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Abstract
This paper investigates speaker adaptation techniques for bidirectional long short term memory (BLSTM) recurrent neural network
based acoustic models (AMs) trained with the connectionist temporal classification (CTC) objective function. BLSTM-CTC AMs
play an important role in end-to-end automatic speech recognition systems. However, there is a lack of research in speaker adaptation
algorithms for these models. We explore three different feature-space adaptation approaches for CTC AMs: feature-space maximum
linear regression, i-vector based adaptation, and maximum a posteriori adaptation using GMM-derived features. Experimental results on
the TED-LIUM corpus demonstrate that speaker adaptation, applied in combination with data augmentation techniques, provides, in an
unsupervised adaptation mode, for different test sets, up to 11–20% of relative word error rate reduction over the baseline model built
on the raw filter-bank features. In addition, the adaptation behavior is compared for BLSTM-CTC AMs and time-delay neural network
AMs trained with the cross-entropy criterion.
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1. Introduction

Recently, various neural end-to-end approaches to auto-
matic speech recognition (ASR) have been proposed in the
literature (Hannun et al., 2014; Bahdanau et al., 2016; Col-
lobert et al., 2016; Fritz and Burshtein, 2017; Chan et al.,
2016; Audhkhasi et al., 2017). End-to-end acoustic mod-
els (AMs) (Chorowski et al., 2014; Graves and Jaitly, 2014;
Miao et al., 2015; Zhang et al., 2017) attempt to map an
acoustic signal to a phoneme or grapheme sequence directly
by means of neural network models. They have been de-
veloped as an alternative to the traditional hybrid approach
based on hidden Markov models coupled to deep neural
networks (HMM-DNNs) (Hinton et al., 2012).
Speaker adaptation is an essential component of state-of-
the-art hybrid HMM-DNN AMs, and a variety of adapta-
tion methods have been developed for DNNs. They include
linear transformations, that can be applied at different lev-
els of the DNN-HMM architecture (Gemello et al., 2006;
Seide et al., 2011); regularization techniques, such as L2-
prior regularization (Liao, 2013) or Kullback-Leibler diver-
gence regularization (Yu et al., 2013); model-space adap-
tation (Siniscalchi et al., 2013; Swietojanski and Renals,
2014; Huang et al., 2014); multi-task learning (MTL) (Price
et al., 2014; Li et al., 2015; Huang et al., 2015); factor-
ized adaptation (Li et al., 2014); adaptation with speaker
codes (Xue et al., 2014); the use of auxiliary features, such
as i-vectors (Saon et al., 2013; Senior and Lopez-Moreno,
2014) or GMM-derived (GMMD) features (Tomashenko
and Khokhlov, 2014), and many others.
However, the major part of the published works, devoted to
end-to-end technology, does not use any speaker adaptation
techniques. This lack may be justified by the strong focus
of these papers on the neural core of the technology they
introduce.
A few papers have offered some preliminary and promising
information about the benefits provided by some speaker

adaptation techniques to end-to-end AMs. In (Miao et
al., 2016), vocal tract length normalization (VTLN) (Lee
and Rose, 1996) has been applied to filterbank features,
for a neural end-to-end AM training through connection-
ist temporal classification (CTC), providing 3% of relative
word error rate reduction (WERR). Speaker i-vectors, ap-
pended to the acoustic features, are used in (Audhkhasi
et al., 2017) for training phone and word CTC models.
Also features, adapted using feature-space maximum likeli-
hood linear regression (fMLLR), are used to train attention-
based RNNs (Chorowski et al., 2014). However in these
works (Audhkhasi et al., 2017; Chorowski et al., 2014), no
comparison results with the unadapted models are given.
Work (Yi et al., 2016) proposes a CTC regularized model
adaptation method for the accent adaptation task. Speaker
adaptation with speaker codes of RNN-BLSTM AMs is
studied in (Huang et al., 2016) for the phone recognition
task, where AMs were trained with cross-entropy (CE) cri-
terion, and the adaptation provides about 10% of relative
reduction in phone error rate.
The aim of this paper is to explore the efficiency of speaker
adaptation for end-to-end ASR systems on the example of
CTC-BLSTM AMs (or shortly, CTC AMs). For this pur-
pose we implemented three different speaker adaptation al-
gorithms to this type of AMs and performed an experimen-
tal analysis of these methods. Furthermore, a comparative
study of the adaptation techniques was conducted for CTC
AMs and time-delay neural network (TDNN) AMs trained
with traditional frame-wise cross-entropy (CE) criterion.
The rest of the paper is organized as follows. A quick
overview of the end-to-end AMs, studied in this paper, is
introduced in Section 2. A speaker adaptation technique,
based on the use of GMMD features and recently proposed
by the authors for DNN-HMM AMs, is presented in Sec-
tion 3. for CTC AMs. Section 4. describes the experimen-
tal results for different adaptation algorithms. Finally, the
conclusions are given in Section 5.
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2. Review of End-to-End Speech
Recognition

