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Abstract
The paper provides a cognitively motivated method for evaluating the inflectional complexity of a language, based on a sample of
"raw" inflected word forms processed and learned by a recurrent self-organising neural network with fixed parameter setting. Training
items contain no information about either morphological content or structure. This makes the proposed method independent of both
meta-linguistic issues (e.g. format and expressive power of descriptive rules, manual or automated segmentation of input forms, number
of inflectional classes etc.) and language-specific typological aspects (e.g. word-based, stem-based or template-based morphology).
Results are illustrated by contrasting Arabic, English, German, Greek, Italian and Spanish.
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1. Introduction
There is little doubt that some languages are inflectionally
more complex than others. Everybody would agree with
the intuitive statement that the English conjugation system
is simpler than the German system, and that the latter is,
in turn, simpler than the verb system of Modern Standard
Arabic. However, the naïve view is faced with two apparent
paradoxes. When linguists try to pinpoint the source of this
complexity, the task is far more elusive than expected, and
goes well beyond a purely descriptive notion of diversity
in the battery of realisational means (e.g. number of differ-
ent affixes, number of cells in the corresponding paradigms,
amount of stem allormophy etc.) provided by each system.
Besides, there seems to be a poor correlation between our
intuitive notion of morphological complexity and actual ev-
idence of the pace of acquisition of more or less complex
inflectional systems in child language. In some cases, ap-
parently simpler inflectional markers may take more time
to be acquired than formally more complex and articulated
ones. What looks like a prohibitively difficult learning task
in the light of the complexity and uncertainty of the infer-
ence steps required for mastering it, may turn out to be rel-
atively unproblematic for human speakers. In the present
paper we entertain a usage-oriented, cognitively motivated
approach to issues of morphological complexity, based on
a neurobiologically inspired model of word processing and
learning, and explore its theoretical and computational im-
plications.

2. Background
Assessing and understanding the comparative complex-
ity of the inflectional system of a language relative to
a functionally-equivalent system of another language re-
mains an open question, which has animated much of the
contemporary debate on the nature of word knowledge
and its connection with issues of word usage (Ackerman
and Malouf, 2013; Bane, 2008; Bearman et al., 2015;
Juola, 1998; Moscoso del Prado Martín et al., 2004).
In a crosslinguistic perspective, the way morphosyntac-

