system, i.e. was not recorded or taken
into account while playing the game. All of the raw data
from the sensors were recorded and saved to an external
storage in real time.

The eye-gaze information from the Kinect was translated
into a fixation on a specific player, if applicable, in real
time using GazeSense*. The equivalent information com-
ing from data recorded by the Tobii glasses was recorded
and after combined with motion capture, mapped to 3D
space in a similar manner. Furthermore, any information
that might be relevant for the robot’s decision making was
fed into the FAtiMA system (Dias et al., 2014), as described
below. The system includes some hand-crafted theory of
mind rules (Gardner, 2011), which are designed to detect
deception.

5.2. Architecture Implementation

5.2.1. Pre-Processors

All of the sensors mentioned in 5.1.1. had a corresponding
pre-processor, as specified by the architecture. The eye-
tracking, motion capture and Kinect gaze pre-processors
parsed the incoming data and sent them out as messages
through the message broker. Players’ spoken utterances
were sent as raw data to IBM Watson’s cloud-based auto-
matic speech recognition (ASR)’. OpenFace (Baltrugaitis
et al., 2016) was used for facial feature extraction for ex-
tracting action units (Ekman and Friesen, 1978).

5.2.2. Processors

In this use case, we mapped the ASR output onto the most
likely dialogue act among accuse, defend or support, using
a template file with common n-grams characterising these
dialogue acts, as found in a Werewolf corpus (Oertel and
Salvi, 2013). Since the ASR sends incremental data, we
constantly updated this as soon as new ASR results are
available. For the facial expression recogniser, we used
action units obtained by OpenFace. The processor could
collect several high-level facial cues that are valuable for
the decision-making component. The cues (e.g. opened or
closed eyes, frowning, smiling, etc.) could then, with a
basis in literature on deception, be used as behavioural fea-
tures for deciding whether a player is behaving deceptively
or not.

5.2.3. Decision-Making

Given the high amount of sensory input and processor units
that are present in the architecture, there is a need for a
decision-making component that receives processed high-
level information from the sensors and points to concrete
actions. The cognitive framework Fearnot AffecTIve Mind
Architecture (FAtiMA) (Dias and Paiva, 2005) was used to
achieve that. In particular, the modular version presented in
(Dias et al., 2014). FAtiMA is a flexible system designed to
work in an array of different settings where a user wants to

‘https://eyeware.tech/
Shttps://www.ibm.com/watson/services/
speech—-to-text/
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Figure 4: The multi-sensory processing architecture used in the use case study. We have separated the processing of
information into three data processing layers: sensor, preprocessor and processor. Each participant has a current state
initiated in the processing environment given the aggregated data captured by the previous layers.

create an agent with some degree of higher-level informa-
tion processing without the need of implementing a system
from scratch.

In our system, FAtiMA is based on two components: A
dynamic belief system which is updated consecutively, and
a fixed set of rules.

In the setting of the Werewolf game, a simple rule could,
for instance, be that Furhat should accuse a player of ly-
ing if they accused another participant that according to the
belief system has behaved truthfully in the previous round.
Unless stated otherwise, the belief system will not initially
have any information regarding the truthfulness of partic-
ipant. This information has to be explicitly given to the
framework from collected data via the pipeline of processed
sensory input. By implementing a series of rules and updat-
ing the belief system accordingly through the processes of
the framework, a more sophisticated decision-making sys-
tem emerges. This framework can be used to facilitate the
decisions of a wizard, which was the case in the Werewolf
scenario. However, the framework does also provide the
grounds necessary to represent a fully autonomous agent
instead of the wizard.

5.2.4. Wizard Interface

In the current setting, the wizard has access to a few actions
via a computer keyboard. These actions correspond to the
three dialogue act categories identified in the data collected
in (Oertel and Salvi, 2013): accuse, defend and support.
For each of these acts, the template file randomly picks an
utterance from a pre-defined set. Besides these acts, a few
other common dialogue acts and “small talk” utterances are
available. Once the game reached the voting round, the
wizard uses the an interface to vote in the name of the robot
player. While voting, the likelihood of each participant be-
ing the werewolf as calculated by the decision-making sys-
tem is displayed in the wizard interface.

Microphones

Kinect

USB cameras

Motion capture (Vicon)
Eye-trackers (Tobii)
Automatic speech recognition
Eye-tracking data parser
Kinect gaze data parser
Motion capture data parser
Facial feature extraction
Dialogue act recogniser
Facial expression recogniser

Sensors

Pre-processors

Processors

Table 1: The processing layers and their corresponding
processing units that were implemented for the Werewolf
game.

6. Discussion

The current paper described an architecture for recording
multi-modal interactions. Its purpose was threefold. First,
it proposed a solution to handle data-stream synchronisa-
tion. Second, it was designed to be easily extendable and
third and final it was created to be freely available to every-
one dealing with multi-modal systems.

The framework was applied to the ?werewolf" use-case sce-
nario. This scenario proved to be quite challenging. Six
players were interacting in real-time with a robot. We were
tracking voice activity and gaze (respectively head direc-
tion) simultaneously for all participants. Moreover, we con-
verted the sensor information into visualisations that were
displayed in the wizard interface. We encountered sev-
eral challenges in this use-case. For instance, we found
that some sensors required the complete use of a computer,
blocking the use of other sensors, at a given time. This re-
sulted in a very complex system using multiple computers.
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The choice for a distributed system architecture seemed ap-
propriate in this case, and its behaviour proved to be robust.
However, there is certainly room for further improvements
to the framework. For example, currently the framework
still requires to start and maintain processes on each indi-
vidual machine. In addition, system debugging is currently
not trivial as messages are broadcasted to the whole system.
It is often difficult to track in the code possible bugs. Im-
proved logging features and extended documentation about
all of the components is needed and is currently being de-
veloped. Despite the fact that there surely are some more
challenges to be solved, depending on use case scenario,
we believe that the framework we are releasing can be very
useful to the community.

7. Conclusion and Future Work

In the current paper, we presented a generalisable archi-
tecture for multi-modal, multi-party recordings. We illus-
trated its usability by relating it to research questions of
the “Werewolf” use-case scenario. Future work consists of
creating new processing units and automating the process
of installing and running multiple sensors on multiple com-
puters. The authors started implementing the architecture
in other projects. For example, a sensor unit exists in place
for data input using an OptiTrack® motion capture system.
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