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Abstract
In this paper we explore the role played by world knowledge in semantic parsing. We look at the types of errors that currently exist in a
state-of-the-art Abstract Meaning Representation (AMR) parser, and explore the problem of how to integrate world knowledge to reduce
these errors. We look at three types of knowledge from (1) WordNet hypernyms and super senses, (2) Wikipedia entity links, and (3)
retraining a named entity recognizer to identify concepts in AMR. The retrained entity recognizer is not perfect and cannot recognize all
concepts in AMR and we examine the limitations of the named entity features using a set of oracles. The oracles show how performance
increases if it can recognize different subsets of AMR concepts. These results show improvement on multiple fine-grained metrics,
including a 6% increase in named entity F-score, and provide insight into the potential of world knowledge for future work in Abstract
Meaning Representation parsing.
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1. Introduction
Abstract Meaning Representation (AMR), introduced by
Banarescu et al. (2012), aims to capture the semantic
meaning of sentences using directed acyclic graphs where
nodes are labeled with concepts and edges are labeled with
relations. An example is shown in Figure 1. A number
of recent studies use AMR graphs for downstream tasks
(Pan et al., 2015; Liu et al., 2015; Sachan and Xing, 2016;
Burns et al., 2016) and growing amounts of annotated data
enable the development of statistical parsing algorithms
and standardized evaluations.

Several parsers have been created that generate an AMR
graph given a sentence (Flanigan et al., 2014; Wang et al.,
2015b; Damonte et al., 2016), but even the most recent
results suggest that there is still significant room to improve
the performance for this challenging task.

In this paper, we explore the role of world knowledge for
the task of semantic parsing with AMR. The paper makes
three main contributions. First, we examine the effect of
different types of world knowledge for semantic parsing
with AMR for the first time.1 Second, we examine the up-
per bound on world knowledge using gold annotations, and
provide new insights into the potential of world knowledge
in computational approaches to AMR parsing. Finally, we
show that we can improve the parsing score over a state-of-
the-art parser, with improvement on multiple fine-grained
evaluation metrics, including a 6% increase in named en-
tity F-score.

2. Background
There are several semantic parsers built for AMR anno-
tations (Flanigan et al., 2014; Zhou et al., 2016; Wang et
al., 2015a; Damonte et al., 2016; Barzdins and Gosko,
2016; Misra and Artzi, 2016) using data released through
the LDC (LDC2014T12, LDC2015E86, LDC2016E25,

1The code modifications and features are available at https:
//github.com/cfwelch/amr_world_knowledge.

Figure 1: Example AMR graph for the sentence “China is
expanding its military power to attempt to join the ranks of
the superpowers”. Concepts are represented as nodes and
relations as edges between those nodes.

LDC2017T10). The 2014 dataset contains 13,000 sen-
tences, which increased to almost 20,000 in the 2015
set. The 2016 and 2017 datasets contain around 39,000
sentences. The data consist of sentences from English
broadcast conversations, weblogs, discussion forums, and
newswire data and are annotated with AMR graphs. The
datasets build off of each other and include corrections and
extensions of the AMR specification (e.g., 2015 introduces
wikification and new PropBank frames).

The evaluation of these AMR parsers is typically based
on the SMATCH F1 tool (Cai and Knight, 2013) which
measures the overlap of concept-relation-concept triples in
a generated AMR graph as compared to the gold graph. In
addition, Damonte et al. (2016) introduced finer-grained
evaluations of the subtasks of AMR parsing, which
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Figure 2: The top 10% of concepts incorrectly identified by the CAMR baseline compared to the percentage of concept
confusion errors of each of these types after the addition of world knowledge. The first concept listed is the gold label and
the second is the concept it was incorrectly labeled with. We use govt as an abbreviation for ‘government’. The numbers
after concept names represent their word senses. For instance, get-01 means ‘to come into posession’, whereas get-05
means ‘to get to a state’.

measure parser effectiveness in terms of capturing named
entities, concepts, negations, word sense disambiguations
and semantic roles.

