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Matı̄ss Rikters, Mārcis Pinnis, Rihards Krišlauks
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Abstract
In this paper, we present results of employing multilingual and multi-way neural machine translation approaches for morphologically
rich languages, such as Estonian and Russian. We experiment with different NMT architectures that allow achieving state-of-the-art
translation quality and compare the multi-way model performance to one-way model performance. We report improvements of up to
+3.27 BLEU points over our baseline results, when using a multi-way model trained using the transformer network architecture. We
also provide open-source scripts used for shuffling and combining multiple parallel datasets for training of the multilingual systems.
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1. Introduction
One of the major advantages of neural machine translation
(NMT) is that unlike statistical machine translation (SMT),
which was the previous industry standard (and is still ac-
tively used in commercial applications), NMT is trained
and used jointly as a single end-to-end system without the
need to optimize multiple independent models and relations
between the models. However, training NMT systems for
individual language pairs has shown to take significantly
more time (e.g., two to three weeks or up to a week with
newer platforms, such as Marian (Junczys-Dowmunt et al.,
2016) or Google’s Tensor2Tensor toolkit 1) than training of
SMT systems (e.g., less than a day or up to several days for
large systems). But even with this advantage, using the tra-
ditional approaches, one would still need to train a separate
model for each translation direction. Since running a high
amount of GPU-intensive NMT models in a production en-
vironment can quickly sum up to an enormous resource-
usage cost, it has been natural (as shown by related work in
Section 2) to look for solutions that allow compressing the
models into an even more dense end-to-end solution that
is able to handle multiple languages and language pairs si-
multaneously.
Another benefit of a single model for multiple translation
directions could be the ability to learn not just from the
training data of the language pair in question, but also from
language pairs that include one of the languages. The ad-
vantages of learning from multiple translation directions at
the same time can be (1) the ability for a model to learn
how to translate language specific attributes that are com-
mon to multiple languages at the same time, and (2) to learn
and generalize translations that may not occur in the paral-
lel corpus of, e.g., A↔B, but do occur in parallel corpora
of, e.g., A↔C and C↔B and therefore are deducible.
This work has been driven by the need to identify the best
neural network architectures for the development of one-
way and multi-way NMT systems for low-resource lan-
guage pairs that can be applied for low-resource NMT

1T2T: Tensor2Tensor Transformers - https://github.
com/tensorflow/tensor2tensor

system development (and/or system adaptation) within the
project “Forest Industry Communication Technologies”.
The structure of this paper is as follows: Section 2 sum-
marizes related work in multilingual and multi-way NMT;
Section 3 introduces the setup of our experimental environ-
ment and data used; Section 4 outlines the main results in
translation quality as well as speed and resource usage, and
in Section 5 we look at several examples how translations
produced by one-way systems differ from multi-way sys-
tem translations. Finally, we conclude the paper in Section
6 and introduce plans for future work.

2. Related Work
Multilingual NMT has recently been investigated by sev-
eral research groups. For instance, Firat et al. (2017) mod-
ify the current state-of-the-art attentional NMT approach by
supplementing it with the ability to learn from multiple lan-
guage pairs and multiple translation directions at the same
time. They are able achieve this by creating a shared atten-
tion mechanism across the involved resources. The authors
report improvements in translation quality over most indi-
vidual baselines, using a single multilingual model trained
on five language pairs in both directions. The authors es-
pecially highlight that by combining data from language
pairs with many resources with data from a low-resource
language pair, the quality gains for the low-resource lan-
guage pair are higher.
Johnson et al. (2016) introduce a simple method for train-
ing a single-model multilingual NMT system, which does
not require any modifications to the architecture of the sys-
tem. They achieve this by adding a target language identi-
fying token in the beginning of each source sentence of the
training data. While they only report comparable and not
outperforming results for models trained on high-resource
language pairs, the biggest improvements are achieved in
low-resource and even zero-shot translation. An interesting
aspect of this approach is that, when trained on many trans-
lation directions at once, the same input sentence can be
translated into any supported target language by changing
only the target language identifying token.
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Ha et al. (2016) use a similar approach to Johnson et al.
(2016) by only modifying training data and using the same
NMT system architecture. The main difference is that they
add a language identifying token to each subword unit and
apply this pre-processing to both - source and target sen-
tences of the training data. Another difference is that they
don’t use particularly deep network architectures in their
experiments. The authors describe two experiment sce-
narios where they train systems to translate from multiple
source languages into one target language by (1) adding
an additional parallel corpus and (2) adding a monolin-
gual corpus as the additional source and target data. The
achieved improvements reach up to 2.6 BLEU points for
the first approach and up to 3.15 BLEU points for the sec-
ond approach.

