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Abstract
Hate speech has become a major issue that is currently a hot topic in the domain of social media. Simultaneously, current proposed
methods to address the issue raise concerns about censorship. Broadly speaking, our research focus is the area human rights, including
the development of new methods to identify and better address discrimination while protecting freedom of expression. As neural
network approaches are becoming state of the art for text classification problems, an ensemble method is adapted for usage with neural
networks and is presented to better classify hate speech. Our method utilizes a publicly available embedding model, which is tested
against a hate speech corpus from Twitter. To confirm robustness of our results, we additionally test against a popular sentiment dataset.
Given our goal, we are pleased that our method has a nearly 5 point improvement in F-measure when compared to original work on a
publicly available hate speech evaluation dataset. We also note difficulties encountered with reproducibility of deep learning methods
and comparison of findings from other work. Based on our experience, more details are needed in published work reliant on deep
learning methods, with additional evaluation information a consideration too. This information is provided to foster discussion within

the research community for future work.
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1. Introduction and Motivation

Our research is focused on the development of better meth-
ods for protection of freedom of expression in the web do-
main and social media while simultaneously reducing ille-
gal discrimination. Motivation is provided by the funda-
mental human rights (as outlined in articles 19 and 20 of
(The United Nations, 1948)) and (The United Nations Gen-
eral Assembly, 1966)) which simultaneously provide rights
to freedom of expression and prevent censorship and illegal
discrimination. Automated take down approaches poten-
tially infringe upon rights to freedom of expression, such
as when a text classifier incorrectly flags a page or post as
something to be taken down. Hate speech classifiers are
based on annotation methods that are very difficult to de-
fine, with questionable reliability (Ross et al., 2017). Even
a manual take down approach, such as that used by Face-
book, is a challenging tas

Censorship is a potential risk when addressing these issues
with automated text classification methods, thus all options
should be considered (Benesch, 2017)). Actions to filter and
block content (e.g. recently implemented laws in Germany
and by platforms such as Twitter and Facebook) deemed to
be hateful and / or threatening to the online community and
society as whole have been taken, which is having negative
consequencesﬂ

The goal of our work is to discover simple but effective
methods to improve upon existing research in the area of
hate speech classification. These methods will be useful in
our broader research which tests mechanisms that provide
users with feedback about their consumption of potentially

'See example of task: https://www.nytimes.com/interactive/
2017/10/13/technology/facebook-hate-speech-quiz.html

as demonstrated by the recently implemented law in
Germany  https://www.economist.com/news/europe/21734410-
new-social-media-law-causing-disquiet-germany-silencing-hate-
speech-cannot-define-it

hateful material, with the intent of changing their behavior
through awareness as a possible alternative to regulation.
We include an initial investigation of existing methods for
classification of abusive and hateful speech in the domain
of Twitter. Additionally, we look into methods from the
domain of sentiment analysis, as the classification task is
similarly subjective and provides a larger body of research.
Our contributions are as follows.

e Experimental results for a deep learning ensemble
method that improves F-measure 2% over non-
ensemble approaches and a nearly 5% increase over
hand crafted methods from authors of a hate speech
dataset.

e We provide recommendations for future work by the
research community on text classification problems
such as hate speech and suggestions for researchers us-
ing deep learning approaches. The recommendations
are motivated by discovery of inconsistencies in eval-
uation methods and a lack of detail for methods used
in previous research that was reviewed for our work.

In the following sections, we provide related background
work, methods of implementations, results and analysis of
findings.

2. Background

While lookup of hateful terms in a dictionary is one pos-
sible approach (Tulkens et al., 2016)) to filter hateful con-
tent, such methods are deemed insufficient (Saleem et al.,
2016)). Text classification methods demonstrate much bet-
ter results.

Ensemble models have shown promising results in many
areas of machine learning and other fields as well (see
(Molteni et al., 1996), an example from atmospheric sci-
ences). Ensemble methods for text classification, such as
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stacking and bagging, are commonly used approaches (Ag-
garwal and Zhai, 2012; Xia et al., 2011). In the area of so-
cial media, simple but effective ensemble approaches have
been used for sentiment classification of Tweets (Hagen et
al., 2015). Most relevant to our experiments with neural
networks and Twitter data are hybrid models (Badjatiya et
al., 2017 [Park and Fung, 2017) which combine outputs
from different neural networks.

