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Abstract
Low-resource languages often suffer from a lack of high-coverage lexical resources. In this paper, we propose a method to generate
cognate tables by clustering words from existing lexical resources. We then employ character-based machine translation methods in
solving the task of cognate chain completion by inducing missing word translations from lower-coverage dictionaries to fill gaps in
the cognate chain, finding improvements over single language pair baselines when employing simple but novel multi-language system
combination on the Romance and Turkic language families. For the Romance family, we show that system combination using the results
of clustering outperforms weights derived from the historical-linguistic scholarship on language phylogenies. Our approach is applica-
ble to any language family and has not been previously performed at such scale. The cognate tables are released to the research community.
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eng lat fra ita spa por cat
table mensa ? mensa mesa mesa ?
table ? table tabella tabla tabela taula

tableau tavolo
tavola

eng azj tat tuk tur uig uzn
table stol östäl stol ? üstel stol
table ? tablis tablisa tablo ? tablitsa

Figure 1: Each row in the table is a cognate chain. The task of
cognate chain completion is to fill in missing cells in the table.

1. Introduction
Cognates are words in related languages that share a com-
mon origin. For example, the Italian cavallo and French
cheval both originated from the Latin caballus. Besides be-
ing instrumental in historical linguistics, cognates find uses
in many areas of NLP, including machine translation (Kon-
drak et al., 2003; Nakov and Tiedemann, 2012) and lexicon
induction (Mann and Yarowsky, 2001).
We define the task of cognate chain completion, shown in
Figure 1. Given multi-way aligned cognate table, a cog-
nate “chain” is a group of cognates across a language family
(represented as a single row). Chains may have empty cells
due to dictionary gaps, denoted by a ?, and the task is to pre-
dict these missing entries. Cognate chain completion is re-
lated to the task of cognate transliteration, except that words
in related languages (within the same row) can contribute to
the hypothesis of a cell. For low-resource languages, gen-
erating hypotheses for missing cognates has applications in
alignment and resolving unknown words in machine trans-
lation. In the field of linguistics, examining cognates across
multiple related languages can shed light on how words are
borrowed between languages.
Cognate lists are not widely available for many languages
and are time-consuming to create by hand. In many
NLP-related applications, including the translating out-of-
vocabulary words in machine translation, it is often not
necessary that these words be true cognates in the linguis-
tic sense, i.e. they are descendants of a common ances-

tor (Ciobanu and Dinu, 2014). For example, names and
loanwords are not technically considered cognates, though
they behave as such. Rather, “cognates” only need to meet
certain established criteria for cognacy (Kondrak, 2001;
Inkpen et al., 2005; Ciobanu and Dinu, 2014), which in-
clude individually or a combination of orthographic, pho-
netic, and semantic similarity between words.
Previous approaches to cognate transliteration (Mulloni,
2007; Beinborn et al., 2013) suffer from the drawback that
they require an existing list of cognates, which is infea-
sible for low-resource languages. In contrast, we auto-
matically generate cognate tables by clustering words from
existing lexical resources using a combination of similar-
ity measures. Our produced cognate tables for Romance
and Turkic languages are available for research purposes 1.
Using these cognate tables, we construct multi-way bitext
and train character-based machine translation systems to
transliterate cognates to fill in missing entries in the cognate
chains. Finally, we evaluate multiple methods of system
combination on the cognate chain completion task, show-
ing improvements over single language-pair systems. For
the Romance languages, we find that performance-based
weight outperforms combining weights derived from a lin-
guistic phylogeny.

2. Data
Webegin with lemmas from two free lexical resources, Pan-
Lex (Baldwin et al., 2010) and Wiktionary2. From Pan-
Lex, we pivot words on English and extract foreign-English
translation pairs, retaining each word’s Meaning IDs,3 and
its most common backtranslation in PanLex4. From Wik-
tionary, we use translation pairs mined from the info boxes
on the English version of the site (Sylak-Glassman et al.,

1github.com/wswu/coglust
2wiktionary.org
3An identifier indicating semantic relatedness. A single word

may have multiple Meaning IDs, and words in different languages
may have the same meaning ID.

4The most common backtranslation is the most frequent En-
glish translation of the foreign word.
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Foreign accado
English Akkadian
Language ita
Backtranslation Akkadian
POS NOUN, ADJ
Meaning IDs 4444597, 32087717

Table 1: A translation pair extracted from Panlex and Wiktionary.