3. Experiment Setup
In our experiments, we mainly followed the path of Johnson
et al. (2016) by not making any modifications to the net-
work architecture and modifying only the data during train-
ing and inference. We did, however, experiment with differ-
ent encoder and decoder cell types and add slight modifica-
tions to the data iterator module for it to automatically read
the multilingual multi-way training data in equal batches
for each translation direction and prepend the target lan-
guage symbol at the beginning of each source sentence.
Our recurrent neural network NMT systems were trained
with Nematus (Sennrich et al., 2017) using four main con-
figurations. For training of the NMT systems with con-
volutional neural networks and transformer networks, we
used Sockeye (Hieber et al., 2017). All SMT systems were
trained using using the Moses (Koehn et al., 2007) toolkit in
the Tilde MT platform (Vasiļjevs et al., 2012). The details
of the models are as follows:

• Recurrent neural network models

– Maximum sentence length of 50;

– Multiplicative long short-term memory (Krause
et al., 2017) (MLSTM) shallow one-way
(MLSTM-SU - the baseline model)

∗ Encoder and decoder cell type – MLSTM
(same as used by Pinnis et al. (2017));
∗ A shared subword unit vocabulary (Sennrich

et al., 2016) of 25,000 tokens;

– Gated recurrent units (GRU)

∗ Encoder and decoder cell type – GRU;
∗ Shallow multilingual multi-way (GRU-SM)
· 1-layer encoder and 1-layer decoder;

∗ Deep - one-way (GRU-DU) and multilingual
multi-way (GRU-DM)
· 4-layer encoder and 4-layer decoder;
· 2 GRU transition operations applied in the

encoder layer; 4 GRU transition operations
applied in the decoder layer; 2 GRU tran-
sition operations applied in decoder layers
after the first layer;

· Additional incremental training (Freitag
and Al-Onaizan, 2016) after convergence
of the GRU-DM model, using only paral-
lel training and development data of a sin-
gle translation direction;

• Fully convolutional neural network models - one-way
(FConv-U) and multilingual multi-way (FConv-M)

– Encoder and decoder cell type - convolutional
neural network (CNN);

– 15-layer encoder and 15-layer decoder;

– Maximum sentence length of 128;

• Transformer neural network models - one-way
(Transformer-U) and multilingual multi-way
(Transformer-M)

– Encoder and decoder cell type - transformer;

– Maximum sentence length of 128;

– 6-layer encoder with convolutional embeddings;

– 6-layer transformer decoder;

– Each block (self-attention or feed-forward net-
work) is

∗ Pre-processed with layer normalization;
∗ Post-processed with dropout and a residual

connection;

• SMT one-way models (SMT)

– Word alignment performed using fast-align
(Dyer et al., 2013);

– 7-gram translation models and the ‘wbe-msd-
bidirectional-fe-allff‘ reordering models;

– Language model trained with KenLM (Heafield,
2011);

– Tuned using the improved MERT (Bertoldi et al.,
2009).

Common parameters for all multilingual multi-way experi-
ments:

• Multilingual training data was shuffled in equal
batches per translation direction and with the target
language identifier added before each sentence as de-
scribed by Johnson et al. (2016).

• A shared subword unit vocabulary of 50 000 tokens
was used.