tic features are contextually realised through processes of
word inflection probably represents the widest dimension
of grammatical crosslinguistic variation, somewhat belit-
tling universal invariances along other dimensions (Evans
and Levinson, 2009).
Descriptive linguists have often approached the issue of
comparative inflectional complexity by providing compre-
hensive catalogues of the morphological markers and pat-
terns in a given language or languages (Bickel and Nichols,
2005; McWorther, 2001; Shosted, 2006). Accordingly, the
complexity of an inflectional system is measured by simply
enumerating the number of category values instantiated in
the system (e.g. person, number or tense features) and the
range of available markers for their realisation: the bigger
the number, the more difficult the resulting system. The no-
tion of Enumerative Complexity (or E-complexity) is how-
ever dubious (Ackerman and Malouf, 2013). Suppose we
have two hypothetical inflectional systems, each with two
categories only (say, singular and plural) and three differ-
ent endings for each category: A, B, C for singular, and
D, E and F for plural. In the first system, paradigms are
found to present three possible pairs of endings only: <A,
D>, <B, E>, <C, F> (corresponding to three different in-
flection classes). In the second system, any combination is
attested. Clearly, the latter system would be more difficult
to learn than the former, as it makes it harder to infer the
plural form of a word from its singular form. Nonetheless,
both systems present the same degree of E-complexity.
Of late, less combinatorial approaches to morphological
description have played down the role of E-complexity
in inflection. These approaches, generally referred to as
“paradigm-based”, or “word-based”, or “abstractive” gram-
matical frameworks, examine the systemic organisation of
underlying patterns of surface variation, to conceive of
an inflectional system as a network of implicative rela-
tions holding between fully-inflected forms (Blevins, 2003;
Blevins, 2016; Burzio, 1998; Bybee, 1995; Bybee and
McClelland, 2005; Matthews, 1991; Pirrelli and Battista,
2000). Implicative relations allow novel forms to be pre-
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dicted and inferred on the basis of known forms, thereby
making it easier for a human speaker to process, retain and
access them. Not only do implicative relations shed light
on the way children come to master the inflectional sys-
tem of their mother tongue, but they also constrain sys-
tems of word shapes, providing a limit on the range of E-
complexity that languages can afford.
A number of information theoretic approaches have been
proposed to model this view in terms of Kolmogorov com-
plexity (Kolmogorov, 1965) and Shannon entropy (Shan-
non, 1948). The idea behind Kolmogorov complexity is to
measure a dataset of inflected forms as the shortest possible
grammar needed to describe them. This however leads to a
definition of morphological complexity heavily dependent
on the grammar formalism adopted (Bane, 2008; Walther
and Sagot, 2011). Ackerman and Malouf (2013) use Shan-
non’s information entropy to quantify prediction of an in-
flected form as a paradigm-based change in the speaker’s
uncertainty. They conjecture that inflectional systems tend
to minimise the average conditional entropy of predicting
each form in a paradigm on the basis of any other form of
the same paradigm (Low Conditional Entropy Conjecture
or LCEC). This is measured by looking at the distribution
of inflectional markers across inflection classes in the mor-
phological system of a language. Although LCEC proves
to be able to capture a substantial part of the inferential
complexity within paradigms, it presupposes a segmenta-
tion of inflected forms into stems and affixes, while ignor-
ing implicative relations holding between stem allomorphs.
Use of principal parts can remedy this in a principled way
(Finkel and Stump, 2007, among others). However, while
entropy measures can provide extremely valuable insights
into the organisation of static, synchronic paradigms, there
are crucial complementary questions about how such pat-
terns are processed and learned which remain unaddressed.
In what follows, we will focus on these important issues
from a neuro-computational perspective. In particular, we
are interested in evaluating the net effect of the complexity
of an inflectional system on the processing behaviour of a
recurrent neural network, excluding the role of word token
frequency effects on prediction-driven processing (Picker-
ing and Garrod, 2013). To factor out frequency effects, we
ran simulations on uniformly distributed inflectional data.
Our work can hence be understood as a purely morpholog-
ical evaluation of complexity, based on lexical rather than
corpus data. Since uniform distributions increase the en-
tropy of a system, our results define some sort of upper
bounds for inflectional complexity: if all factors (including
frequency) are taken into account, the effects we observe
here will likely be more prone to potentially confound-
ing factors. This is in the spirit of information-theoretic
work on paradigm-based morphology, as well as ‘discrimi-
native learning’ research in animal behaviour and language
learning (Rescorla and Wagner, 1972; Ramscar and Yarlett,
2007; Ramscar and Dye, 2011), and justifies our choice of
a specific type of recurrent neural network, namely a Tem-
poral Self-Organising Map (Ferro et al., 2011; Marzi and
Pirrelli, 2015; Pirrelli et al., 2015; Marzi et al., 2016) as
a workbench for simulating pardigm-based effects. Ulti-
mately, it is intended to bridge the gap between an algorith-

mic/mathematical understanding of processing-based mor-
phological complexity (Balling and Baayen, 2008; Balling
and Baayen, 2012), and the neurobiological (or implemen-
tational) level of Marr’s hierarchy (Marr, 1982).

3. Method and data
According to Dressler and colleagues (Bittner et al., 2003),
European languages can be arranged along an inflectional
complexity continuum, ranging from a more inflecting-
fusional type (left) to a more isolating type (right):

Lithuanian→Greek→Russian→Croatian→Italian→
Spanish→German→Dutch→French→English.