At the time these experiments were performed many of the
high performing parsers were based on JAMR or CAMR
(Flanigan et al., 2014; Wang et al., 2015a). We chose to
base our parser on CAMR, which was the highest perform-
ing entry on SemEval 2016 Task 8 and the parser on which
most of the entries for the 2016 shared task were based
(May, 2016; Wang et al., 2016). Comparing to previous
extensions of CAMR, our work is the first attempt to in-
tegrate various forms of world knowledge as features for
AMR parsing.

3. AMR Parsing with World Knowledge
We hypothesize that introducing world knowledge could
potentially increase the overall performance of AMR
parsers. In order to identify useful features and effective
approaches to improve an existing AMR parser, we first ex-
amine the errors produced by AMR parsers. By looking at
errors made by CAMR, we found that a significant number
of concepts are either mislabeled or missing. The lighter,
striped bars in Figure 2 show the most frequent concept
identification errors, representing 10% of the overall con-
cept identification errors that CAMR makes. For instance,
as seen in this chart, the concept of country is incorrectly

labeled as city, organization is incorrectly labeled as coun-
try, and country is incorrectly labeled as person as the top
3 most common errors. These 3 errors make up 3.7% of
the total concept identification errors. Based on this error
analysis, we chose to integrate world knowledge to reduce
concept identification errors.

3.1. World Knowledge for AMR
We examine three types of world knowledge: semantic
classes (WordNet classes), named entities, and encyclope-
dic knowledge (entity links to Wikipedia).

WordNet Classes and Supersenses. WordNet organizes
words into semantic hierarchies, and therefore it can
be used to abstract words to more general concepts (also
referred to as supersenses (Miller, 1995)). We use WordNet
in two ways.

First, we use a set of 45 WordNet supersenses, 26 of which
are for nouns, as assigned by the lexicographers who
developed WordNet. Every noun or verb in WordNet is
subsumed by one of these supersenses.

Second, we abstract even further by taking advantage of
the hypernym hierarchy for nouns. Given a word, we
identify its synsets, then for each synset we generate a
trace from that node to the root of the hierarchy following
hypernym links. Next, we take the labels of nodes in the
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traces three steps from the root, which keeps the number
of classes small while still having meaningful abstractions.
The resulting set of fifteen classes is {group, thing,
measure, change, object, substance,
causal agent, relation, matter, horror,
communication, psychological feature,
set, process, attribute}.

Named Entities. We use the Stanford named entity tagger
(Finkel et al., 2005), and retrain it on the training set of
LDC2014T12. To retrain the tagger we need spans in the
AMR training sentences and their assigned labels.

To generate annotated data, we use the alignments au-
tomatically generated using the JAMR aligner for AMR
graphs. The aligner creates token spans corresponding to
the generation of concepts in the gold AMR graph. We
then use the frequent concept labels as a set of classes for
retraining the NE tagger. We consider two methods for
choosing the classes for our named entity system. The first
method is to list all the concept labels by their frequency
and choose the top twenty, removing all the non-noun
labels, and removing classes which have low F1 scores
when retrained, meaning that the NE model cannot reliably
recognize this entity type (we end up with nine classes).
The second is to look at the most frequent occurrences of
nodes that have name relations, and use this set of types as
classes (excluding the name type itself).

Entity Linking to Wikipedia. We apply the TAGME en-
tity linker (Ferragina and Scaiella, 2010), which takes a
sentence as input and produces an annotated output show-
ing which spans of tokens in the sentence correspond to
Wikipedia entries. It also provides a confidence score for
the linking. In our implementation, we only consider the
entity links that have a confidence over 50%.

3.2. Integration with the CAMR Parser
We integrate world knowledge into the CAMR parser
(Wang et al., 2015b), which is one of the top performing
AMR parsers. CAMR first generates a dependency parse of
a sentence and then iterates over nodes in the dependency
tree and decides at each point which of a set of transitions
to take. To integrate world knowledge into this parser, we
change the feature set generated by each node in the current
context window. CAMR scores each possible transition at
each step of the parse. The context window can contain the
current buffer node, a node representing a potential edge
with the current buffer node, and a potential parent node.
For each of these nodes, we add features that either have
a categorical or boolean value, reflecting the world knowl-
edge available for that node.

