
Web-based Annotation Tool for Inflectional Language Resources

Abdulrahman Alosaimy, Eric Atwell
School of Computing, University of Leeds

Leeds LS2 9JT, UK
{scama, e.s.atwell}@leeds.ac.uk

Abstract
We present Wasim, a web-based tool for semi-automatic morphosyntactic annotation of inflectional languages resources. The tool
features high flexibility in segmenting tokens, editing, diacritizing, and labelling tokens and segments. Text annotation of highly
inflectional languages (including Arabic) requires key functionality which we could not see in a survey of existing tools. Wasim
integrates with morphological analysers to speed up the annotation process by selecting one from their proposed analyses. It integrates
as well with external POS taggers for kick-start annotation and adaptive predicting based on annotations made so far. It aims to speed
up the annotation by completely relying on a keyboard interface, with no mouse interaction required. Wasim has been tested on four
case studies and these features proved to be useful. The source-code is released under the MIT license.

Keywords: annotation, inflectional language, morphosyntactic, Arabic

1. Introduction
POS tagging text in inflectional languages is usually hard.
A typical problem is substantial lexical data sparseness
due to the high number of possible inflexions of a single
word. To reduce sparseness and number of Out-of-
Vocabulary (OOV) words, inflected words are often
segmented prior to or in parallel with POS tagging.
However, the segmentation process is prone to errors.
Inflection boundaries are often not marked which
increases the number of homographs (two or more words
spelt in the same form but with different POS tag or
pronunciation (e.g. due to differences in diacritization).
Some orthographical changes are caused by inflexions,
making it hard to recover the original word form. As a
result, a segmentation process sometimes fails to detect
morphemes.

Wasim is a web-based tool for semi-automatic annotation
of text for the purpose of gold standard corpus
production1. It was developed for the annotation of our
Sunnah Arabic Corpus (SAC) (Alosaimy & Atwell,
2017), a collection of classical Arabic sayings ascribed to
the prophet Mohammad. It has also been tested in four
case studies.

For the project, we investigated the required set of
features needed for annotating SAC and used these as
criteria in a survey of existing tools. In our search for
currently available tools, we limited our survey to tools
that 1. are web-based: to integrate it with other systems,
and to allow easier access through browsers. 2. Annotate
text tokens with morpho-syntactic tags in CoNLL-U v.2
format (Nivre & Agic, 2017)2. 3. Support right-to-left
languages. 4. are available to download for research
purposes.

Morphosyntactic annotation of SAC (and other highly
inflectional language corpora) requires additional
specialized functionality:

1 Source code and demo is available at: http://wasim.al-
osaimy.com
2 CoNLL-U format has been used in Universal
Dependencies project and well described in
http://universaldependencies.org/

1. Segmentation of one word into a set of segments
2. Addition of orthographical accents or diacritics
3. Listing a set of solutions from a lexicon

dictionary (internally or externally using a
morphological analyser)

4. Consistency validation and integrating annotation
guidelines (e.g. homographs).

5. Adaptive prediction based on historical tagging
6. Efficient keyboard-based navigation and

labelling

In the next section, we provide an overview of major
related tools for annotating corpora, with a tabular
comparison of support for these features with Wasim.

2. Related Work
We limit our literature review to tools that meet our four
conditions, which results in five tools. Brat (Stenetorp et
al., 2012) is a widely-used visualization and annotation
tool that is mainly for syntactic annotation in addition to
morpho-syntactic annotation. WebAnno (Yimam,
Gurevych, de Castilho, & Biemann, 2013) is a Java-based
set of well-documented tools for multiple annotation
tasks. Arborator (Gerdes, 2013) is a dependency
annotation tool, that supports RTL languages natively.
Sequence Annotation Web Tool (Samih, Maier, &
Kallmeyer, 2016) is a basic web-based tool for the
annotation of token sequences with an arbitrary set of
labels (e.g. POS tags). The authors claimed to publish the
code on GitHub, but we could not find a link to it, so we
exclude it from the table comparison. CorA (Marcel
Bollmann, Florian Petran, Stefanie Dipper, 2014) is a
web-based tool for morpho-syntactic annotation of non-
standard texts.