In recent years, efficient algorithms were produced
(Mikolov et al., 2013b; [Mikolov et al., 2013a; |Pennington
et al., 2014) that have allowed the use of word embeddings
as features for neural networks and other algorithms (e.g.
Logistic Regression). There are multiple pre-trained word
embedding models available, trained in domains such as
news articles (Mikolov et al., 2013b) and Twitter (Godin
et al., 2015} |[Pennington et al., 2014). These unsupervised
methods and models have produced significant improve-
ments in downstream supervised NLP and text classifica-
tion tasks.

These new approaches have allowed for significant im-
provements against previous SemEvaﬂ message level Twit-
ter sentiment analysis test sets (Severyn and Moschitti,
2015} |Stojanovski et al., 2015} [Vosoughi et al., 2016; [Yang
and Eisenstein, 2017). Similar improvements have been
shown (Badjatiya et al., 2017; |(Gambéck and Sikdar, 2017;
Park and Fung, 2017) using the recently published hate
speech datasets (Waseem and Hovy, 2016; |Waseem, 2016f]
and note two of the three methods mentioned fail to pro-
vide a direct comparison to original findings as test sets
were split in a different manner. For all methods reviewed,
limited information (if any) was provided regarding net-
work weight initialization schemes, which our experiments
demonstrate as important information for reproducibility
purposes. Similar concerns regarding details of neural net-
work configurations have recently been raised in the infor-
mation retrieval community as well (Fuhr, 2017). Nonethe-
less, use of neural networks and embedding methods is
worth exploration by NLP and text mining researchers, as
the work of (Badjatiya et al., 2017; |(Gambéck and Sikdar,
2017}, |Park and Fung, 2017} [Severyn and Moschitti, 2015}
Stojanovski et al., 2015; [Vosoughi et al., 2016; [Yang and
Eisenstein, 2017) are just some examples demonstrating
strong improvements on previous work that made use of
traditional features (e.g. n-grams, part of speech tags, etc.).

3. Methods

Due to challenges encountered with our own work when
tuning and replicating previous work using neural net-
works, such as inconsistencies with weight initialization of
networks, we decided to take a different approach. Know-
ing that neural networks are not guaranteed to find a global

*SemEval is an annual shared task event where researchers
compare methods on various semantic tasks, such as sentiment
analysis, sarcasm detection and word sense disambiguation

“These are two frequently cited hate speech datasets, but only
provide limited coverage in the domain of racism and sexism. We
note the limited number of test sets currently available for this im-
portant task, and note that non-English datasets are further under-
resourced

minimum (Goodfellow et al., 2016), coupled with difficul-
ties of parameter tuning of networks and having limited
computational resources to perform an extensive set of con-
figurations, we recalled research in 2015 which produced
robust results for Twitter sentiment classification utilizing
a simple ensemble method (Hagen et al., 2015). In their
work, logistic regression was used to produce 3 models
based upon a diverse set of features. The probabilistic out-
put for each sentiment classification (positive, negative or
neutral) was summed and averaged, with the highest av-
erage chosen as the winning classification, which resulted
in the best performing solution for the SemEval sentiment
classification task in 2015. Similar success with these
methods was found with different Twitter sentiment clas-
sification tasks by (Balikas and Amini, 2016;|Sygkounas et
al., 2016) and (Zimmerman and Kruschwitz, 2017)). Based
on previous successes with this method for classification
tasks in Twitter, we hypothesize that similar ensemble
methods with neural networks using different weight ini-
tializations could also produce improvements for the tasks
of hate speech detection in Twitter.

The ensemble model is created in the following manner.
First we take soft-max results from each underlying model
and sum them together. Then we average the sum of soft-
max results, by dividing by the number of models (10 total
in our case). With the average soft-max score of all models,
the class with highest average is chosen as winning class
similar to methods in previous work (Hagen et al., 2015)).