4. Experiments
We perform two sets of experiments. In the first set, we
automatically infer the values of the three types of world
knowledge and use these as features in conjunction with
the CAMR parser. In the second set of experiments we
use gold standard NER annotations, which we then use to

train CAMR to determine an upperbound on the perfor-
mance of this parser when using world knowledge. We
use max-margin learning with AdaGrad instead of the per-
ceptron method in the original code. Previous work has
shown this learning method to be effective for a variety of
language processing tasks and we observe the same effect
(Kummerfeld et al., 2015). In all these experiments, the
original CAMR parser naturally constitutes our baseline.

Dataset and Evaluations Metrics. We evaluate our work
in two ways: one is overall SMATCH performance (Cai and
Knight, 2013), which most of the previous work adopts; the
other is the finer-grained evaluation introduced by Damonte
et al. (2016), which evaluates the quality of each subtask of
AMR parsing.
We focus on a few particularly relevant metrics:

• UNLABELED is the SMATCH score computed on the
predicted graphs ignoring all edge labels. It could help
tell us if world knowledge helps improve performance
on graph structure prediction.

• NO WSD is the score computed by ignoring the word
senses after concepts (e.g. ‘get-01’ and ‘get-05’ would
both become ‘get’).

• NAMED ENT(ITIES) is the score only checking if the
named entity concepts are correct.

• NEGATIONS considers ‘polarity’ edges in the graph
and computes the accuracy of negated concepts.

• CONCEPTS is the score looking only at concept labels
and not edge labels.

• REENTRANCY is the score only of reentrant edges in
the AMR graph.

• SRL is the score for semantic role labeling which only
considers the edge labels.

The dataset we primarily experiment with is LDC2014T12,
which was originally used by the CAMR system we ex-
tend and does not include Wikification. We experimented
with LDC2015E86 and found lower performance com-
paring to LDC2014T12, which is consistent with recent
findings (Zhou et al., 2016; Damonte et al., 2016). Our
SMATCH is comparable with Damonte et al. (2016) and
outperforms Wang et al. (2015b), however is 3% lower than
the graph-based approach used by Flanigan et al. (2016).2

4.1. Automatic World Knowledge
Augmentations

We augment the CAMR features with the three types of
world knowledge described in Section 3. As seen in the left
side of Table 1, the addition of world knowledge features
leads to an increase in the overall SMATCH F-score as
well as several of the finer-grained evaluations. The largest
improvement is observed in the named entity subtask, by
an absolute 6%. Interestingly, using all of our features in

2Flanigan et al. (2016) does not use the types of world knowl-
edge integrated in this paper. We leave integration of world knowl-
edge into the JAMR parser to future work.
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Retrained NER Oracle NER
METRIC CAMR EL NE WN NE+WN ALL 9-CLASS NE NON-NE ALL
SMATCH 64.7 66 66 66 66 65 67 65 68 69
UNLABELED 70.8 72 72 72 72 71 73 71 74 74
NO WSD 65.7 67 67 67 67 66 68 66 69 70
NAMED ENT. 74.6 77 77 77 81 77 79 77 78 79
NEGATIONS 14.1 16 16 13 15 14 15 15 16 15
CONCEPTS 80.2 80 80 80 81 80 81 80 85 85
REENTRANCY 36.2 38 36 40 37 36 37 36 37 37
SRL 59.1 59 59 59 58 58 60 59 61 61

Table 1: Comparisons of CAMR modifications and improvement over the default CAMR model on LDC2014T12 are
shown on the left side of the table as SMATCH F1 scores. We examine feature subsets for entity links (EL), named entities
(NE), and WordNet features (WN). The right side shows experiments using gold NER concept labels. The highest numbers
for each row of each side are in bold.

combination did not perform as well as the combination of
named entity and WordNet features. The noise associated
with the entity link feature may be the reason why this
feature set does not contribute to the overall best classifier.
Additionally, we saw 6% reduced false-positives (concepts
identified in the parse that should not exist) when using
world knowledge than in the CAMR baseline.