In Table 1, we compare the support of the six features.
Although these tools did not meet all of our requirements,
we must say that some of them support other features (e.g.
syntactic annotation) that are not needed in our project,
and therefore are not listed in the table. We run these tools
for testing, and the support to these features is to the best
of the author knowledge. Some tools support multi-token
span annotation, but this assumes tokens are segmented,
so we consider segmentation feature as not supported.

3933

Features Brat WebA Arb CorA Wasim
Segment one word into
segments.

P P

Support Diacritics P P P P
Suggest a set of
solutions from a
lexicon / dictionary

 P

Consistency validation P P
Adaptive predicting
based on historical
tagging

 P P P

Efficient Keyboard-
based navigation and
annotation

 P P

Table 1: Tools and their support for a range of features.

3. Major features
The annotation of text in a highly inflectional language is
usually harder because:

1. Words are highly ambiguous, which results in
many homographs (i.e. more need of a lexicon),

2. Words need to be segmented into a set of
morphemes, and

3. As a result, tagger performance is usually poorer
and relies on a lexicon or a morphological
analyser to improve the accuracy.

Semi-automatic annotation should help to remove the
ambiguity of words as it should be able to correct tagger
errors. Often, these errors are in the ranking of the
solution set provided by the morphological analyser.
Therefore, the most essential feature is the integration of a
morphological analyser, which allows the annotator to re-
select the proper analysis in case of incorrect automatic
tagging.

In addition, an efficient way to segment words into a set
of morphemes is a necessity. For example in Arabic,
many words are inflected and an inflected word (multi-
word token) consists on average of 2.06 syntactic words
(or morphemes)3.

3.1 Morphological Analyser Integration
Wasim integrates with morphological analysers to speed
up the process of annotation. Morphological analysers
take a word as input and produce a list of possible
analyses (which include word’s segmentation and lemma
and segment’s POS tag and features). By providing a set
of possible analyses, Wasim allows annotators to select
one analysis. Once a solution is chosen, all its values of
POS tag, lemma, segmentation, and morphological
features will be reflected in the word analysis. The chosen
solution can be edited though.

In our SAC project, a word may be tagged with up to ten
features, in addition to segmenting the word into a set of
morphemes and marking its POS tag. We hypothesise that
it will more efficient to select a solution instead of doing
them all from scratch. However, this hypothesis depends
on the quality of the morphological analyser. Annotators
have to mark all features if the analyser returns no results.

3http://universaldependencies.org/treebanks/ar-
comparison.html

Once a newly-created analysis is detected, it will be saved
in the server for possible later re-use.

Wasim provides two ways of morphological analyser
integration. First, using an embedded supplementary tool
that acts as a simple lexicon memory: It reads the
annotated part of the corpus and index words with their
annotations. Then, it allows HTTP requests to be made
from Wasim, and it will return all possible solutions of the
token in hand.

Second is using an external morphological analyser (MA).
MA outputs must be in CoNLL-U format with word id in
the MISC column that maps to the original word index of
the submitted sentence (e.g. WID=2). The reason is to
allow Wasim to group MA’s analyses of one word
together.

A mapping between MA’s tagset and the project tagset
may be required, and this can be defined in the
configuration. If the mapping results in an ambiguous tag
in the project’s tagset, Wasim will duplicate the analysis
for each possible tag. For example, if NOUN is mapped to
PN and N, two analyses will be presented to the annotator.

3.2 Consistency Reinforcement
Consistency (a.k.a. “stability” when measuring the
consistency of one annotator alone over time) of the
corpus annotation process is important to ensure that all
annotators in all texts follow the same procedure of
annotation over time. High consistency means little
disagreement in the annotation, and this helps training
machine learning algorithms successfully.

To increase the consistency of the segmentation and
tagging of a corpus, Wasim followed three approaches.
First, it allows the use of an automatic POS tagger.
Second, it integrates with morphological analysers. Third,
it generates periodically a list of common homographs.
Homographs are associated with their possible POS tags
and segmentation. Possible segmentations are only shown
when the token in hand is a homograph.

Fig 1 The list of possible solutions from a morphological
analyser. A solution is usually a bundle of POS tag,
segmentation, lemma and morphological features.

Selecting one solution will replace all its content to each
proper annotation field.