For all one-way experiments we used a smaller shared sub-
word unit vocabulary of 24 500 tokens.
All other parameters for the models were identical – we
clip the gradient norm to 1.0 (Pascanu et al., 2013), use a
dropout of 0.2 and trained the models with Adadelta (Zeiler,
2012). We used a word embedding of size of 500, and hid-
den layers of size 1024. All models were trained until they
reached convergence on validation data.
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Language
pair

Before filtering
(Total/Unique)

After filtering
(Unique)

En↔ Et 62.5M / 24.3M 18.9M
En↔ Ru 60.7M / 39.2M 29.4M
Ru↔ Et 6.5M / 4.4M 3.5M

Table 1: Training data sentence counts before and after fil-
tering

3.1. Data
For training, we used English↔Russian,
English↔Estonian, and Russian↔Estonian data. The
one-way models were trained on English↔Estonian and
Russian↔Estonian data while the multilingual multi-way
models were trained on data from all three language pairs
in both directions. The training corpora consist of multiple
publicly available and proprietary datasets. Among the
public datasets, the largest were the MultiUN (Chen and
Eisele, 2012), DGT-TM (Steinberger et al., 2012), Open
Subtitles (Tiedemann, 2009), Tilde MODEL (Rozis and
Skadiņš, 2017), and Microsoft Translation Memories and
UI Strings Glossaries (Microsoft, 2015). The corpora were
cleaned and filtered in order to reduce noise in the parallel
training data. During filtering, we removed non-parallel
sentence pairs, sentences with sentence splitting errors, and
duplicate entries. Data processing was performed in two
steps – first, a low content overlap filter, which is based on
the cross-lingual alignment tool MPAligner (Pinnis, 2013),
was applied, followed by the standard data processing
pipeline of the Tilde MT platform. For some corpora,
the filtering resulted in an overall reduction of more than
50% of the original size. Corpora with content overlap
below a certain threshold were manually examined and
left out from the final dataset. The data filtering procedure
is described in greater detail in the paper by Pinnis et al.
(2017). An overview of the training data statistics before
and after filtering for each language pair is given in Table
1.
For Estonian↔Russian, we selected 2000 random sen-
tences from the training data to be used as validation data.
The validation datasets for all other translation directions
were obtained from the ACCURAT development datasets
(Skadiņa et al., 2012). In the multilingual multi-way model
training scenarios, we concatenated 1

6
th of each 2000 sen-

tence validation dataset, resulting in batches of 333 sen-
tences from each translation direction, which we used as
development data. As for evaluation data – we used the AC-
CURAT balanced evaluation corpus (Skadiņš et al., 2010)
consisting of 512 sentences in each translation direction, for
which the Russian version was prepared by in-house trans-
lators.

4. Results
In this section, we describe the results of our experiments.
We evaluate MT system translation quality using BLEU
(Papineni et al., 2002). we also analyse translation speed
and GPU memory usage during translation, as well as train-
ing duration. While training models for multiple translation
directions, we were mainly focused on improving the trans-

lation quality when translating between Russian and Esto-
nian, because this specific language pair had the poorest
performance among the baseline systems.