2015). In addition, we retain a word’s part of speech5. We
preprocess the data by removing words in all caps (abbrevi-
ations) and words with spaces and symbols. Table 1 illus-
trates an example of a single translation pair extracted from
the combination of PanLex and Wiktionary.

3. Cognate Clustering
To generate multilingual cognate tables, we employ an au-
tomatic method of clustering words from our lexical re-
sources. In contrast to Scherrer and Sagot (2014), who com-
pare entire word lists to find possible cognates, we only
consider two words to be cognates if they have the same
English translation. Pivoting through English removes the
need to compute a similarity score between every pair of
words in every list, thus reducing the time complexity re-
quired to perform alignment. In addition, by introducing
a strict semantic similarity constraint, we avoid clustering
false cognates, which are orthographically similar by se-
mantically distant.
On each group of words with the same English translation,
we perform single-linkage clustering, an agglomerative
clustering method where the distance between two clusters
X and Y is defined as D(X,Y ) = minx∈X,y∈Y d(x, y)for
some distance metric d between two points (in our case,
words) x and y. While clusters formed using this linkage
method tend to be thin, we found that this method works
well for cognates spread out across a language family com-
pared to other linkage methods. We examine different link-
age methods in Section 3.1.
First, we construct lists of plausible cognates from our data
by running an initial clustering step on each group of words.
In this step, the distance function is the unweighted normal-
ized Levenshtein distance LD(x,y)

|x|+|y|
2

, and clusters are merged
if the distance falls under a generous threshold of 0.5.
Treating these clusters as multi-way aligned bitext, we
run GIZA++ (Och and Ney, 2000) to extract character-to-
character substitution probabilities, which are used in a sec-
ond clustering step. The idea is that a second iteration of
clustering should produce better results than a single itera-
tion. This is similar to the two-pass approach employed by
(Hauer and Kondrak, 2011).
For the second iteration of clustering, we define the distance
function d between two words x and y as a linear combina-
tion of the following features, chosen specifically to model
both the orthographic and semantic relatedness of cognates.

5A word may have multiple or no POS tags. PanLex also con-
tains POS tags, but they are noisy, so we only use those fromWik-
tionary

Inter-Language Distance A normalized weighted Lev-
enshtein distance, where the insertion, deletion, and substi-
tution costs are specific to the language pair (A, B) and the
characters being compared (a, b).

Ins(a) = 1− pA→B(NULL → a) (1)
Del(a) = 1− pA→B(a → NULL) (2)

Sub(a, b) = 1− pA→B(a → b) (3)

The character transition probabilities are obtained from
alignment using GIZA++. They are subtracted from 1 to
convert them to costs used in the edit distance calculation.
We added an addition rule such that the distance between
identical characters is zero to account for the noisy nature
of alignment.

Intra-Family Distance Same as the inter-language dis-
tance, except that the probabilities are obtained by running
an aligner on the concatenation of all bitexts of every lan-
guage pair. This is a more universal, non-language-specific
distance, and we expect it to smooth or counter-balance
the inter-language distance if there is not enough data for
an accurate measure of inter-language distance. The intra-
family distance is also used as a fallback distance in place
of the Inter-Language Distance when comparing words of
the same language. In practice, we observed that the intra-
family distances are very close to the inter-language dis-
tance.

Same Backtranslation A word’s backtranslation is the
most frequent English translation of that word in PanLex.
If a word is in Wiktionary but not in PanLex, we assign the
backtranslation to be that word’s English translation. This
feature is 0 if two words’ most common backtranslation is
the same, or 1 if they are different.

Same POS Part of speech is obtained from the English
edition of Wiktionary. Polysemous words may have multi-
ple parts-of-speech. If a word is in Panlex but not in Wik-
tionary, the word will not have a POS. PanLex also contains
POS tags for words, but we choose not to use them because
they are often incorrect (e.g. due to OCR errors), and words
seem to be marked as nouns by default. This feature is 0 if
two words share a common part of speech, and 1 otherwise.

Same MeaningID A word from PanLex has a set of pos-
sible Meaning IDs that link it to semantically equivalent
words in other languages. If a word exists in PanLex, we
use all Meaning IDs that occur with this word. A word in
Wiktionary but not in PanLex will not have a Meaning ID.
This feature is 0 if two words share a common Meaning ID
and 1 otherwise.