Overall, our approach confirms the hypothesis that world
knowledge can help an AMR parser. Specifically focus-
ing on the types of errors identified in Section 3, the darker
shaded bars in Figure 2 show the errors obtained in the pres-
ence of world knowledge. We observe a clear decrease in
error, e.g., the percentage of mistakes for “government or-
ganization and research institution” drops to zero.

4.2. Gold Standard World Knowledge
To gain additional insight into the role played by NER in
the AMR parser, we examine what would happen if we had
an NER model that was perfectly accurate for a given set of
concept labels. We obtain these NER gold standard labels
from the annotations available in the dataset that we use,
after aligning the annotation graphs with the raw text. We
look at four different scenarios: (1) one scenario where we
have labels for the nine classes we used in Section 3.; (2)
a second one where we use all named entity concept labels
as features; (3) a third scenario using all non-named-entity
concept labels as features; and (4) a fourth one where all
concept labels of aligned tokens are used as features.

The first column in the right side of Table 1 shows the
SMATCH score achieved by using the gold labels for our
first method of generating NE tags, which limited our tag-
ger to nine classes. In the second and third experiments we
partition the set of labels into NEs and non-NEs. The NEs
are the set of concept labels that have ‘name’ edges in the
AMR training data in LDC2014T12. The gold IOB labels
for these 252 classes are used to train the parser in exper-
iment 2, and in experiment 3 we use all concepts that are
not included in this set which includes about 10k types of
labels. The NE score is lower than the 9-class score be-
cause NE does not include the ‘name’ label itself, which
is a separate node in the AMR parse and gets aligned to a
large number of tokens.

In the last experiment we assume that an NER system can
be trained on all concept label types simultaneously and
we train and test the parser using these labels as features.
As expected, the performance increases significantly in this
case. Interestingly, as the performance for most evaluation
types increases, the named entity performance is highest
when using the real output of the NER system. The gold
NER outputs have no effect on the negation or reentrancy
scores. Having correct labels intuitively has less to do with
these two aspects of AMR graphs.

5. Discussion and Conclusions

Our experiments confirmed the hypothesis that some forms
of world knowledge can improve existing AMR parsers.
In particular, we found that the combination of named
entities and WordNet features outperforms other methods
on almost all metrics, except for slightly lower SRL and
negation scores. The learning method itself, when properly
tuned, gave us an improvement over the CAMR baseline.
When looking at the concept confusions in Figure 2 we
found that world knowledge helped reduce these errors.
We also found false-positives reduced by 6% over the
CAMR baseline. The entity link feature did not provide
much improvement and it did not help the parser when
combined with our other features.

Our analyses of gold standard NER features also revealed
some of the limitations of using world knowledge with
existing AMR parsers. The upperbound that we identified
for this type of knowledge, while clearly above the perfor-
mance of previous parsers, is still far below the expected
performance when gold annotations are being used.

We also attempted to include other forms of world
knowledge, encoded in the form of word embeddings
(Mikolov et al., 2013) or node embeddings (Grover
and Leskovec, 2016), which did not work as expected,
and did not lead to improvements. This suggests that
future research avenues in AMR parsing should instead fo-
cus on improvements in parsing algorithms or training data.

3122



Acknowledgments
This material is based in part upon work supported by IBM
under contract 4915012629. Any opinions, findings, con-
clusions or recommendations expressed above are those of
the authors and do not necessarily reflect the views of IBM.

6. Bibliographical References
Banarescu, L., Bonial, C., Cai, S., Georgescu, M.,

Griffitt, K., Hermjakob, U., Knight, K., Koehn,
P., Palmer, M., and Schneider, N. (2012). Ab-
stract meaning representation (amr) 1.0 specification.
In https://www.isi.edu/ ulf/amr/help/amr-guidelines.pdf,
pages 1533–1544.

Barzdins, G. and Gosko, D. (2016). Riga at semeval-2016
task 8: Impact of smatch extensions and character-level
neural translation on AMR parsing accuracy. In Pro-
ceedings of SemEval, pages 1143–1147.

Burns, G. A., Hermjakob, U., and Ambite, J. L. (2016).
Abstract meaning representations as linked data. In
International Semantic Web Conference, pages 12–20.
Springer.