3934

Usually, in annotation guidelines, there is some guidance
for specific words, usually homographs. However, in
highly inflectional languages, those homographs are
overwhelming, and such offline guidelines may miss
some homographs, and/or the guideline document may be
lengthy. This feature serves as an online guideline for
annotators, which is automatically built up.

In the segmentation layer, Wasim warns the annotator
when a segmentation of a word differs from previous
segmentation of the same word. If the annotator insists,
the new segmentation will be added. A similar process is
applied for morphological tagging.

The list is regenerated periodically from the annotated
part of the corpus, and the possible segmentations/POS
tags of homographs are kept. Each homograph will have a
set of examples in context for each sense. Moderators can
edit the list, and/or add guideline notes for tagging of
special cases. The list will appear in Wasim with relevant
notes when selecting a word in the list.

3.3 POS tagging Integration
Instead of starting the annotation process of a corpus from
scratch, Wasim integrates with UDPipe (Straka &
Straková, 2017) to kick start the annotation process.
UDPipe provides trained models for more than 60
languages that tokenize, tag, lemmatize and dependency
parse raw text and save results in CoNLL-U formatted
files. Wasim uses UDPipe as well to improve its
prediction model by periodically adding instances of the
corpus that has been annotated so far.

Other tools can be used as long as they generate CoNLL-
U formatted files. For example, SAWAREF toolkit can be
used for Arabic and the translation from popular POS
tagger into CoNLL-U format can be done using one of its
tools.

4. Data Representation
Wasim follows the Universal Dependencies v 2.0 (UD)
(Nivre & Agic, 2017) in the way it represents sentence
segmentation, POS tagging, morphological features,
segmentation, and lemmatization. All annotation is stored
as CoNLL-U files, which can be downloaded anytime.

Since Wasim does not annotate syntactic relationships,
related columns are marked as missing.

Unlike some other representations, CoNLL-U is
morpheme-based tagging with the ability to recover the
original word form prior to segmentation. In addition,
each morpheme has two POS tags; one from coarse
universal tagset (UPOS) and one from the author’s
defined fine-grained tagset (XPOS). This enables sharing
and comparing of cross-linguistically consistent
grammatical annotation of more than 100 treebanks
available in UD project. CoNLL-U format serves two
purposes: a well-formed structure for saving annotations
(like XML) and as a high-level guideline for
morphological tagging. Annotators are encouraged to use
UPOS tags, and a simple mapping from XPOS to UPOS
can be provided in the configuration.

The UD project does not have a standard format for
diacritization as it is language-specific. We followed our
project’s representation of diacritization of Arabic4.
Wasim allows users to enforce such representation by
performing a series of transformations using “regex”
expressions. Moderators can enforce a similar approach
for other languages. Diacritization changes a word from
its original form; Wasim, however, keeps the original
sentence form before diacritization in the comments part
of the sentence.

5. Tool Description
The Wasem tool has two main components: a front-end
interface which allows interaction with annotator and
provides warnings and feedbacks, and a back-end server
that manages sessions and storage of CoNLL-U files.

The front-end web-based tool is built using Ionic
framework using Typescript/Javascript programming
language. The main screen contains four sections: a
toolbar at the top is used for warnings, helpful shortcuts,
and for a glance of shortcuts. The rest is separated into
three columns. The middle column shows the words in
small boxes (each with its XPOS tag beneath it) with the
current word in process highlighted in a different colour.
Multi-word tokens show morphemes linked by a “+”

4 http://sac.al-osaimy.com/guidelines

Figure 2: A screenshot that shows Wasim in a browser. The middle part represents one sentence where each box is a
token (with its XPOS tag). Tokens of inflected word are linked by + symbol. The left side shows feature annotation.

The top bar represents actions such “save file” and “undo last action”. On the right side, CoNLL-U synchronized
representation of the sentences.

3935

symbol. Instead of displaying words in a tabular format
(like in CorA, SAWT), we display words in natural
paragraph flow; allowing annotator to easily examine a
word’s context. The left column shows key-value pairs of
the lemma and morphological features, and the right
column shows the synchronized CoNLL-U format of the
current document. Closed features are a dropdown list
with an auto-complete feature. Figure 2 shows a
screenshot that shows the main components of Wasim.