We evaluate our method on two Twitter classification
datasets, abusive speech (Waseem and Hovy, 2016) and
SemEval 2013 sentiment analysis (Nakov et al., 2013)
dataset (Table E]) For the abusive speech dataset, we ini-
tially perform experiments on an 85/15 fixed random split
on dataset to determine best parameters, then run final ex-
periments in the same manner as (Waseem and Hovy, 2016))
which evaluated results with 10-fold cross validation. This
choice was made to allow for consistent comparison be-
tween evaluation scores for each run of our experiments.
Additionally, we build ensemble models on the SemEval
training and development sentiment test sets and evaluate
against the SemEval 2013 test set. We performed this addi-
tional experiment to determine if ensemble methods were
robust enough to improve results for a different classifica-
tion task.

Positive Negative Neutral Total

SemEval Train 3632 1453 4564 9649
SemEval Test 572 338 729 1539
SemEval 2013 1568 599 1630 3797
None Sexism  Racism Total

Abuse / Hate 11535 3378 1970 16883

Table 1: Summary of datasets, totals for each class
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3.1. Experimental Setup

For our experiments we utilize Python neural network and
machine learning libraries. Specifically, Scikit-Learn (Pe-
dregosa et al., 2011) is used to create feature representa-
tions for input to machine learning algorithms. For the
neural network model training, the Keras library (Chol-
let, 2015)) with Tensorflow (Abadi et al., 2015) back-end
was initially used, but switched to Theano (Theano De-
velopment Team, 2016) back-end due to a discovery that
weight initialization cannot be reproduced, as functionality
is currently not available with TensorFlow and Keras. We
note that many authors do not publish libraries used in their
work, however the lack of reproducibility of results with a
Theano and Tensorflow back-end are one important exam-
ple demonstrating why this information should be included.
Preprocessing Tweets - Prior to the embedding lookup, all
Tweets were preprocessed in the same manner (i.e. tok-
enization and normalization of text) to the original texts
used to create the embedding model. The raw Tweets are
passed through a Tweet tokenizelﬂ assumed to produce out-
put similar to tokenizers used by (Godin et al., 2015)) to cre-
ate an embedding model. Additionally, all URLSs, mentions
and numbers were normalized to _-URL_, _MENTION_ and
_NUMBER°. respectively with the case of the Tweets left
unchanged per original methods used for the embedding
model (Godin et al., 2015)).

Feature Extraction - A benefit of convolutional neural net-
work (CNN) classifiers and word embeddings is the ability
to consume sequential tokens through concatenation of to-
ken embeddings into a matrix(Goldberg, 2016), in contrast
to n-gram features which lose the notion of position in a text
(aside from immediate neighboring terms for bi/tri-grams).
CNN classifiers, in theory, can consume variable length
documents. In practice, the choice of software library may
make the task of variable length document ingestion impos-
sible. As Python Keras was used for experiments, we found
it necessary to set the number of tokens into the CNN to a
fixed length. It is noted that the mean number of tokens
in our datasets was 17 and 22 for hate speech and senti-
ment respectively. A pre-experimental comparison of 30,
50 and 70 tokens as the window length showed 50 tokens
having better performance. With this setting, only 5 Tweets
for all datasets had tokens cutoff. Investigation of the best
window length is a consideration for future work. Each
Tweet is represented as a matrix T C R™*™, where m =
length of embedding vector and n = maximum tokens taken
from Tweet. In cases where tokens in Tweets are < than n,
dummy embedding vectors with zeros are used. For the em-
bedding model used, a 50 token by length 400 embedding
matrix is the output.

Machine Learning Classifier - For the CNN, we consider
a very minimal network inspired by previous work (Kim,
2014). The convolution layer has a single 3 token window
and 150 filters. Padding is set to *same’, thus the input and
output of convolution layer match in length. The output of
the convolution layer is fed into a global max-pooling layer
for feature reduction. The max pooling layer feeds into a
single hidden layer with 250 units. Glorot uniform distri-

>Python NLTK Tweet Tokenizer was used

bution is used for weight initialization, which is the default
for Keras, with fixed seed settings for reproducibilityﬂ No
regularization is used for the abusive speech dataset, how-
ever a dropout rate of 0.2 is applied after the max pooling
layer for the SemEval dataset. Beyond pooling and dropout
layer are the hidden (250 nodes with ReLu activation) and
output (3 nodes with sigmoid activation). The weights are
learned with a binary cross-entropy loss function and the
adam optimizer.