Somewhat paradoxically, developmental evidence provides
an indication that inflectional contrasts in prototypically in-
flecting verb systems are reported to be acquired at an ear-
lier stage than inflectional contrasts in more isolating verb
systems.1

Here, we would like to investigate the related question
about how degrees of inflectional complexity/regularity af-
fect word processing strategies. For this purpose, we
analyse the performance of recurrent self-organising neu-
ral networks learning a few languages in the typological
continuum above: namely, English, German, Greek, Ital-
ian and Spanish. To broaden our typological data, Stan-
dard Modern Arabic was added to the range of tested
languages. For each language we sampled the 50 top-
frequency verb paradigms found in a few reference re-
sources: CELEX (Baayen et al., 1995) for German and
English; the Paisà Corpus (Lyding et al., 2014) for Ital-
ian; the European Spanish Subcorpus of the Spanish Ten-
Ten Corpus (www.sketchengine.co.uk); the SUBTLEX-GR
corpus (Dimitropoulou et al., 2010) for Modern Greek; the
Penn Arabic Treebank (Maamouri et al., 2004). To con-
trol paradigm implicative relations, we selected a com-
parable set of 15 paradigm cells (14 cells for Arabic).2

The sample contains a shared set of 6 present and 6 past
tense forms for English, German, Greek, Italian and Span-
ish. Infinitive, gerund/present participle and past participle
forms were added for English, German, Italian and Span-
ish, whereas 3 singular forms of the simple future were
included for Modern Greek. The Arabic set contains 7
imperfective and 7 perfective forms, including 1S, 2MS,
3MS, 3FS, 1P, 2MP, 3MP cells. Only inflected “raw” forms
from the selected cells were included for training a recur-
rent neural network, with no additional morphological in-
formation. Each language-specific dataset is administered
to a Temporal Self-Organising Map (hereafter TSOM, see
section 3.2. for more details) for 100 epochs. In one epoch,
all word forms are randomly input to the map five times,
and each training session was repetated five times with re-
sults averaged over repetitions to control random variabil-

1For example, Noccetti (2003) reports that the transition from
pre- to proto-morphology in Italian verb acquisition has an early
onset at Brown’s stage II, with mean length of utterance 2 (Brown,
1973), in contrast with the comparative late emergence of the
third-person singular marker -s in the acquisition of the English
present tense.

2The full set of data, for each language, is available at
http://www.comphyslab.it/redirect/?id=lrec2018_data
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ity. TSOM parameters are identically initialised across the
6 languages, with the only exception of available memory
nodes (Table 1).3

3.1. The data
The selected paradigm cells for the target languages offer
evidence of graded levels of morphological (ir-)regularities.
Greek, Italian, Spanish and German present highly inflect-
ing conjugation systems, with extensive stem allomorphy,
exhibiting varying degrees of (ir)regularity. Inflecting pro-
cesses include prefixation, suffixation, vowel alternation,
infixation and suppletion. Arabic stem formation is based
on the interspersion of discontinuous consonantal roots and
variable vowel patterns. English offers the by far simplest
inflectional system, with extensive syncretism and a rather
dichotomous subdivision of paradigms between regular and
irregular ones.
For all test languages except Modern Greek, word forms
are orthographically transcribed, and administered to the
network one symbol at a time as raw letter strings (start-
ing with the start-of-word symbol ’#’ and ending with
the end-of-word symbol ’$’), with no information about
their morphological structure. To account for the com-
plex interaction between morphologically-conditioned and
phonologically-conditioned stem allomorphy in Greek con-
jugation (Ralli, 2005; Ralli, 2006), Greek word forms
are transcribed phonologically, and input one segment at
a time. Once more, no information about morphological
structure is input. To assess the network sensitivity to mor-
phological structure and the processing behaviour of the
map across morpheme boundaries (see section 4.), after
training, word forms in all test languages were segmented
morphologically according to a prefix-stem-suffix schema:
e.g. Greek e-krin-a ‘I judged’, German ge-dach-t ‘thought’
(past participle), Arabic ya-ktub-u ‘he writes’. Stem al-
lomorphs within a single paradigm (whether morphologi-
cally/phonologically predictable or not) are segmented as
whole units, with no explicit indication of either the root
or the alternating pattern: e.g. Arabic katab-a ‘he wrote’
vs. ya-ktub-u ‘he writes’. Only purely suffixal stem forma-
tion is segmented: e.g. Greek AGApi-s-A ‘I loved’, Italian
perd-ut-o ‘lost’ (past participle).