4.1. Translation Quality
Table 2 shows how each of the models that we described
in the previous section compares to the baseline in terms of
development and evaluation data translation quality. When
we compare the baseline one-way model (MLSTM-SU) to
the other one-way models, the results show that the GRU-
DU and FConv-U models reach lower translation qual-
ity on all development sets and all but one (for FConv-
U) or two (for GRU-DU) evaluation sets. The GRU-
DU model insignificantly out-performs the baseline model
on the Estonian→Russian evaluation set (by 0.04 BLEU
points) and the Estonian→English evaluation set (by 0.08
BLEU points). The FConv-U model shows slightly higher
results (by 0.18 BLEU points) on the Estonian→English
evaluation set. However, the results of the Transformer-
U model are interesting. Although it got lower results on
the Estonian↔Russian evaluation sets (by -1.15 and -2.01
BLEU points), it outperformed the baseline model on the
Estonian↔Russian evaluation sets (by 2.29 and 3.3 BLEU
points). A potential explanation of these results is that the
Transformer-U model becomes more advantageous than the
MLSTM-SU model when using larger data sets, however,
for smaller datasets the MLSTM-SU model is still able to
achieve state-of-the-art results.
Next, we look at whether the multi-way models allow in-
creasing translation quality over one-way models. The
results show that the GRU multi-way model outperforms
the one-way models for all language pairs on all datasets.
However, the convolutional and transformer models in-
crease quality only for the low-resource language pairs.
The quality improvement for the Estonian↔Russian lan-
guage pairs ranges from 2.16 BLEU points (for the FConv-
M model on the Estonian→Russian evaluation set) up to
5.28 BLEU points (for the Transformer-M model on the
Russian→Estonian evaluation set). For the high-resource
language pairs, on the other hand, both FConv-M and
Transformer-M models show significantly lower transla-
tion quality than their respective one-way models. The
quality decrease ranges from -2.11 BLEU points (for the
Transformer-M model on the Estonian→English evaluation
set) down to -5.17 BLEU points (for the FConv-M model
on the Estonian→English evaluation set). This shows that
the newer NMT architectures in multi-way scenarios are
beneficial only to low-resource language pairs.
Finally, if we look at which models achieved the highest
overall results on evaluation sets, it is evident that the trans-
former models performed the best. For the low-resource
language pairs, the best results were achieved by the multi-
way model. However, for the high-resource language pairs,
the best results were achieved by the respective one-way
models.
The reason why the results of the SMT system on the devel-
opment set for Estonian↔Russian (underlined) are so much
higher than for all other models may be due to the charac-
teristic of SMT systems being good at memorizing similar
sentences to what they have already seen during training.
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Development Test
Ru→ Et Et→ Ru En→ Et Et→ En Ru→ Et Et→ Ru En→ Et Et→ En

SMT 27.74 25.48 17.99 25.89 9.88 7.27 21.44 29.69
MLSTM-SU 17.51 18.46 23.79 34.45 11.11 12.32 26.14 36.78
GRU-SM 13.70 13.71 17.95 27.84 10.66 11.17 19.22 27.85
GRU-DU 17.03 17.42 23.53 33.63 10.33 12.36 25.25 36.86
GRU-DM 17.07 17.93 23.37 33.52 13.75 14.57 25.76 36.93
FConv-U 15.24 16.17 21.63 33.84 7.56 8.83 24.87 36.96
FConv-M 14.92 15.80 18.99 30.25 10.65 10.99 21.65 31.79
Transformer-U 17.44 18.90 25.27 37.12 9.10 11.17 28.43 40.08
Transformer-M 18.03 19.18 23.99 35.15 14.38 15.48 25.56 37.97

Table 2: Translation quality results for all model architectures on development and evaluation data. The best results are in
bold.

Figure 1: Training progress for the deep multilingual multi-way model (GRU-DM).

As stated in the previous section, this was the only language
pair for which the development dataset was derived from
the training dataset. For all other language pairs, we used a
separate dataset.
When the GRU-DM model had converged, we performed
additional incremental training for two language pairs in
both ways (English↔Estonian and Russian↔Estonian).
Figure 1 illustrates the training progress of this model and
the four individual incrementally trained models. The idea
of the incremental training was to adapt the system to a spe-
cific domain, which in this case would be translation into a
single language. Incremental training improved the transla-
tion quality of the multi-way GRU-DM model for the indi-
vidual language pairs by up to 0.60 BLEU points.
Figure 2 shows the training progress for multiple variations
of Russian↔Estonian models. The deep one-way models
(Estonian↔Russian GRU-DU) reached the early stopping

criterion very quickly, but did not get as high as the other
models over more time. The other RNN-based models
converged after observing approximately 142 million sen-
tences during training. The transformer models stand out
the most by being the very first to stop training, as well as
reaching the highest BLEU scores the quickest.

4.2. Resource Usage During Translation
Training models with deeper architectures increases re-
source usage in both – training time and required computa-
tional power. The higher resource usage is present during
translation as well. Table 3 shows a comparison of time
and GPU RAM consumption when translating the evalua-
tion dataset using the NMT systems with several architec-
tures from our experiments. In the table, we isolate models
trained with Nematus from models trained with Sockeye, as
they are based on different deep learning frameworks, re-
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Figure 2: Training progress for Russian↔Estonian systems

Seconds Sentences
per second

GPU RAM, Train time,
Translation Per sentence MB days

Theano-based Nematus
MLSTM-SM 274.57 0.54 1.86 651 16.4
GRU-SM 211.51 0.41 2.42 611 8.5
GRU-DM 460.07 0.90 1.11 979 36.6
MXNet-based Sockeye
FConv-M 177.19 0.35 2.89 971 4.5
Transformer-M 191.05 0.37 2.68 1391 3.8

Table 3: Resource usage for all NMT model architectures during translation. The most efficient values are in bold. The
final column shows the training time until the system converges.

spectively, Theano (Theano Development Team, 2016) and
MXNet (Chen et al., 2015).