CoNLL-U representation on the right side is editable at
any time, as Wasim synchronizes changes. Changes will
be validated and errors are reported in an error log box
below it. In case of valid changes, such changes are
reflected on the Wasim widgets. This should give an
option to the annotator to make changes in bulk like
copying previous annotations, though this should be used
carefully in Gold Standard manual annotation.

In addition, three useful subviews are displayed on
demand: A. a list of other alternative solutions retrieved
from a morphological analyser. B. a tabular format of
morphological features and possible values. C. a
segmentation view that allows segmenting words easily.
The front-end of Wasim can be seen as a CoNLL-U file
editor: it parses the file, validates the syntax and
visualizes the sentences with a synchronized side-by-side
view of the CoNLL-U file.

The back-end is a server operated using Node.js Express
server, and is responsible for authentication and
management of annotated and raw files. A connection
with the server using WebSocket is established for
several reasons: such as morphological analyser requests,
logging sessions, diacritization requests, and temporary
session backup.

Each project is a folder in the system that contains
document files, configuration files, a database of
homographs and a file of the corpus lexicon. It manages
the versioning of files using the standard Git version
control system. The Git system tracks all the changes that
are made to files, and allows multiple operations, e.g. diff
to show changes to a file in the colour-coded interface.
Annotated documents are moved to a subfolder.

All annotations are stored in CoNLL-U format as plain
text files. Accessing one file from an annotator will grab a
copy of that file; however, this might allow other
annotators to work on the same file. To prevent that,
Wasim implements a simple lock system where a file is
locked while a connection is maintained with the server
(using WebSocket). We only release the lock if the
annotator accesses another file or the connection is closed.

Wasim is designed to be configurable to support
preferences and project related setup. Project setup
includes its name, language, remote Git repository,
UDPipe model, morphological analyser path and several
other preferences. Projects must define their own fine-
grained tagset (unless UD tagset is used), with their
morphological features. Wasim allows custom key-
binding for actions. The configuration files are saved in
the project level as JSON files.

The annotation process can be fully manual or semi-
manual. In case of semi-manual, the corpus is first tagged

using UDPipe models. Automatically generated tags can
then be checked and manually edited using Wasim. In the
next section, we will describe the supported
morphosyntactic layer in more detail.

6. Morphosyntactic tasks
Wasim provides an easy interface for the annotation of up
to six tasks. While these tasks can be processed
sequentially, we allow annotators to work on any of the
tasks at the same time. Tasks sometimes are interrelated,
e.g. if the automatic tagger produced the wrong POS tag,
it might as well have produced the wrong morphological
segmentation/lemma ..etc. Since Wasim uses
morphological analysers, if the annotator chose one
solution, it will affect multiple tasks at the same time.
Therefore, we allow the annotator to edit previous tasks
without leaving the screen. However, we expect the
annotator to use the morphological analyser (MA) feature
at the beginning of a word’s segmentation, diacritize then
segment the word, mark POS tag, and finally mark
morphological features.

Since Wasim allows the user to annotate text on many
levels at the same time, an annotator might skip a task
accidentally. Wasim provides a guide to go through tasks
in keyboard mode. It highlights tasks sequentially to keep
the annotator’s focus on the current task.

However, depending on the corpus annotation goals and
preferences, an annotator can customize the view; e.g.
deactivate one/multiple tasks, or disable CoNLL-U view.
The annotator can write post-process rules to check the
validity and consistency of different tasks as well as
constraints on different tasks.

Wasim is designed to increase productivity for these
particular annotation tasks while sacrificing some degree
of simplicity, eg there are many shortcuts/buttons on the
screen. While the learning curve (the rate of a person's
progress in gaining experience) is steep, we hypothesized
that once the annotator is trained, Wasim features will
reduce the time required for annotating each word.

6.1 Morphological segmentation
Inflectional languages tend to inflect morphemes to
express different grammatical features. Unlike many other
annotation tools, we do not assume the text to be
tokenized/segmented. Annotators can easily tokenize
words by editing their forms. Word can be segmented as
well by placing a pointer in the proper position and
inserting a special character (“+” sign by default). The
two generated morphemes will clone the data from the
original word except for its form which will be divided.
The multi-token form will remain the same though. The
original word in the main screen will be replaced by two
morphemes linked by “+” symbol. The annotator can
remove segmentation by simply hitting the “backspace”
button in one morpheme, and it will merge to the previous
morpheme.