3.2. Recurrent self-organising neural networks
TSOMs are recurrent self-organising networks consisting
of two-dimensional grids of artificial memory/processing
nodes that learn to dynamically memorise input strings
as chains of maximally-responding processing nodes (Best
Matching Units, or BMUs), whose level of sensitivity to in-
put symbols in context is a continuous function of their dis-
tributional regularities in training (Ferro et al., 2011; Marzi
and Pirrelli, 2015; Pirrelli et al., 2015; Marzi et al., 2016).
In a TSOM, each processing node has two layers of synap-
tic connectivity: an input layer, connecting each node to

3For the sake of data comparability, the number of memory
nodes for each language was decided empirically to control for
cross-linguistic differences in cardinality and length of word types
(see Table 1). For all trained languages, the percentage of used
nodes among all available nodes ranges between 31% and 35%.

form length paradigms word types/ TSOM
language min/max reg./irreg. training size nodes

Arabic 4/11 18/28 560/601 40x40
English 2/11 20/30 208/750 35x35
German 3/11 16/34 504/750 40x40
Greek 2/13 37/13 744/750 42x42
Italian 2/12 23/27 748/750 42x42
Spanish 2/15 23/27 715/750 40x40

Table 1: Language training sets. Form length is measured
by the number of orthographic/phonetic symbols. In the
Italian sample, we encoded the orthographic accent as a
separate character (e.g. è = e’). Differences between word
types and cardinality of the training set are due to syn-
cretism (particularly extensive in English). Paradigm de-
fectiveness explains the smaller cardinality of the Arabic
training set.

the current input stimulus (i.e. orthographic or phonolog-
ical symbols), and a (re-entrant) temporal layer, connect-
ing each node to all other nodes. Every time a symbol is
presented to the input layer, activation propagates to all
map nodes through input and temporal connections, and
the most highly activated node (BMU) is calculated (see
Figure 1). Given the BMU at time t, the temporal layer en-
codes the expectation of the current BMU for the node to
be activated at time t+1. The strength of the connection be-
tween consecutively activated BMUs is trained through the
following principles of discriminative learning: given the
input bigram ab, the connection strength between the BMU
that get mostly activated for a at time t and the BMU for b
at time t+1 will:
(i) increase if a often precedes b in training (entrenchment),
(ii) decrease if b is often preceded by a symbol other than a
(competition).
The complex interaction between entrenchment and com-
petition in a TSOM accounts for important dynamic effects
of self-organisation of stored words (Marzi et al., 2014;
Marzi et al., 2016). In particular, at a sublexical level,
systematically recurrent patterns tend to recruit context-
sensitive specialised (and stronger) chains of BMUs. If
the bigram ’ab’ is repeatedly input to the TSOM, the map
tends to develop a specialised BMU(‘b’) for ‘b’ in ‘ab’ and
a highly-weighted outward connection from BMU(‘a’) to
BMU(‘b’), reflecting a strong expectation of BMU(‘a’) for
a prospective BMU(‘b’). In detail, during training, weights
on both connectivity layers are adjusted in an experience-
dependent fashion: after an initial period of random vari-
ability, where nodes activate chaotically, a map gradually
develops more and more specialised sequence of BMUs for
word forms - or sub-lexical chains - that are functionally
dependent on the frequency distribution and the amount of
formal redundancy in the training data. On the one hand,
specialised inter-node connectivity makes BMUs less con-
fusable and more salient, as they receive stronger support
through temporal connections than any other node. On the
other hand, less specialised and more blended BMUs are
densely and less strongly connected with many others, to
meet the input of more words. When a TSOM is trained
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Figure 1: Functional architecture of a Temporal Self-
Organising Map (TSOM). Each input word form is pre-
sented by a unique time-series of symbols, which are ad-
ministered one at a time.