The highest-scoring Transformer models are the quickest
to train and also nearly the fastest during translation, but
they consume more than twice the amount of GPU mem-
ory during translation. The GRU-DM model, which was
the runner-up model for translating Estonian↔Russian uses
30% less GPU memory during translation, but takes 2.4
times longer to complete the job, and training also took
50% longer. All tests were performed on a machine with an
NVIDIA Titan X (Pascal) GPU, Intel Core i7-6850K CPU
@ 3.60GHz, 64GB of RAM, and 1TB SSD. We only used
a single GPU for training and translating, even though the
frameworks have support for multi-GPU training and trans-
lation.

It is worth mentioning that while training all shallow RNN
models – multi-way or one-way – the training time for a
single model to converge did not change noticeably. The
same can be said about CNN and Transformer models. In
the case of deep RNN models, training time increased by
about 2-3 times, reaching 3-4 weeks on a single GPU.

5. Translation Examples
In this section, we show three examples where we compare
sentences from one-way and multi-way architectures (e.g.
the deep GRU models or transformer models).
In Figure 3, we compare one of the poorest-scoring transla-
tions generated with both the overall highest-scoring multi-
way system (Transformer-M) and its one-way counter-
part. The BLEU score of both translations is identical,
but while the translation of Transformer-M is almost per-
fect (with fluency issues in the last two words), the trans-
lation of Transformer-U features a more significant lexical
choice mistake. I.e., the words “kasutab” (uses) and “regu-
laarselt”, which are correctly translated by the multi-way
model as “использует” (uses) and “регулярно” (regu-
larly), are mistranslated by the one-way model as “прак-
тикуют” (practice) and “работу” (work).
Figure 4 shows a comparison of a sentence that had one
of the highest BLEU scores out of all GRU-DU transla-
tions compared with the same sentence translated using
GRU-DM. There is a redundant word (“законопроекта”
- bill project or draft law) in the translation of the one-way
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Source: Üle poole rahvastikust kasutab Internetti regulaarselt.
Transformer-U: более половины населения практикуют работу с Интернетом.
(transl. into English): More than half of the population practice working with the Internet.
Transformer-M: более половины населения регулярно использует Интернет.
(transl. into English): More than half of the population regularly uses the Internet.
Reference: более половины жителей регулярно пользуются интернетом.
English Reference: More than half the population are regular internet users.

Figure 3: Translation examples comparing the highest-scoring system (multi-way transformer) with its one-way counter-
part. BLEU score of both - 15.62.

Source: Algusaastatel tegi koostööd kuus riiki ning peamiselt kaubanduse ja majanduse valdkonnas.
GRU-DU: в начальных годах законопроекта работали вместе шесть стран , в основном , в

сфере торговли и экономики.
(transl. into English): In the initial years of the bill project, six countries worked together, mainly in the sphere of

trade and economy.
GRU-DM: в первые годы сотрудничали шесть стран , в основном в сфере торговли и эконо-

мики.
(transl. into English): In the first years, six countries cooperated, mainly in the sphere of trade and economy.
Reference: в первый год сотрудничество вели шесть стран , в основном в сфере торговли и

экономики.
English Reference: In the early years , the cooperation was between six countries and mainly about trade and the

economy.

Figure 4: Translation examples comparing the second highest-scoring system (deep multi-way GRU) with its one-way
counterpart. BLEU scores - 47.63 (GRU-DU - orange alignments) and 67.04 (GRU-DM - green alignments).