One of the first major steps in the direction of end-to-end
systems was introduced in (Graves et al., 2013) where, for
the phoneme recognition task, a deep BLSTM recurrent
neural network (RNN) model was trained to map directly
acoustic sequences to phonetics ones. This was done by us-
ing the CTC objective function (Graves et al., 2006). The
BLSTM-CTC models are used in this study. Alternative
approaches to end-to-end ASR include attention mecha-
nism (Chorowski et al., 2014; Bahdanau et al., 2016; Chan
et al., 2016), convolutional neural networks (CNNs) trained
with CTC loss (Collobert et al., 2016; Zhang et al., 2014;
Wang et al., 2017), RNN transducers (Graves et al., 2013)
and others.

2.1. Deep Bidirectional LSTMs
RNNs provide a powerful extension of feed-forward DNN
models by adding connections between different types of
units, including backward connections to previous layers.
The use of recurrence over the temporal dimension allows
RNNs to model the dynamic temporal behavior of the pro-
cess.
In order to capture information from the whole input se-
quence, the bidirectional RNN (BRNN) architecture was
proposed (Schuster and Paliwal, 1997). In BRNNs, data are
processed in two directions with two hidden layers, which
are then input further to the same output layer. As shown
in the upper part of Figure 1, for a sequence of input vec-
tors X = {x1, . . . , xT }, a recurrent forward hidden layer
of a BRNN

−→
H = {−→h 1, . . . ,

−→
h T } computes a sequence of

hidden outputs for t = 1, . . . , T , and an additional recur-
rent layer

←−
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are the weight matrices connecting in-
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connecting hidden units from time t − 1 to time t; W−→
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,
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are the weight matrices connecting the output layer
to the hidden layer; bh, by are bias vectors for the hidden
states and the outputs correspondingly; f(·), g(·) are the
hidden and output layer activation functions correspond-
ingly.
State-of-the-art ASR systems have deep architectures with
several hidden layers, where the forward and backward hid-
den outputs at time t are concatenated and this concatena-
tion
−→
h t ⊕

←−
h t is input into the next recurrent layers.

For training RNN models, a back-propagation-through-
time (BPTT) learning algorithm is typically used (Wer-
bos, 1990). However, in practice, training RNNs to learn
long-term temporal dependencies can be difficult due to
the vanishing and exploding gradient problems (Bengio
et al., 1994). To avoid the long-term dependency prob-
lem, LSTM neural networks were introduced in (Hochreiter

and Schmidhuber, 1997). In the end-to-end ASR frame-
work, LSTMs units are used as the structural elements of
BRNNs (Miao et al., 2015; Miao et al., 2016; Graves et al.,
2013; Sak et al., 2015).

2.2. Connectionist Temporal Classification
In the CTC approach, the alignment between the inputs and
target labels is unknown. CTC can be implemented with a
softmax output layer using an additional unit for the blank
label ∅. The symbol ∅ corresponds to no output and is
used to estimate the probability of outputting no label at
a given time. The network is trained to optimize the to-
tal log-probability of all valid label sequences for training
data. A set of valid label sequences for an input sequence
is defined as the set of all possible label sequences of the
input with the target labels in the correct order with repeti-
tions and with label ∅ allowed between any labels. Targets
for CTC training can be computed using finite state trans-
ducers (FSTs) (Sak et al., 2015), and the forward-backward
algorithm can be used to calculate the CTC loss function.
State transition probability distribution and state priors are
not required for CTC approach, in contrast to the hybrid
DNN-HMM system. Several types of output units for CTC
training have been explored in the literature, such as phones
(or graphemes) (Miao et al., 2015), words (Audhkhasi et
al., 2017) or grams (Liu et al., 2017). Due to the large num-
ber of word outputs in acoustic-to-word CTC models, they
require significantly more training data in comparison with
traditional ASR systems (Audhkhasi et al., 2017). A maxi-
mum a posteriori (MAP) training criterion instead of CTC
was used in (Fritz and Burshtein, 2017) to train an end-to-
end ASR system.