on higly redundant input data such as verb paradigms, spe-
cialisation and blending may interact. By inputting all verb
forms with a uniform token distribution, we factor out the
effect of frequency and focus our analysis on the effect of
formal redundancy only. Thus, due to the prediction-driven
bias of the temporal layer of re-entrant connections, strong
expectations over upcoming input symbols account for suc-
cessful serial word processing, with processing accuracy
being a function of how confident the TSOM is about the
position of the current symbol in the input string.
These dynamics make it possible to test the behaviour of
a TSOM on specific lexical tasks: word recall and serial
word processing. For each time series of input symbols
(i.e. each word form), the processing response of the map
is represented by the synchronic activation pattern of all
the BMUs that most highly get activated for that input se-
quence. Thus, the task of word recall tests how accurately a
map can retrieve the input word from its synchronic activa-
tion pattern, namely how accurately the activation nodes of
the map can encode information about the timing of the in-
put symbols that make up the word. Accuracy in recall ver-
ifies that, for each input form, activation propagation (i.e.
sequential activation) of nodes within each synchronic pat-
tern correctly activates the BMUs associated with the sym-
bols of each word. Scores are given in Table 2, showing
very high accuracy and remarkably cross-linguistic simi-
larity.
Conversely, serial word processing can be monitored by
evaluating the ability of a map to predict an incrementally
presented input word. Proceduraly, by presenting one sym-
bol at a time on the input layer, a TSOM is prompted to
complete the current input string by anticipating the upcom-
ing BMU to be activated. Anticipation/prediction scores
across input words are calculated by incrementally assign-
ing each correctly anticipated symbol in the input form a
1-point score, i.e. the anticipation score of the preceding
symbol incremented by 1. Otherwise, for unpredicted sym-
bols the score is 0. The more input symbols are anticipated,

language recall % sd %
Arabic 99.93 0.16
English 99.62 0.86
German 99.76 0.18
Greek 99.84 0.06
Italian 99.79 0.15
Spanish 99.94 0.13

Table 2: For each language, percentage values of correctly
recalled word types and standard deviations are given, av-
eraged over 5 map instances.
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Figure 2: Marginal plot of interaction effects between lan-
guage and distance to morpheme boundary, in an LMER
model fitting the number of symbols predicted by TOMs.
Fixed effects: languages, distance to morpheme boundary.
Random effects: TSOM instances, paradigms, word forms.

the easier the prediction of that word. Results will be given
and discuss in the ensuing section (4.).

4. Results and discussion
All results in this section are analysed with linear models
for mixed effects (LMERs). For all models/languages, we
treated TSOM instances, verb paradigms and word forms
as random effects. In particular, we show how inflectional
systems of different complexity (independent variables) af-
fect TSOM processing, by focusing on symbol prediction
rate as a dependent variable.
Figure 2 plots, for each language, the rate of symbol predic-
tion in serial word processing. It should be appreciated that
Arabic, German, Italian and Spanish exhibit remarkably
similar trends, with not significantly different slopes (p-
values >.05). Only Greek and English present significantly
different slopes (p-values <.001), with Greek forms being
the hardest to process (lower slope), and English forms the
easiest ones (higher slope).
To evaluate the impact of formal transparency on process-
ing, the effect of regularity is fitted in a second LMER
model where languages are considered as random ef-
fects. Across our selected languages, verb forms in regu-
lar paradigms are systematically more predictable (p-value
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in an LMER model fitting the number of symbols predicted
by TOMs. Fixed effects: irregulars (I) vs. regulars (R), dis-
tance to morpheme boundary. Random effects: languages,
TSOM instances, paradigms, word forms.