3.1. Evaluation of Linkage Methods

We motivate our choice of clustering linkage method by il-
lustrating the results of our multiple-iteration clustering ap-
proach using hierarchical clustering with different linkage
methods: single-linkage, complete-linkage, and average-
linkage. These methods differ only in the metric used to

3412



arbre
(cat)

arbre
(fra)

arbor
(lat)

árbol
(spa)

albero
(ita)

árvore
(por)

0.0

0.1

0.2

0.3

0.4

0.5

T
h
re

sh
o
ld

(N
o
rm

a
liz

e
d
  
LD

)

Single Linkage

(a) Single Linkage Clustering using Un-
weighted Distance

albero
(ita)

árvore
(por)

árbol
(spa)

arbor
(lat)

arbre
(cat)

arbre
(fra)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
h
re

sh
o
ld

(N
o
rm

a
liz

e
d
  
LD

)

Average Linkage

(b) Average Linkage Clustering using Un-
weighted Distance
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(c) Complete Linkage Clustering using Un-
weighted Distance
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(d) Single Linkage Clustering using
Weighted Distance
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(e) Average Linkage Clustering using
Weighted Distance
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(f) Complete Linkage Clustering using
Weighted Distance

Figure 2: Results of different linkage methods with unweighted and weighted distances

merge clusters:

Single(X,Y) = min
x∈X,y∈Y

d(x, y) (4)

Complete(X,Y) = max
x∈X,y∈Y

d(x, y) (5)

Average(X,Y) =
1

|X||Y |
∑

x∈X,y∈Y

d(x, y) (6)

for some distance function d.
In Figures 2a to 2c, using an unweighted normalized Leven-
shtein distance, arbre in Catalan and arbre in French are im-
mediately grouped into the same cluster because they have
a distance of zero. Ideally, we would like all of these words
to be put into the same cluster, since they are true cognates.
Single linkage seems to fulfill our needs the best, because
the range of distances for merging clusters is the smallest.
When performing a second iteration of clustering using the
weighted distances, the dendrograms in Figures 2d to 2f
show similar results. Notably, the range of distances be-
tween clusters shrinks, which supports our hypothesis that
multiple iterations of clustering are beneficial.

4. Experiments and Results
We experiment on the Romance and Turkic families to illus-
trate our method on both high-resource and lower-resource
languages. From the Romance languages, we utilize Latin,
Italian, French, Spanish, Portuguese, Romanian, and Cata-
lan. For Turkic, we use Azerbaijani, Kazakh, Turkish,
Uyghur, Turkmen, and Uzbek.
Our data contains over 1M words for the Romance lan-
guages and 130K words for Turkic languages. The spe-
cific breakdown per language is shown in Table 2. Perform-
ing the cognate clustering results in a total of 204,065 non-
singleton clusters for Romance and 16,931 for Turkic, both
substantially larger than prior cognate studies.

Romance Turkic

fra 286,002 tur 80,063
ita 281,015 tuk 17,028
spa 239,360 kaz 16,048
por 189,105 azj 10,195
cat 93,442 tat 5,303
lat 88,602 uzn 4,375
rom 1,119 uig 2,118

Table 2: Total number of words per language

4.1. Character-Based Machine Translation for
Transliteration

Although we might ideally evaluate the quality of the cog-
nate clusters against a gold list of cognate pairs (e.g. Bein-
born et al. (2013)), an alternative is to evaluate on a down-
stream task, namely cognate chain completion.6 To do
this, we consider all cognate pairs within each cluster as
translations of each other and construct bitext for each lan-
guage pair, where characters are separated with spaces. In-
tuitively, if a machine translation system can translate well
using this data, then the cognate chains have been correctly
constructed.
We train character-based Moses (Koehn et al., 2007) SMT
systems for each language pair, using a standard setup of
GIZA++ (Och and Ney, 2000), a 5-gram KenLM (Heafield,
2011) trained with the --discount-fallback option, and

6This is similar to the task of Scherrer and Sagot (2014). Since
we use a different set of languages from a different data source,
we cannot directly compare to this work. However, we emphasize
that since Scherrer and Sagot (2014) computes a distance between
all pairs of words to determine cognacy, our approach of pivoting
through English is computationally more efficient.
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(b) Turkic Language Distance
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(c) Distances from Gray and Atkinson
(2003)