Source: Charles tõusis ja vaatas aknast välja.
Transformer-U: Шарль встал и посмотрел в окно.
(transl. into English): Charles stood up and looked out the window.
Transformer-M: Шарль встал и оглянулся в окно.
(transl. into English): Charles stood up and looked out the window.
Reference: Чарльз поднялся и посмотрел в окно.
English Reference: Charles rose and looked out of the window.

Figure 5: Translation examples comparing the highest-scoring system (multi-way transformer) with its one-way counter-
part. BLEU scores - 61.48 (Transformer-U) and 26.27 (Transformer-M).
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model, which is not present in the source. It is also evident
in the attention alignments (visualised using the toolkit by
Rikters et al. (2017)) that the sub-word units of this word
are strongly aligned only to the target language tag at the
beginning of the source sentence. This may mean that these
are not translations of any specific sub-word units of the
source sentence. The translation of the multi-way model
does not exhibit such a problem in this example.
In Figure 5, we show the third example. Here the trans-
lation from the one-way transformer model scores higher
according to BLEU than the multi-way model. The
only difference between these two translations is how
the Estonian word “vaatas” (looked) is translated. The
Transformer-U model produced the translation “посмот-
рел” (looked), which matches the reference translation, but
the Tranformer-M model produced the translation “огля-
нулся” (looked back), which is the wrong lexical choice in
the given context.

6. Conclusion
In this paper, we described a wide range of experiments
on training and evaluating multilingual and multi-way neu-
ral machine translation systems. Our results show that for
low-resource language pairs, such as Estonian↔Russian,
we can achieve a significant improvement in translation
quality by adding data from other languages over using
only one-way parallel data. Multi-way NMT systems in
both directions improved translation quality (by 3.09 - 5.28
BLEU points for Russian→Estonian and 2.16 - 4.31 BLEU
points for Estonian→Russian) for all three model archi-
tectures (deep GRU, convolutional, and transformer), for
which we performed multi-way experiments. Our exper-
iments also show that the largest improvements in BLEU
scores, as well as the highest overall BLEU scores in the
low-resource multi-way scenario were achieved by training
systems with the Transformer model.
While the multilingual approach helped gaining improve-
ments for the low-resource language pair, it did degrade the
performance for the high-resource language pairs by sev-
eral BLEU points. In almost all of our experiments the
multilingual models showed a drop in translation quality by
2.87 - 3.22 BLEU points for English→Estonian and 2.11 -
5.17 BLEU points for Estonian→English. However, the
results showed that the most stable architecture for multi-
way model training was the deep GRU model architecture.
It showed improvements for both low-resource and high-
resource language pairs on both development and evalua-
tion data sets.
The results also showed that when training one-way sys-
tems for the low-resource language pairs, the newer convo-
lutional and self-attention (i.e., transformer) models under-
performed. The best results in these experiments were
achieved by the MLSTM-based models (outperforming the
convolutional models by up to 3.55 BLEU points and the
transformer model by 2.01 BLEU points).
While manually analysing the evaluation sets, we noticed
that there were several sentences translated perfectly by
Transformer-M, but much worse by GRU-DM and vice
versa. This suggests that further investigation may be re-
quired to find out whether a combination of the systems

can lead to translations of even higher quality. There are
many successful methods for MT system combination that
could be utilized, for example, using confusion networks
(Peter et al., 2017) to align hypotheses and pick the best
parts of each as the final translation. A more neural network
specific option for MT system combination by combining
outputs according to the attention alignments produced by
the neural networks (Rikters and Fishel, 2017) could also
be used for this purpose.
Finally, we provide an update to Nematus2 that allows train-
ing of multi-way models by providing multiple parallel cor-
pora as input data. We also release a set of scripts3 that can
be used to prepare a multi-way corpus from multiple par-
allel corpora for training of multi-way NMT systems with
other frameworks.

7. Acknowledgements
In accordance with the contract No. 1.2.1.1/16/A/009 be-
tween the “Forest Sector Competence Centre” Ltd. and
the Central Finance and Contracting Agency, concluded
on 13th of October, 2016, the study is conducted by Tilde
Ltd. with support from the European Regional Develop-
ment Fund (ERDF) within the framework of the project
“Forest Sector Competence Centre”.