<.001) than forms in irregular ones, as shown by the
marginal plot in Figure 3.
To investigate in more detail the impact of inflectional com-
plexity on processing, we fitted an LMER of symbol predic-
tion for each language, with classes of morphological regu-
larity (regulars vs. irregulars) and morphological structure
(stem vs. suffix) as fixed effects (Figure 4).
The marginal plots in Figure 4 better show a clear serial
processing effect of the distance of an input symbol to the
stem-ending boundary, over and above the length of the
input string. Unsurprisingly, Italian and Spanish show a
very similar behaviour, with irregular forms exhibiting fu-
sional effects that blur the boundary between stem and in-
flectional endings, and comparable (but not identical) num-
ber of stem allomorphs (Boyé and Cabredo Hofherr, 2006;
Pirrelli, 2000). Remarkably, both German and Greek ex-
hibit systematic (albeit not always predictable) processes
of stem formation, followed by a fairly homogenous pool
of inflectional endings. As a result, in both languages, the
base stem (or present stem) is often followed by a highly
embedded and unpredictable sequence of symbols which
account for the negative slopes in the corresponding seg-
ments. In Arabic imperfective forms, prefixation is used
to convey person features. This makes selection of inflec-
tional endings fairly predictable, given the stem. Finally,
in our pool of languages, English offers the by far simplest
inflectional system, with extensive syncretism and a rather
dichotomous subdivision of paradigms between regular and
irregular ones.
Slopes are also modulated by degrees of regular-
ity/transparency of the stem. Discontinuous patterns
of morphological structure are often found in irregu-
lar paradigms of concatenative languages (e.g. English
drink/drunk, German finden/fanden), and are systemati-
cally attested in non-concatenative morphologies (e.g. Ara-
bic kataba/yaktubu). It is well known in the literature on se-
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Figure 4: For each language, marginal plots of interac-
tion effects between morphological (ir-)regularity and dis-
tance to morpheme boundary, in LMER models fitting the
number of symbols predicted by TOMs for stem and suf-
fix. Fixed effects: regularity (dashed lines) vs. irregular-
ity (solid lines), distance to morpheme boundary, stem and
suffix as separate patterns, suffix length. Random effects:
TSOM instances, paradigms, word forms.

rial alignment that discontinuous patterns are more difficult
to be processed and tracked down (Hahn and Bailey, 2005).
In the present context, stem allomorphs are less predictable
since their "uniqueness point", i.e. the point at which they
can be distinguished from all neighbouring allomorphs, are
normally delayed, slowing down processing (Balling and
Baayen, 2012). Other things being equal,4 the order of
magnitude of this competing effect is a function of the num-
ber of stem allomorphs: the more they are, the more confus-
able the input stem is. Conversely, in regular paradigms the
same stem shows up systematically in all cells. Hence the
stem suffers from no intra-paradigmatic competition. These
factors provide, on average, a net processing advantage of
stems in regular paradigms, as confirmed by the significant
difference in prediction rate between stems of regular vs.
irregular paradigms in all languages (Figure 4). However,
the clear advantage in stem processing is somewhat com-
pensated by the difference in the prediction rate on suffixes.
In German, Greek, Italian and Spanish suffixes in irregulars
are predicted significantly more easily than suffixes in regu-
lar forms, as shown by the steeper segments in the positive

4The effect is modulated by other factors we are not control-
ling here: i.e. the formal similarity between the input stem and its
intra-paradigmatic competitors, the entropy of the paradigm, the
lexical neighbourhood of the word form.