Figure 3: Distance between languages

no distortion, since reordering should not occur during
transliteration (Karimi et al., 2011). For each language pair,
We generate a 10-best list of distinct hypotheses. While MT
systems are generally evaluated on BLEU score (Papineni
et al., 2002), it is not clear that BLEU is the best metric for
evaluating transliterations: Beinborn et al. (2013) find that
tuning on BLEU score made almost no difference in their
system’s performance. Nevertheless, we tune using MERT
(Och, 2003) with the standard Moses scripts. For each ex-
periment in Figure 4, we report 1-best accuracy, 10-best ac-
curacy (is the truth in the top 10 hypotheses?), and mean
reciprocal rank (MRR): MRR = 1

n

∑n
i=1

1
ranki

Due to the way the bitext is constructed (i.e. the cross prod-
uct of all words in a cognate cluster), the same source word
often maps to different output words, e.g.

src (por) tgt (ita)
associação associamento
associação associazione

which makes this an inherently hard task for machine trans-
lation systems. Thus, to compute accuracy, we consider a
hypothesis to be correct if it matches any of the words in the
set of gold words.

4.2. System Combination
While the results of single-language-based systems are in-
dicative of the missing word translation prediction perfor-
mance achieved via a single related language, we seek to
improve performance by combining predictionmodels from
multiple related languages. For a given target language, the
hypotheses from all systems transliterating into that target
language are combined using performance-based weight-
ing, where the weight of a system is proportional to its per-
formance relative to the other systems for a given target lan-
guage. For example, when transliterating into French, the
normalized scores for the cat-fra, ita-fra, lat-fra, etc. sys-
tems become those systems’ respective weights). Within
the hypotheses of each system, we employ a simple rank-
based scoring Within each language, where the score of
the first-ranked hypothesis is 1.0, the second-ranked is 0.9,
the third-ranked is 0.8, etc. These are multiplied by the
performance-based system scores, resulting in a ranked list
of hypotheses. We retain the top 10 best hypotheses in order
to compare with the single (non-combined) systems. Sys-
tem combination results in Figure 4 are labeled as “SC” and

the metric used for the systems’ weights (1-best, 10-best,
and MRR).

4.3. Analysis
One overall result that we noticed was that a key parameter
predicting performance was the relative amount of source
dictionary data available for a given language, in addition
to phylogentic similarity and degree of cultural contact. For
example, in the Romance family, translations into Roma-
nian scored well below translations into other languages,
likely due to the small amount of available data compared
to its sister languages.
For the Romance languages, we found improvements us-
ing system combination for all target languages when eval-
uating on 1-best accuracy (Figure 4a), which is is the sys-
tem’s best guess for transliterating into a language if it was
forced to output only a single answer. When evaluating the
percentage of words that occurred in the top 10 hypotheses
(Figure 4b), system combination performed close to the best
performing language pair. For MRR (Figure 4c), system
combination also performed better than all language pairs.
Because of how MRR is calculated, increases in the rank-
ing of the truth in the hypothesis list results in an increase
in MRR.
For the Turkic languages, system combination performed
similar to the single language systems in the 1-best (Fig-
ure 4d) and 10-best (Figure 4e) experiments. The major ex-
ception is the pair Kazakh-Tatar, which are each other’s best
single-language source and are quite close in edit distance.
We believe this was due to the small amount of data for most
Turkic language pairs, which may also explain the higher
performance on Romance languages compared to Turkic
languages. Using a fixed-weight weighting scheme where
the system that performed the best on the dev set received a
weight of 0.8 and the others 0.1 resulted in large improve-
ments in 10-best accuracy.
We also compare against an established theory of language
evolution (Gray and Atkinson, 2003), using their notion
of inferred maximum-likelihood estimates of evolutionary
change per cognate as a measure of distance between lan-
guages. They analyzed a large set of Indo-European lan-
guages, excluding Latin. We find that using performance-
based weights outperforms using weights derived from
well-established phylogentic trees and distances published
in the historical linguistic literature, possibly due to the
phenomenon of borrowing. For example, while Spanish
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English Gold Lang Hypotheses