3. Speaker Adaptation
In this paper we focus on the feature space adaptation tech-
niques for end-to-end acoustic models. Three different
types of AM adaptation were explored in this paper: (1)
fMLLR (Gales, 1998), (2) adaptation using i-vectors (Se-
nior and Lopez-Moreno, 2014), and (3) MAP (Gauvain and
Lee, 1994) adaptation using GMMD features (Tomashenko
and Khokhlov, 2014; Tomashenko et al., 2016b). In this
section we describe the adaptation approach, which is
based on using speaker-adapted GMMD features for train-
ing BLSTM-CTC models.

3.1. GMM-Derived Features for BLSTM-CTC
Models

The use of log-likelihoods from a GMM model for training
a multilayer perceptron (MLP) recognizer was investigated
in (Pinto and Hermansky, 2008). Construction of GMMD
features for adapting hybrid DNN-HMM AMs was pro-
posed in (Tomashenko and Khokhlov, 2014; Tomashenko
and Khokhlov, 2015; Tomashenko et al., 2016a), where it
was demonstrated, using MAP and fMLLR adaptation as
examples, that this type of features provide a solution for ef-
ficient transferring GMM-HMM adaptation algorithms into
the DNN framework.
We can train DNN models directly on GMMD features,
as it was done in (Tomashenko and Khokhlov, 2014;
Tomashenko and Khokhlov, 2015; Tomashenko et al.,
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Figure 1: Speaker adaptive training for the BLSTM AM
using GMMD features.

2016c), or use them in combination with other conven-
tional features. In this paper we present incorporation of
the adapted GMMD features into the recipe for training
sequence-to-sequence AMs.
The scheme for speaker adaptive training (SAT) of AMs
models with GMM-based adaptation framework is shown
in Figure 1. An auxiliary monophone GMM-HMM model
is used to transform acoustic feature vectors into log-
likelihoods vectors. At this step, speaker adaptation of the
auxiliary speaker-independent (SI) GMM-HMM model is
performed for each speaker in the training corpus using cor-
rect transcriptions and a new speaker-adapted (SA) GMM-
HMM model is created in order to obtain SA GMMD fea-
tures.
For a given acoustic feature vector, a new GMM-derived
feature vector is obtained by calculating log-likelihoods
across all the states of the auxiliary GMM model on the
given vector. Suppose ot is the acoustic feature vector at
time t, then the new GMM-derived feature vector ft is cal-
culated as follows:

ft = [p1t , . . . , p
n
t ], (2)

where n is the number of states in the auxiliary GMM-

HMM model,

pit = log (P (ot | st = i)) (3)

is the log-likelihood estimated using the GMM-HMM.
Here st denotes the state index at time t.
The adapted GMMD feature vector ft is concatenated with
the original vector ot to obtain vector xt. These features
are used as the input for training a SAT BLSTM-CTC AM.
The proposed approach can be considered a feature space
transformation technique with respect to BLSTM-CTC AM
trained on GMMD features.

3.2. MAP Adaptation
In this work we use the MAP adaptation algorithm (Gau-
vain and Lee, 1994) in order to adapt the SI GMM
model. Speaker adaptation of a DNN-HMM model built on
GMMD features is performed through the MAP adaptation
of the auxiliary GMM model, which is used for calculat-
ing GMMD features. Let m denote an index of a Gaussian
in the SI acoustic model (AM), and µµµm the mean of this
Gaussian. Then the MAP estimation of the mean vector is

µ̂µµm =
τµµµm +

∑
t γm(t)ot

τ +
∑

t γm(t)
, (4)

where τ is the parameter that controls the balance between
the maximum likelihood estimate of the mean and its prior
value; γm(t) is the posterior probability of Gaussian com-
ponent m at time t.