With the integration of morphological analysers,
annotators should mostly select the proper
segmentation/tagging from its provided list. Manually
segmenting one word should be resorted to as a last
choice, the case when there is no proper segmentation.

3936

Since we follow CoNLL-U representation, UD
representation keeps the form of both the word and the
token in its two-level indexing scheme. The form of one
token can be rewritten as if it was not inflected. Free
morpheme form can be altered because of the inflexion,
and an annotator can recover its original form, e.g.
“John’s” can be recovered to either “john+has” or
“john+is”. The original form (John+’s) will be written in
the MISC (last) column. The result CoNLL-U will be like
the following:

1-2 John’s _ _ _ _ _ _ _ _

1 John _ NOUN N _ 0 _ _ _

2 has has AUX BE _ 0 _ _ ORG=’s

6.2 Diacritization
A diacritic (sometimes called accent or short vowel) is an
optional small glyph added to letters to change the sound
of the letter. Diacritization is the process of adding those
glyphs. In our Sunnah project, we asked for this addition
as diacritics reduce the ambiguity of words.

This process is tedious as it requires the annotator to move
the cursor letter by letter to add diacritics. Since the
number of the possible diacritization patterns is low, we
enable the use of morphological analysers to generate the
possible diacritization of a word. The annotation process
is then eased by only selecting the correctly-diacritized
word. The annotator has the ability, though, to edit the
form if no appropriate solution is provided.

Additionally, Wasim uses a diacritization tool
(Abdulrahman Alosaimy & Atwell, 2018) that borrows
more thorough diacritization forms in similar contexts.
This method is different from most other diacritizer as it
does not “compute” diacritization, but rather “borrows” it
if the word is found in a similar context. Context can be
defined in different ways: e.g. n-word-gram.

Wasim allows moderators to enforce standards on the
diacritization. For example, in Arabic, it can be
configured to ignore diacritization of letters preceeded by
a long vowel. These transformation rules can be enforced
using a set of regular expressions (regex)5. These rules
will only be applied to a subset of morpheme/words that
conform to certain conditions. For example, in the
guidelines of SAC, we require no diacritization on the
Lam letter of the definite article "Al-". We had a rule that
removes such diacritization of the subset morphemes that
has a POS tag: DET.

6.3 POS tagging
POS tagging in Wasim is morpheme-based. We assume
that the tag set is assignable to any morpheme regardless
of its location (e.g. prefix or base). Tags can be easily
chosen from a list of POS tags ordered by their frequency
or alphabetically. The most common POS tags are shown
at the top, and pressing its associated number will assign it
to the current in hand morpheme.

5 A regular expression, or regex is famous way to define a
search and replace pattern.

6.4 Morphological features
Morphological features can be easily marked through a
popup that offers a single input line for all morphological
features together. This popup, shown in Figure 3, offers
keyboard navigation to select the features. It also acts as a
search input, so that only features that match the input text
are visible.

Only the subset of morphological features that is
compatible with segment’s POS tag is shown. For
example, “Mood” is only shown with VERBs. The
compatibility table is configurable, but by default, we
used the computability of UPOS tag and UD
morphological features.

Once the input gets the focus of the user, it shows a drop-
down list of all possible values. Once a value is selected
(e.g. “MASC” for gender), other incompatible values hide
accordingly. The goal is to speed up the annotation by
selecting values in one place and asking for relevant
morphological features only.

6.5 Lemmatization
Wasim offers a simple interface for lemmatization. If it is
integrated with a morphological analyser, the lemma of
the chosen solution will be assigned. The lemma,
however, can be edited manually.

6.6 Sentence Segmentation layer
Wasim provides the ability to alter the text and separate
one sentence into two. By convention, ConLL-U format
leaves an empty line as an indicator of sentence start/end.

7. Case Studies
We provide four case studies to show the use of four
languages. In each case, we evaluate one major feature
and the effect of that feature on the speed and accuracy.