Zero Zero ita Cero, Caro, Zero, Cereo, Zeno, Zereo, Chiro, Zairo, Coro, Sero
you are stai, state, siete ita statis, estas, esto, restai, estais, ista, istas, estes, restatis, estatis
frambesia framboesia ita frambesia, framboisia, frambonesia, framboesia

colloquium colloquium lat colloquium, colloquius, coloquium, coloquius, colloquio
host hostis, hospes lat hostis, hosti, hosped, hostie, hostes, hospet, hospide, conviva, hospe, suspes
cave covo,cavea lat cavus, cavum, cavo, cau, caverna, caberna, copus, cavernus, cave, cubus

chopper chóper spa chuparse, chofer, chupar, compar, copiar, chupatorio, copar, chaparse, chopper,
compararse

apple manzana spa mansana, mandana, mansada, mansanna, mansiana, amansana, manosana,
manillana, mansiano, manisana

elision elisión spa elisión, alisión, delisión, emisión, elección, elimiento, enlisión, elisiones,
olisión, adolisión

vagolytic vagolytique fra vagolithique, vagolitique, vagabolithique
mixture mixer, mixage, ... fra mixture, mixturer, mêler, masculer, mixtion, mixer, mixtior, masculaire,

mesquiller, miscer
bigos bigos fra bigos, bigus, bigous, bigues, bios, bige, Bigos, bingous, begues, vigos

butterfly paparuga, peperuga rom papillos, purbolekto, papollono, ûrbolekto, papiillon, Borboleto, papallono, pa-
pollos, palomi, purboleto

Croatia Croazia, Kroatiya rom Croakia, Croakiia, Croaatiia, Crroakia, Croatia, Croakiya, Croagia, krroato,
skroato, Croaatiio

dove gulumbo, kolombo rom kolombo, skulombo, limbo, pombo, posmva, pompa, koloma, lomba, koaoma,
ppombo

divorce divorzio, divorzile, di-
vórcio, ...

por divorciar, divorcio, divorcista, divorzile, divórcista, divorcissarse, divórciar, di-
vorcia, divorcístico, adivorcio

cybernaut cibernauta por cibernauta, cybernauta, Cibernauta, internauta
patio pátio por patia, patino, partido, pátio, partio, patio, patrio, patiano, pastio, pato

(a) Examples of system combination results using 1-best weights for Romance languages

English Gold Lang Hypotheses

skirt yubka azj yubka, yubqa, jubka, jubqa, yubkə, Yubka, yubxa, übka, yübka, yubqə
fluorine fluor, flüor azj ftor, ftar, flüor, ftər, faor, fdor, fluor, fdar, vlor, lor
food gıda, qida azj gı, qı, qıda, gıda, gida, qışa, ğıda, ğı, kida, qada

Greece Юнанстан kaz Жунанастан, жунанастан, жананастан, Жананастан, Жунаныстан,
жунаныстан, Жүнанастан, жананыстан, жүнанастан, Жананыстан

where қайда kaz қайда, кайда, қажда, кажда, қайта, қада, қайға, кəйда, кайта, шайда
cheese сыр kaz сыр, сыл, сырт, сұр, сшыр, сын, сiр, сур, сырш, сір

wall дивар tat дуал, двал, дуəл, дугал, дул, дуаль, дгал, дваль, дуар, дүал
letter harf, xäref, xat tat hät, tarf, xärf, xarf, Qät, hirf, harp, härp, harş, kärf
dove yeni, yaña tat yaña, yaNa, yaNi, yañı, yañi, yene, yañge, yaNe, yeni, yange

weaving dokuma, dokma tuk dokuma, dokamak, dokumak, dokuşmak, dokama, dokumaklyk, dokume, doku-
mamak, dokulamak, dokuşma

cop polis, politsiýa tuk polisiýa, politsiýa, polis, milisiýa, militsiýa, pilisiýa, polits, poliz, polisi, polys
shaman şaman, şaman tuk şaman, shaman, saman, sheman, naman, kaman, şeman, şamen, sharman, haman

microbe mikrop tur mikrob, mikrop, mikroB, mikros, mikrobit, mikrap, mikrod, mikrok, mikrab,
mikrov

professor profesör tur professoğur, profestor, profesur, profesor, professor, profesör
function işlemek tur işlemek, işletmek, işlenmek, inlemek, işleme, işleştirmek, işlamak

enemy düşman, düshmen uig dushman, düshman, düshmen, dushmen, tushman, tüshman, tüshmen, duSman,
doshman, Tushman

gymnastics gimnastika uig gimnastika, qimnastika, ximnastika, gimnastiqa, Qimnastika, yimnastik, gim-
nastik, gimnestika, yimnastiq, gimnastiq

one-ness birlik uig birliq, birlik, bir, birlük, jirlik, biriq, birlikk, birik, bhirlik, pirlik

crocodile timsah, timsoh uzn timsoh, timsah, timsax, timshoh, timdal, timsog, timsox, timshah, timsoq, tim-
mayd