4. Experiments
4.1. Data Sets
The experiments were conducted on the TED-LIUM cor-
pus (Rousseau et al., 2014). We used the last (second) re-
lease of this corpus. This publicly available data set con-
tains 1495 TED talks that amount to 207 hours (141 hours
of male, 66 hours of female) speech data from 1242 speak-
ers, 16kHz. For experiments with SAT and adaptation we
removed from the original corpus data for those speakers,
who had less than 5 minutes of data, and from the rest of
the corpus we made four data sets: training set, develop-
ment set and two test sets. Characteristics of the obtained
data sets are given in Table 1. For evaluation a 4-gram lan-

Characteristic Data set
Train Dev. Test1 Test2

Duration,
hours

Total 171.66 3.49 3.49 4.90
Male 120.50 1.76 1.76 3.51

Female 51.15 1.73 1.73 1.39
Duration

per speaker,
minutes

Mean 10.0 15.0 15.0 21.0
Min. 5.0 14.4 14.4 18.3
Max. 18.3 15.4 15.4 24.9

Number
of speakers

Total 1029 14 14 14
Male 710 7 7 10

Female 319 7 7 4
Number
of words Total - 36672 35555 51452

Table 1: Data sets statistics.
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guage model (LM) with 152K word vocabulary was used.
The LM is similar to the ”small” one, which is currently
used in the Kaldi tedlium s5 r2 recipe. The only difference
is that we modified a little a training set, removing from it
those data, that present in our test and development sets.

4.2. Baseline Systems
We used the open-source Kaldi toolkit (Povey et al., 2011)
and the Eesen system (Miao et al., 2015) for the experi-
ments presented in this paper. Three baseline SI AMs were
trained using the Eesen system in a similar manner, and
differ only in the front-end processing. The following three
type of features were used:

1. fbanks⊕∆⊕∆∆ (dimension = 120): 40-dimensional
filterbank features appended with their first and
second-order temporal derivatives;

2. high-resolution MFCC features (dimension = 40):
features extracted without dimensionality reduction,
keeping all 40 cepstra;

3. bottleneck (BN) features (dimension = 40).

The first type of features is the same, as proposed in the
original Eesen recipe for the TED-LIUM corpus. For the
AMs with the two other types of features, also the two types
of data augmentation strategies were applied for the speech
training data: speed perturbation (with factors 0.9, 1.0, 1.1)
and volume perturbation, as in (Peddinti et al., 2015).
The first baseline AM was trained as described in (Miao et
al., 2015) with the CTC criterion and the deep BLSTM ar-
chitecture. The BLSTM network contains five bidirectional
LSTM layers with 320 memory cells in each forward and
backward sub-layer. The input features were normalized
with per-speaker mean subtraction and variance normaliza-
tion. The output layer is a 41-dimensional softmax layer
with the units, corresponding to 39 context-independent
phones, 1 noise model and 1 blank symbol.
The third SI AM was trained on BN features (Grézl et
al., 2007). A DNN model for extraction 40-dimensional
BN features was trained with the following topology: one
440-dimensional input layer; four hidden layers (HLs),
where the third HL was a BN layer with 40 neurons
and other three HLs were 1500-dimensional; the output
layer was 4052-dimensional. The input features for train-
ing this BN extractor were 440-dimensional (40 × 11):
40-dimensional high-resolution MFCCs spliced across 11
neighboring frames (±5).

4.3. Adapted Models
Three types of AM adaptation were empirically explored in
this section: fMLLR, adaptation using i-vectors, and MAP
adaptation using GMMD features. For all the adapted AMs
the same data augmentation strategies were applied during
the training, as for the SI ones. All the SAT models were
trained with the same neural network topology (except for
the input layer) and training criterion, as described in Sec-
tion 4.2. for SI AMs. The six SAT AMs were trained on
the following features:

4. MFCC ⊕ i-vectors (dimension = 140);

5. BN ⊕ i-vectors (dimension = 140);

6. BN with fMLLR (dimension = 40);

7. MFCC ⊕ GMMD (dimension = 167);

8. BN ⊕ GMMD (dimension = 167);

9. BN with fMLLR ⊕ GMMD (dimension = 167).

For the AMs trained on features #4 and #5, the 100-
dimensional on-line i-vectors were calculated as in (Ped-
dinti et al., 2015), and the statistic for i-vectors was updated
every two utterances during the training.
For AMs #7–#9 we used BN features to train the auxiliary
GMM model for GMMD feature extraction. The speaker-
adapted GMMD features were obtained in the same way
as described in Section 3. Parameter τ in MAP adaptation
(see Formula (4)) was set equal to 5 for both acoustic model
training and decoding.