3864



x range of Figure 4. Besides, for all languages, there is
a deeper drop in prediction rate at the stem-suffix bound-
ary (for x = 0 as the first symbol of the suffix) in regu-
lar forms. In fact, stem allomorphs typically select only a
subset of paradigm cells. Hence they can be followed by
fewer inflectional endings than regular stems are. This re-
duces processing uncertainty, by constraining the range of
possible continuations at the stem-suffix boundary of irreg-
ularly inflected forms. As a result, irregulars tend to blur
the TSOM sensitivity to the verb morphological structure,
favouring a somewhat more holistic processing strategy.
Results and statistical significance are confirmed when
we consider a more fine-grained meausure for inflectional
complexity based on a gradient of morphological regular-
ity, which takes into account the number of stem alternants
of a given paradigm.5 It represents a graded - and contin-
uous - meausure of paradigmatic (ir-)regularity that con-
siders, for each inflected form, the number of stem-sharing
forms (or stem family size), instead of a dichotomous and
formal classification of paradigms (regulars vs. irregulars).
Thus, given the number of inflected form-types for each
paradigms, the average stem family size correlates better
with the non-categorical idea of inflectional complexity.

5. Concluding remarks
Our evidence is in line with Low Conditional Entropy Con-
jecture (Ackerman and Malouf, 2013). The processing cost
of considerably different inflectional systems appears to os-
cillate within a fairly limited range of variation, whose up-
per bound and lower bound are marked, in our language
sample, by Modern Greek and English respectively. All
other conjugations present no statistically significant dif-
ferences in the processing overhead they require, in spite of
their typological diversity, which is nonetheless reflected
by the different processing profiles exhibited by sublexical
constituents in the different languages.
In a functional perspective, this evidence can be interpreted
as the result of a balancing act between two potentially
competing communicative requirements: (i) a recognition-
driven tendency for a maximally contrastive system; and
(ii) a production-driven bias for a maximally generalisable
inflection system, where, for each paradigm, all forms in
the paradigm can possibly be deduced from any one of its
forms.
This interpretation is also compatible with another clear
pattern shown by our data. In each of our sample lan-
guages, the difference between the processing cost of forms
in irregular paradigms compared with the processing cost of
forms in irregular paradigms shows an interesting structure-
sensitive profile. The higher processing cost of irregular
stems is compensated by a lower cost in processing the in-
flectional endings selected by irregular stems. Once more,
these structural effects tend to reduce processing costs at
the level of the whole word, making the inflectional sys-
tem as functional as possible from an information theoretic

5This graded notion takes into accout exceptional alternating
stems in otherwise regular paradigms (e.g. Italian aprire/aperto
and Spanish abrir/abierto, “open” infinitive/”opened” past par-
ticiple). At the same time, it captures the difference between par-
tially irregular paradigms and radically idiosynchratic ones.

perspective. In recognising that scale effects play an im-
portant role in the processing behaviour of our model at
the word level, and that constrains on word processing are
likely to obtain universally, we also highlight the funda-
mental communicative role of words as optimal-sized units
for describing general functional tendencies in language,
and for studying language as a complex information sys-
tem.
Inflectional complexity is multifactorial and dynamic.
Its variability can be observed and measured on many
counts: number and types of stem allomorphs, number and
types of inflectional affixes, transparency/compositionality
effects, stem-stem predictability, stem-affix predictabil-
ity, affix-affix predictability, intra-paradigmatic and inter-
paradigmatic frequency distributions etc. In this paper, we
investigated inflectional complexity by controlling a num-
ber of interacting factors through language-specific train-
ing regimes, on which we ran a psycho-linguistically plau-
sible computer model of inflection learning. In this way,
we could understand more of factor interaction through a
quantitative analysis of the way the performance of our sys-
tem is affected across different training regimes. Method-
ologically, it allows for much more flexible and controlled
test/analysis protocols than those commonly used with hu-
man subjects in experimental psycholinguistics.
In addition, understanding more of the real cognitive hur-
dles a human learner has to face in the process of effec-
tively acquiring an inflectional system of average complex-
ity may also shed some light on optimal practices for lan-
guage teaching.
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