Tuesday seshanba uzn sishanba, says’anba, soyshanba, says’anba, tsishanba, siyshanba, sayrshanba,
shoshanba, seshanba, Seshamb

selenium selenyum, selen uzn selen, tselen, selan, salen, sselen, selleniy, seleniy, seleyn, soleniy, salaniy

(b) Examples of system combination results using 1-best weights for Turkic languages

Table 3: Example hypotheses from system combination.3415



(a) Romance, 1-best

src
tgt cat fra ita lat por rom spa

cat — .50 .41 .29 .46 .09 .55
fra .38 — .42 .28 .45 .16 .43
ita .49 .42 — .22 .62 .12 .44
lat .33 .32 .38 — .30 .04 .35
por .55 .43 .46 .28 — .05 .55
rom .00 .09 .21 .03 .13 — .13
spa .62 .43 .45 .29 .54 .05 —

SC 1-best .65 .52 .52 .37 .66 .19 .58
SC 10-best .65 .52 .52 .38 .66 .19 .58
SC MRR .65 .52 .52 .37 .66 .19 .58
G&A ’03 .64 .51 .52 — .63 .17 .56

(b) Romance, 10-best

src
tgt cat fra ita lat por rom spa

cat — .86 .73 .68 .77 .23 .83
fra .72 — .76 .69 .77 .42 .75
ita .82 .75 — .58 .89 .45 .76
lat .71 .74 .80 — .75 .28 .78
por .88 .77 .77 .71 — .26 .84
rom .06 .32 .46 .13 .26 — .31
spa .91 .75 .75 .70 .83 .35 —

SC 1-best .90 .81 .80 .70 .88 .36 .84
SC 10-best .90 .82 .80 .70 .88 .41 .84
SC MRR .90 .81 .80 .70 .88 .36 .84
G&A ’03 .90 .81 .80 — .87 .33 .83

(c) Romance, MRR

src
tgt cat fra ita lat por rom spa

cat — .61 .51 .40 .56 .12 .64
fra .49 — .53 .39 .55 .22 .53
ita .59 .52 — .32 .70 .19 .54
lat .43 .43 .50 — .42 .10 .47
por .65 .54 .56 .40 — .09 .65
rom .01 .13 .29 .05 .16 — .18
spa .71 .53 .55 .41 .64 .13 —

SC 1-best .74 .62 .62 .49 .74 .25 .68
SC 10-best .74 .62 .62 .49 .74 .26 .68
SC MRR .74 .62 .62 .49 .74 .25 .68
G&A ’03 .73 .61 .61 — .72 .23 .65

(d) Turkic, 1-best

src
tgt azj kaz tat tuk tur uig uzn

azj — .14 .18 .39 .40 .29 .45
kaz .10 — .40 .07 .50 .14 .33
tat .21 .41 — .24 .23 .21 .19
tuk .39 .07 .17 — .34 .30 .32
tur .34 .21 .23 .22 — .20 .27
uig .26 .14 .14 .29 .21 — .33
uzn .38 .00 .18 .38 .28 .27 —

SC 1-best .43 .39 .32 .36 .40 .36 .45
SC 10-best .43 .39 .32 .37 .40 .37 .46
SC MRR .43 .40 .32 .36 .40 .36 .46
Fixed Wt. .40 .39 .33 .40 .39 .32 .44

(e) Turkic, 10-best

src
tgt azj kaz tat tuk tur uig uzn

azj — .39 .53 .73 .75 .58 .76
kaz .46 — .74 .27 .64 .29 .33
tat .53 .77 — .55 .60 .47 .64
tuk .72 .07 .56 — .66 .50 .72
tur .72 .64 .58 .58 — .49 .63
uig .56 .14 .45 .57 .50 — .67
uzn .75 .17 .58 .74 .64 .62 —

SC 1-best .71 .73 .61 .63 .69 .61 .75
SC 10-best .71 .74 .61 .63 .69 .60 .75
SC MRR .71 .74 .61 .63 .69 .61 .76
Fixed Wt. .78 .75 .71 .70 .74 .70 .83