4.4. Adaptation Results for CTC AMs
Unless explicitly stated otherwise, the adaptation experi-
ments were conducted in an unsupervised mode on the test
data using transcripts from the first decoding pass obtained
by the best baseline SI model.

# Features WER,%
Dev. Test1 Test2

1 fbanks ⊕∆⊕∆∆ 14.57 11.71 15.29
2 MFCC 13.21 11.16 14.15
3 BN 13.63 11.84 15.06
4 MFCC ⊕ i-vectors 12.92 10.45 14.09
5 BN ⊕ i-vectors 13.47 11.37 14.31
6 BN with fMLLR 12.45 10.96 13.79
7 MFCC ⊕ GMMD 11.95 10.20 14.04
8 BN ⊕ GMMD 11.66 10.14 13.88
9 BN with fMLLR ⊕ GMMD 11.63 9.91 13.58
10 BN ⊕ GMMD∗ 11.67 10.11 13.70
11 BN with fMLLR ⊕ GMMD∗ 11.41 9.93 13.47

Table 2: Summary of adaptation results for CTC AMs.
GMMD* correspond to the GMMD features, obtained us-
ing the first decoding pass by the SAT AM (by default, in
all other experiments, the SI model is used instead)

# Features WER,%
Dev. Test1 Test2

2 MFCC 13.69 11.34 14.38
3 BN 12.32 10.48 14.00
4 MFCC ⊕ i-vectors 11.63 9.62 13.28
5 BN ⊕ i-vectors 11.62 9.75 13.30
6 BN with fMLLR 10.70 9.28 12.84
7 MFCC ⊕ GMMD 11.30 9.75 13.74
8 BN ⊕ GMMD 11.07 9.75 13.55
9 BN with fMLLR ⊕ GMMD 10.92 9.54 13.27
10 BN ⊕ GMMD∗ 10.29 9.20 13.04
11 BN with fMLLR ⊕ GMMD∗ 10.15 9.06 12.84

Table 3: Summary of adaptation results for TDNN AMs.
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The performance results in terms of word error rate (WER)
for SI and SAT AMs models are presented in Table 2. The
first three lines of the table (#1–#3) correspond to the base-
line SI AMs, which were trained as described in Section
4.2., where the very first line represents the Eesen base-
line (Miao et al., 2015). The next six lines (#4–#9) show
the results for the adapted models. The numeration in Ta-
ble 2 coincides with the numeration in Sections 4.2. and
4.3..
The two last lines of the table (#10 and #11) are obtained
with the same AMs as the lines #8 and #9 correspondingly,
but for the extraction of GMMD-adapted features in #10
and #11 (marked with the ”*” in Table 2, and further in
Figure 2 and Tables 3, 4), we used the transcriptions from
the adapted model #6). Notice, that for all other tests (#7–
#9) we used transcriptions from the SI model #2.
The best result among all the systems #1–#9 is obtained by
system #9, which corresponds to the use of MAP-adapted
GMMD features appended with fMLLR-adapted BN fea-
tures. It can be only slightly improved (#11) for two sets
by using the adapted model in the first decoding pass (for
GMMD*). Among all the adaptation methods, applied sep-
arately (#4–#8), the MAP adaptation of GMMD features
shows the best performance with both BN and MFCC fea-
tures.