In each case, we annotate a paragraph (an average of 70
words) depending on the target language of the case.
While the text size is small and might not clearly show the
improvement, these experiments are for illustration
purposes rather than to actually measure the difference. In
addition, the annotator who has done these four
experiments is the author of the tool, therefore, most of
the effect of the learning curve is excluded.

For each case, the text is divided into two halves, H1 and
H2, and both halves are tagged twice (two rounds). In all
cases and for both rounds, the annotator is the same
person. Both halves are tagged with the feature enabled
(F=True) and then disabled (F=False) but in a different
order for each half. The steps are {H1F=True,H2 F=False,H1

Figure 3: Features annotation popup one-line input with
auto-complete feature of a VERB token.

3937

F=False,H2 F=True }, and first two steps are first round. In the
last two steps, the annotator already knows the texts and
should annotate it faster. However, results between step 3
and 4 are comparable as the word counts are similar.

In Arabic cases, we used Quranic Arabic Corpus and
asked the annotation to follow its annotation guidelines,
and the annotator understands well its tagset. UDPipe is
trained as well on Quranic Arabic Corpus (Dukes &
Habash, 2010) (converted to CoNLL-U by the author and
available on Github6). The morphological analyser used
here is MADAMIRA and its results are parsed and
converted to CoNLL-U format using Sawaref toolkit. A
manual mapping from MADAMIRA tagset to QAC is
defined and used.

Time is used as a metric for efficiency. The Intra-rater
reliability is high in all cases which shows that using
features does not affect the accuracy. Mismatches
between the two rounds are reviewed and corrected in a
third round. The accuracy in terms of the fraction of
correctly annotated words is then evaluated for the two
rounds compared with the gold standard (third round).
More metrics are reported per case requirement. In all
cases, we only evaluate the accuracy of segmentation and
POS tagging, although all tasks are done. Diacritization,
lemmatization, and other features accuracy are not
included. At the end, we show summary statistics on our
Sunnah Arabic Corpus Annotation.

7.1 Modern Standard Arabic and
Morphological Analyser

In this case, the annotator used the morphological
analyser to select one candidate analysis from a list of
proposed analyses. “Using MA” reports the case of
annotators selecting an analysis even though such analysis
was corrected later. We report the number of times the
annotator used MA and the number he edited the proposed
analysis. Clearly, the results show that using MA is
helpful in speed and accuracy, but in most cases, it is
prone to errors. Using MA improved the annotation
accuracy and speed significantly.

 Using MA Without
 round 1 round 2 round 1 round 2
Word count 50 51 51 50
Morphs count 72 70 70 72
Accuracy 96% 100% 84% 84%
Time (secs) 1358 635 1819 1729
Time (s/m) 18.86 9.07 25.99 24.01
Uses of MA 39 43 - -
Number of
edits

30 31 - -

Table 2: Using MA feature comparison.

7.2 Quranic Arabic and Consistency
Reinforcement (CR)

In this case, we show how the warning and helper
guidelines help to improve the accuracy. Consistency
Reinforcement feature used the whole QAC corpus to
build the list of homographs and their segmentation and
tagging. We report the number of homographs that were
displayed on the screen. 5-8 out of 25-24 morphemes

6 https://github.com/aosaimy/qac.conllu

shows the high number of homographs in the Quranic
Arabic Corpus (a case of highly inflectional language).

 Using Consistency
Helper

Without

 Step 1 Step 4 Step 2 Step 3
Word count 15 16 16 15
Morphs
count

25 24 24 25

Accuracy 100% 100% 100% 93%
Time (secs) 269 278 331 284
Time (s/m) 10.76 11.58 13.79 11.36
homographs 5 8 - -
Table 3: The accuracy and speed when using CR feature.

7.3 Sunnah Arabic and Keyboard Navigation
In this case, we ask the annotator not to use the keyboard
for navigation except for typing the correct form or
diacritization. We also report the number of mouse clicks
vs. the number of uses of keyboard key presses.

 Using Keyboard Using Mouse
 Step 1 Step 4 Step 2 Step 3
Word count 31 30 30 31
Morphs
count

38 37 37 38

Accuracy 100% 100% 100% 100%
Time (secs) 355 307 677 262
Time (s/m) 9.34 8.3 18.3 6.89
Presses/clicks 131 166 147 87

Table 4: The accuracy, speed, keyboard presses and
mouse clicks comparison with two modes.