(f) Turkic, MRR

src
tgt azj kaz tat tuk tur uig uzn

azj — .17 .28 .48 .50 .36 .54
kaz .20 — .50 .15 .55 .21 .33
tat .29 .53 — .32 .33 .28 .31
tuk .48 .07 .27 — .43 .35 .43
tur .44 .35 .32 .32 — .28 .36
uig .34 .14 .22 .37 .29 — .43
uzn .49 .06 .29 .48 .37 .38 —

SC 1-best .52 .50 .42 .45 .49 .44 .55
SC 10-best .53 .50 .42 .45 .49 .44 .56
SC MRR .52 .51 .42 .45 .49 .44 .56
Fixed Wt. .49 .50 .43 .42 .48 .40 .53

Figure 4: Results for cognate chain completion. Valid comparisons are within a column (target language).

and Portuguese are evolutionarily closer than Spanish and
Catalan, our analysis, which accounts for borrowed words,
places Spanish and Catalan closer than Spanish and Por-
tuguese, likely due to external factors such as trade, migra-
tion, or the fact that Catalonia is an autonomous community
of Spain. By computing the average edit distance per word
in a cognate chain, we can construct phylogenic tress Fig-
ure 3 to illustrate closeness between languages.
Examples of results given by the combination of multiple
systems are presented in Tables 3a and 3b. We observed
that even if the truth is not the 1-best hypothesis, it is often
in the top 10 hypotheses, and the top 10 hypotheses have a
low edit distance to the truth. Having a top 10 list is useful
for applications such as translating into a foreign language
when conversing with a native speaker. In such cases, it is
often not necessary to use the exact words; one only needs
to produce a word that is close enough that the speaker will
understand the meaning. When translating in the opposite
direction, unknown words can be easily checked against en-
tries in the top 10 to obtain a translation.
Several errors in transliteration seem to stem from inac-
curate clustering, with words clustered due to the strong
orthographic similarity feature. For example, Latin hostis
‘enemy’ is incorrectly clustered together with hospes
‘host/guest’, which causes some noise in the hypotheses.
Similar phenomena can be observed for Frenchmixage. Re-
fining the clustering process may lead to improvements in
our missing-word prediction models.

5. Related Work
Cognates have been used in the task of lexicon induction,
with Mann and Yarowsky (2001) inducing translation lexi-
cons between cross-family languages via bridge languages.
They make extensive use of Levenshtein distance (Leven-
shtein, 1966) in determining the distance between two cog-
nates. In our work, we employed a weighted edit distance
as a major component in determining cognate clusters.
Clustering cognates has also been recently explored using
different approaches to determine cognacy, e.g. using an
SVM which trained to determine cognacy (Hauer and Kon-
drak, 2011) and accounting for a language family’s phy-
logeny when constructing cognate groups (Hall and Klein,
2010). We experiment with using phylogenetic informa-
tion in our system combination. Recently, Bloodgood and
Strauss (2017) experimented with global constraints to im-
prove cognate detection. This approach is complementary
to ours and could be used to improve our cognate tables.
Several methods have also been proposed to generating
cognates, e.g. using a POS tagging framework where the
tags are actually target language n-grams (Mulloni, 2007).
Recently, several approaches to character-based machine
translation using cognates have been investigated, although
on a small set of language pairs. Beinborn et al. (2013)
experiment on English-Spanish with a manual list of cog-
nates. Scherrer and Sagot (2014) perform a task similar to
our own; they start with a word list and find plausible cog-
nates using the BI-SIM metric (Kondrak and Dorr, 2004),
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then perform character-based machine translation on cog-
nates. They experiment with translating cognates from a
high-resource language to a low-resource language. Our
work differs in that our experiments are on a much larger
scale, and we realize improvements by combining the re-
sults of multiple MT systems.

6. Conclusion
We have presented an automatic clustering method to gen-
erate cognate tables from Panlex- and Wiktionary- derived
dictionary data, which we release as a resource. Based
on these cognate clusters, we then trained multiple Moses-
based models to complete cognate chains by generating hy-
potheses for missing translations, which often occur due
to sparse dictionary coverage in lower-resource languages.
Via several novel methods of system and model combina-
tion over multiple related languages, we realized improve-
ments over single language-pair baselines for the Romance
and Turkic language families. In addition, we also observed
that our performance-based weighting of related languages
in system combination outperformed language-similarity
weights derived from phylogenetic trees from widely-cited
historical linguistics literature, suggesting that other latent
factors such as the degree of political and cultural interac-
tion are impactful as well.
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