Cai, S. and Knight, K. (2013). Smatch: an evaluation met-
ric for semantic feature structures. In Proceedings of The
52nd Annual Meeting of the Association for Computa-
tional Linguistics, pages 748–752.

Damonte, M., Cohen, S. B., and Satta, G. (2016). An
incremental parser for abstract meaning representation.
In Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguis-
tics, pages 536–546.

Ferragina, P. and Scaiella, U. (2010). Tagme: on-the-
fly annotation of short text fragments (by wikipedia en-
tities). In Proceedings of the 19th ACM international
conference on Information and knowledge management,
pages 1625–1628. ACM.

Finkel, J. R., Grenager, T., and Manning, C. (2005). Incor-
porating non-local information into information extrac-
tion systems by gibbs sampling. In Proceedings of the
43rd annual meeting on association for computational
linguistics, pages 363–370.

Flanigan, J., Thomson, S., Carbonell, J., Dyer, C., and
Smith, N. A. (2014). A discriminative graph-based
parser for the abstract meaning representation. In Pro-
ceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics, volume 1, pages 1426–
1436.

Flanigan, J., Dyer, C., Smith, N. A., and Carbonell, J.
(2016). CMU at semeval-2016 task 8: Graph-based
AMR parsing with infinite ramp loss. In Proceedings of
SemEval, pages 1202–1206.

Grover, A. and Leskovec, J. (2016). node2vec: Scal-
able feature learning for networks. In Proceedings of
the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 855–864.
ACM.

Kummerfeld, J. K., Berg-Kirkpatrick, T., and Klein, D.
(2015). An empirical analysis of optimization for max-
margin nlp. In Proceedings of the Conference on Em-

pirical Methods in Natural Language Processing, pages
273–279.

Liu, F., Flanigan, J., Thomson, S., Sadeh, N., and Smith,
N. A. (2015). Toward abstractive summarization using
semantic representations. In Proceedings of The 54th
Annual Meeting of the Association for Computational
Linguistics, pages 1077–1086.

May, J. (2016). Semeval-2016 task 8: Meaning represen-
tation parsing. In Proceedings of SemEval, pages 1063–
1073.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013). Distributed representations of words
and phrases and their compositionality. In Advances
in neural information processing systems, pages 3111–
3119.

Miller, G. A. (1995). Wordnet: a lexical database for en-
glish. Communications of the ACM, 38(11):39–41.

Misra, D. K. and Artzi, Y. (2016). Neural shift-reduce
CCG semantic parsing. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 1775–1786.

Pan, X., Cassidy, T., Hermjakob, U., Ji, H., and Knight,
K. (2015). Unsupervised entity linking with abstract
meaning representation. In Human Language Technolo-
gies: The 2015 Annual Conference of the North Ameri-
can Chapter of the ACL, pages 1130–1139.

Sachan, M. and Xing, E. P. (2016). Machine comprehen-
sion using rich semantic representations. In Proceedings
of The 54th Annual Meeting of the Association for Com-
putational Linguistics, pages 486–492.

Wang, C., Xue, N., and Pradhan, S. (2015a). Boosting
transition-based AMR parsing with refined actions and
auxiliary analyzers. In Proceedings of The 54th Annual
Meeting of the Association for Computational Linguis-
tics, pages 857–862.

Wang, C., Xue, N., and Pradhan, S. (2015b). A transition-
based algorithm for AMR parsing. In Human Language
Technologies: The 2015 Annual Conference of the North
American Chapter of the ACL, pages 366–375.

Wang, C., Pradhan, S., Xue, N., Pan, X., and Ji, H. (2016).
CAMR at semeval-2016 task 8: An extended transition-
based AMR parser. In Proceedings of SemEval, pages
1173–1178.

Zhou, J., Xu, F., Uszkoreit, H., Qu, W., Li, R., and Gu, Y.
(2016). AMR parsing with an incremental joint model.
In Proceedings of SemEval, pages 680–689.

3123


	Introduction
	Background
	AMR Parsing with World Knowledge
	World Knowledge for AMR
	Integration with the CAMR Parser

	Experiments
	Automatic World Knowledge Augmentations
	Gold Standard World Knowledge

	Discussion and Conclusions
	Bibliographical References