Evaluation settings - For comparison of the SemEval and
abusive speech datasets, we evaluate the configuration with
3 different seed weight initializations chosen arbitrarily. A
pre-experiment investigation into parameters demonstrated
that improvements in model accuracy generally leveled off
around 10 epochs, with small gains and reductions in evalu-
ation metrics for epochs beyond this value, thus we focused
on 3 epoch settings (3, 5 and 10) not exceeding 10. Batch
size had degrading effects on accuracy and time for model
convergence as it was increased, notably beyond 100, with
similar effects below 10. As such, we chose 4 batch size
values within the range of 10 - 100 (10, 25, 50, 100). Re-
sources were a limiting factor to perform a more detailed
parameter search within these ranges.

We use the best settings (10 epochs and batch size 10) and
run 10-fold cross validation on our method to allow direct
comparison with the findings of (Waseem and Hovy, 2016)
(see cross validation results of these settings in Tables[d]and
B). For comparison of findings on the SemEval dataset, we
use the F-1 average score for positive and negative classifi-
cations as was done in the original competition.

4. Results

Results abusive speech test set - We review results for
multiple ensemble models with variations in seed param-
eters, number of epochs and batch size. Table |2| provides
a summary of results for the 85/15 split set. In all cases,
the ensemble performs better when combining sub-models,
with an average of 1.97% gain on F-1. Using the best epoch
and batch size settings from the 85/15 split, we ran the en-
semble with 10-fold cross validation to directly compare
findings with (Waseem and Hovy, 2016). In Table [4] the
flattened version of confusion matrices is provided for all
10 ensemble folds, which is useful for researchers that may
wish to compare their work using different evaluation met-
rics (e.g. unweighted F-measure). Finally, Table[5|provides
a direct comparison between the mean weighted macro F-1
measure for 10-fold model run with our ensemble method
with the results from (Waseem and Hovy, 2016).

To confirm significance of findings, we produce 99% con-
fidence intervals on each set of sub-models used to pro-
duce ensemble (10 sub-models for each ensemble) and find
only 2 sub-models of all 100 sub-models performs above
confidence. Thus, we conclude that with 99% confidence,
our ensemble method will perform better than an individual
model 98% of the time.

Results SemEval 2013 test set - Analysis and review of
the results, in Table |3| further demonstrate the robustness

®Note to other researchers, at time of writing, fixed seed func-
tionality is not available when using Tensorflow back-end
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mean of sub-models

10 25 50 100 Grand Total
3 75.98% 75.71% 75.46% 75.53% 75.67%
5 75.11%  75.08% 75.00% 75.24% 75.11%
10 74.88% 74.61% 7491% 75.01% 74.85%
Grand Total | 75.32% 75.14% 75.12% 75.26% 75.21%
std deviation of sub-models
10 25 50 100 Grand Total
3 0.95% 1.26% 1.23% 1.19% 1.16%
5 1.16% 1.28% 094% 1.15% 1.13%
10 1.02% 1.31% 1.16% 0.98% 1.11%
Grand Total 1.04% 1.28% 1.11% 1.11% 1.14%
mean of ensembles
10 25 50 100 Grand Total
3 7747% 7729% T7.21% 76.85% 77.21%
5 77.61% 7729% 76.79% 76.74% 77.11%
10 77.83% 77.39% 76.85% 76.88% 77.24%
Grand Total | 77.63% 77.33% 76.95% 76.83% 77.18%

ensemble (average improvement) over sub-model mean

10 25 50 100 Grand Total
3 1.48% 1.58% 1.75% 1.32% 1.53%
5 2.49% 2.21% 1.79% 1.50% 2.00%
10 2.95% 2.78% 1.95% 1.87% 2.39%
Grand Total | 2.31% 2.19% 1.83% 1.57% 1.97%
std deviation of ensembles
10 25 50 100 Grand Total
3 0.58% 0.28% 0.38% 0.27% 0.41%
5 0.40% 0.25% 0.27% 0.27% 0.46%
10 0.12% 0.65% 0.12% 0.42% 0.54%
Grand Total | 0.39% 0.38% 0.31% 0.29% 0.46%