4.5. Comparison of Adaptation Behavior for
BLSTM-CTC and TDNN AMs.

In this series of experiments we aim to compare the adapta-
tion behavior of SAT CTC models with the different type of
neural network AMs. For this purpose we chose a TDNN
model topology, because such models are shown to achieve
the best result in many state-of-the ASR systems (Peddinti
et al., 2015). These AMs were trained the with the CE cri-
terion.
We built the same set of SI and SAT AMs, as before for
CTC-AMs (see Sections 4.2. and 4.3.), except for #1. All
SI ans SAT TDNN models were trained in a similar way
and have the same model topology. They differ only in the
type of the input features.
The topology of the TDNN models was similar to the one
described in (Peddinti et al., 2015), except for the num-
ber of hidden layers and slightly different subsequences of
splicing and sub-sampling indexes. The temporal context
was [t − 16, t + 12] and the splicing indexes used here
were [−2, 2], {−1, 2}, {−3, 3}, {−7, 2}, {0}, {0}. This
model had 850-dimensional hidden layers with rectified lin-
ear units (ReLU) (Dahl et al., 2013) activation functions
and about 4000-dimensional output layer.
The results for TDNN AMs are reported in Table 3. Also
Figure 2 presents the comparison of different adaptation al-
gorithms in terms of relative WERR for the speakers from
test and development datasets for BLSTM-CTC (Figure 2a)
and TDNN (Figure 2b) AMs. The relative WERR is calcu-
lated with respect to the SI AMs trained on BN features.
For TDNN AMs we also added in Figure 2b the results ob-
tained with the use of SAT AMs for the first decoding pass,
because they provide a consistent additional improvement
in performance in comparison with the use of SI AMs.
Table 4 shows relative WERRs for BLSTM-CTC and
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Figure 2: Relative WER reduction (WERR) for the speak-
ers from test and development datasets for different adap-
tation algorithms with respect to the SI AMs, trained on
BN features (#3). Results are ordered in ascending WERR
order for each AM.

TDNN AMs in comparison with the best corresponding SI
AMs (#2 for CTC and #3 for TDNN). We can see, that
the optimal choice of features depends on the AM archi-
tecture. For SI AMs, BNs have appeared to perform better
than MFCCs for TDNN AMs, but for CTC AMs the situa-
tion is reversed. Also for SAT CTC and SAT TDNN AMs
the ranking of the systems by the WER is different.

5. Conclusions
This paper has explored how the end-to-end ASR technol-
ogy can benefit from speaker adaptation and demonstrated
that speaker adaptation has remained an essential mecha-
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# Features CTC: rel. WERR,% TDNN: rel. WERR,%
Dev. Test1 Test2 Dev. Test1 Test2

4 MFCC ⊕ i-vectors 2.2 6.4 0.4 5.6 8.2 5.1
5 BN ⊕ i-vectors -2.0 -1.9 -1.1 5.7 7.0 5.0
6 BN with fMLLR 5.8 1.8 2.5 13.2 11.5 8.3
7 MFCC ⊕ GMMD 9.5 8.6 0.8 8.3 7.0 1.9
8 BN ⊕ GMMD 11.7 9.1 1.9 10.2 7.0 3.2
9 BN with fMLLR ⊕ GMMD 12.0 11.2 4.0 11.4 9.0 5.2

10 BN ⊕ GMMD∗ 11.7 9.4 3.2 16.5 12.2 6.9
11 BN with fMLLR ⊕ GMMD∗ 13.6 11.0 4.8 17.6 13.6 8.3

Table 4: Relative WER reduction (WERR) for adapted BLSTM-CTC and TDNN AMs in comparison with the best SI AMs
for each AM type (#2 for CTC and #3 for TDNN). Relative WERR values are calculated based on the results from Tables 2
and 3.

nism for improving the performance of an ASR system in
the new end-to-end speech recognition paradigm. Exper-
imental results on the TED-LIUM corpus showed that in
an unsupervised adaptation mode, the adaptation and data
augmentation techniques can provide approximately a 10–
20% relative WERR on different adaptation sets, compared
to the SI BLSTM-CTC system built on filter-bank features.
The best results, for BLSTM-CTC AMs, in average, were
obtained using GMM-derived features and MAP adapta-
tion, which can be further slightly improved by combina-
tion with fMLLR adaptation technique.
We found out, that the type of the neural network AM ar-
chitecture can differently influence the adaptation perfor-
mance. The comparison with the TDNN-CE AMs showed
that for these models, in contradiction to BLSTM-CTC
AMs, MAP adaptation using GMMD features outperforms
fMLLR only when it uses SAT model in the first decoding
pass to obtain transcriptions for adaptation.
Also the obtained results allow us to compare TDNN-CE
and BLSTM-CTC AMs in the realistic conditions, when
the speaker adaptation is applied, which is important be-
cause usually end-to-end and hybrid AMs are compared on
incomplete unadapted systems. The best SI TDNN-CE AM
outperforms the best SI BLSTM-CTC AM on 1–7% of rel-
ative WER reduction for different test sets. For the best
SAT AMs this gap in WER for TDNN-CE and BLSTM-
CTC AMs increases and reaches 5–13% of relative WER
reduction.
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