8. Bibliographical References
Bertoldi, N., Haddow, B., and Fouet, J.-B. (2009). Im-

proved Minimum Error Rate Training in Moses. The
Prague Bulletin of Mathematical Linguistics, 91(1):7—-
16.

Chen, Y. and Eisele, A. (2012). MultiUN v2: UN Doc-
uments with Multilingual Alignments. In LREC, pages
2500–2504.

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M.,
Xiao, T., Xu, B., Zhang, C., and Zhang, Z. (2015).
MXNet: A Flexible and Efficient Machine Learning Li-
brary for Heterogeneous Distributed Systems. Neural
Information Processing Systems, Workshop on Machine
Learning Systems, pages 1–6.

Dyer, C., Chahuneau, V., and Smith, N. A. (2013). A sim-
ple, fast, and effective reparameterization of ibm model
2. Association for Computational Linguistics.

Firat, O., Cho, K., Sankaran, B., Yarman Vural, F. T.,
and Bengio, Y. (2017). Multi-way, Multilingual Neural
Machine Translation. Computer Speech and Language,
45:236–252.

Freitag, M. and Al-Onaizan, Y. (2016). Fast Domain
Adaptation for Neural Machine Translation. arXiv
[cs.CL].

Ha, T.-L., Niehues, J., and Waibel, A. (2016). Toward
Multilingual Neural Machine Translation with Univer-
sal Encoder and Decoder. In Proceedings of the 13th In-
ternational Workshop on Spoken Language Translation
(IWSLT 2016), page 16.

Heafield, K. (2011). KenLM: Faster and smaller language
model queries. In Proceedings of the Sixth Workshop on

2Multilingual NMT iterator - git.io/vAgfv
3Multilingual NMT Corpora Tools - git.io/vAOoJ

3772

https://git.io/vAgfv
https://git.io/vAOoJ


Statistical Machine Translation, pages 187–197. Associ-
ation for Computational Linguistics.

Hieber, F., Domhan, T., Denkowski, M., Vilar, D., Sokolov,
A., Clifton, A., and Post, M. (2017). Sockeye: A Toolkit
for Neural Machine Translation. ArXiv e-prints, dec.

Johnson, M., Schuster, M., Le, Q. V., Krikun, M., Wu, Y.,
Chen, Z., Thorat, N., Viégas, F., Wattenberg, M., Cor-
rado, G., et al. (2016). Google’s Multilingual Neural
Machine Translation System: Enabling Zero-shot Trans-
lation. arXiv preprint arXiv:1611.04558.

Junczys-Dowmunt, M., Dwojak, T., and Hoang, H. (2016).
Is Neural Machine Translation Ready for Deployment?
A Case Study on 30 Translation Directions. In Proceed-
ings of the 9th International Workshop on Spoken Lan-
guage Translation (IWSLT), Seattle, WA.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Fed-
erico, M., Bertoldi, N., Cowan, B., Shen, W., Moran,
C., Zens, R., et al. (2007). Moses: Open source toolkit
for statistical machine translation. In Proceedings of the
45th annual meeting of the ACL on interactive poster and
demonstration sessions, pages 177–180. Association for
Computational Linguistics.

Krause, B., Lu, L., Murray, I., and Renals, S. (2017).
Multiplicative LSTM for sequence modelling. In 5th
International Conference on Learning Representations,
page 9, Toulon, France, feb.

Papineni, K., Roukos, S., Ward, T., and Zhu, W. (2002).
BLEU: a Method for Automatic Evaluation of Machine
Translation. . . . of the 40Th Annual Meeting on . . . ,
pages 311–318.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the
Difficulty of Training Recurrent Neural Networks. In
International Conference on Machine Learning, pages
1310–1318.

Peter, J.-T., Ney, H., Bojar, O., Pham, N.-Q., Niehues, J.,
Waibel, A., Burlot, F., Yvon, F., Pinnis, M., Sics, V., et al.
(2017). The QT21 Combined Machine Translation Sys-
tem for English to Latvian. In Proceedings of the Second
Conference on Machine Translation, pages 348–357.
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