7.4 English and UDPipe
In this case, we show that Wasim is language agnostic and
can work for non-highly inflectional and/or left-to-right
languages as well. We used a trained model of English
Treebank (provided by UD project) to kick start the
annotation process of assigning universal POS tags. We
do not show the effect of adaptive training UDPipe model
since the text excerpt is too small. Obviously, tagging
English text is more efficient since it is not an inflectional
language, and is not morphologically rich compared to
Arabic.

 Using Tagger Without
 round 1 round 2 round 1 round 2
Word count 31 30 30 31
Accuracy 96% 100% 96% 90%
Time (secs) 67 47 170 203
Time (s/w) 2.16 1.57 5.67 6.55
No. of Edits 0 0 1 3
Table 5: Comparison between using with and without MA

7.5 General Case: Sunnah Arabic Corpus
We have used Wasim for the ongoing project of
morphological annotation of the SAC. So far, words have
an average of 1.3 morphemes, and we spend 10.9
secs/morpheme on average to annotate a morpheme with
all features enabled, i.e. 9.17 morphemes per minute.
Features include POS tagging, segmentation,
lemmatization, and six morphological features.

3938

In the SAC, the speed of the annotation is rising over time
due to two reasons: the automatic tagger becomes more
accurate over time, the annotators are gaining experience.
Obviously, the speed of annotation depends on several
factors like text, language, course vs fine-grained tagging,
and annotator experience. Therefore, reported speed
measures should be viewed with caution.

8. Conclusion
We presented Wasim, an open-source web-based tool
efficiency-oriented for semi-automatic annotation of
inflectional languages resources. Wasim supports multiple
tasks including segmenting tokens, diacritizing and
labelling tokens and segments. It integrates the UDPipe
toolkit to kick-start the annotation process and can be
integrated with a morphological analyser to speed up the
annotation process. We illustrated the improvement in
accuracy and time in four cases with different genres and
languages.

For future work, we plan to add support for additional
layers for syntax, co-referencing, and named entities.

9. Bibliographical References
Alosaimy, A., & Atwell, E. (2017, December). Sunnah

Arabic Corpus: Design and Methodology.
Proceedings of the 5th International Conference on
Islamic Applications in Computer Science and
Technologies (IMAN 2017).

Alosaimy, A., & Atwell, E. (2018). Diacritization of a
Highly Cited Text: A Classical Arabic Book as a
Case. In 2nd IEEE International Workshop on
Arabic and derived Script Analysis and Recognition
(ASAR 2018). London, UK.

Dukes, K., & Habash, N. (2010). Morphological
Annotation of Quranic Arabic. LREC.

Gerdes, K. (2013). Collaborative Dependency Annotation.
In DepLing (pp. 88–97).

Marcel Bollmann, Florian Petran, Stefanie Dipper, J. K.
(2014). CorA: A web-based annotation tool for
historical and other non-standard language data.
Proceedings of the 8th Workshop on Language
Technology for Cultural Heritage , Social Sciences ,
and Humanities (LaTeCH), 86–90.

Nivre, J., & Agic, L. ˇZeljko. (2017). Universal
dependencies 2.0 CoNLL 2017 shared task
development and test data. LINDAT/CLARIN
digital library at the Institute of Formal and Applied
Linguistics, Charles University.

Samih, Y., Maier, W., & Kallmeyer, L. (2016). SAWT:
Sequence Annotation Web Tool. EMNLP 2016, 65.

Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou,
S., & Tsujii, J. (2012). BRAT: a web-based tool for
NLP-assisted text annotation. In Proceedings of the
Demonstrations at the 13th Conference of the
European Chapter of the Association for
Computational Linguistics (pp. 102–107).

Straka, M., & Straková, J. (2017). Tokenizing, POS
Tagging, Lemmatizing and Parsing UD 2.0 with
UDPipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to

Universal Dependencies (pp. 88–99). Vancouver,
Canada: Association for Computational Linguistics.

Yimam, S. M., Gurevych, I., de Castilho, R. E., &
Biemann, C. (2013). WebAnno: A Flexible, Web-
based and Visually Supported System for
Distributed Annotations. In ACL (Conference
System Demonstrations) (pp. 1–6).

3939