Table 2: Summary metrics for abusive speech ensembles and sub-models - Provided here are summary metrics (evaluation
was based on average F-1 measure of positive and negative classifications) based on batch size and epochs, there were 3
ensembles produced (each with different weight initializations) for each batch size (10, 25, 50 and 100) and epoch (3, 5 and
10) setting, with best highlighted. The standard deviation of ensemble models is reduced from 0.94% for individual model
approach to 0.12% for ensemble approach, signaling a strong reduction in variability. We also note a nearly 2 point gain in
F-1 score when comparing the mean of all ensembles to mean of sub-models.

of our ensemble method of joining soft-max results from
10 sub-models to produce final classification, with similar
improvements. When considering all sentiment models en-
sembles compared to individual models, there is an aver-
age of 1.84% gain on F-1. We note that our best ensemble
model tied the results (F-1 of 71.91) of a computationally
complex social network approach produced by (Yang and
Eisenstein, 2017)).

Impressively, the simple method, when run on both datasets
produces an increase of nearly 2% on the evaluation metric.
Furthermore, in evaluation of test sets we note the standard
deviation is reduced by more than half for the ensemble
method, signaling a strong reduction in variability.

The following questions provided guidance for our investi-

gation and results. These were addressed with descriptive
statistics and direct comparison. Brief summaries of find-

ings are provided for each question.

e RQ 1: Based on experience with weightings and in-
consistent results, how much variability in evaluation
metrics is found between models with different weight
initializations? Standard deviation is the chosen met-
ric for variability, which is provided in Tables [2] and
[] Variability for individual model approach with best
parameters is found to be +/- 0.94% of the median F-1
measure. For the ensemble approach, standard devia-
tion is found to be +/- 0.12% of the median F-1 mea-
sure and also improves nearly 2% over best individual
model.

e RQ 2: Given a set of N models with varying weight
initializations, can an ensemble of the N models pro-
duce better results by taking the average of their soft-
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mean of sub-models

10 25 50 100 Grand Total

3 68.44%  68.65%  68.39% 68.01% 68.37%

5 68.34% 67.90% 68.24% 68.03% 68.13%

10 66.41% 67.13% 67.16% 67.06% 66.94%
Grand Total | 67.73% 67.89% 67.93% 67.70% 67.81%

std deviation of sub-models

10 25 50 100 Grand Total

3 2.72% 2.24% 217%  2.62% 2.44%

5 1.58% 1.61% 1.78%  2.05% 1.76%

10 1.87% 1.38% 1.73%  2.11% 1.77%
Grand Total | 2.06% 1.74% 1.90% 2.26% 1.99%

mean of ensembles

10 25 50 100 Grand Total

3 70.34%  70.16%  69.34% 68.33% 69.54%

5 70.67%  69.74%  70.36% 69.46% 70.06%

10 69.17%  69.49%  69.67% 69.08% 69.35%
Grand Total | 70.06% 69.79%  69.79% 68.96% 69.65%

ensemble (average improvement) over sub-model mean

10 25 50 100 Grand Total

3 1.90% 1.51% 095%  0.33% 1.17%

5 2.33% 1.84% 2.12% 1.42% 1.93%

10 2.76 % 2.36% 251%  2.02% 2.41%
Grand Total | 2.33% 1.90% 1.86% 1.26% 1.84%

std deviation of ensembles

10 25 50 100 Grand Total

3 0.22% 1.17% 015%  0.59% 1.01%

5 1.10% 0.55% 0.61%  0.62% 0.82%

10 0.50% 0.65% 031%  0.68% 0.54%
Grand Total | 0.92% 0.78% 0.57%  0.74% 0.84%

Table 3: Summary metrics for ensembles and sub-models evaluated on the SemEval 2013 dataset - Provided here are
summary metrics (evaluation was based on average F-1 measure of positive and negative classifications) based on batch
size and epochs, there were 3 ensembles produced (each with different weight initializations) for each batch size (10, 25,
50 and 100) and epoch (3, 5 and 10) setting, with best and worst highlighted (best in bold). Overall the standard deviation
of ensemble models is reduced to +/- 0.15%, a sharp reduction from standard deviation of individual models and a signal
for reduction in variance. Similar to hate speech evaluations, we note a nearly 2 point gain in F-1 score when comparing
the mean of all ensembles to mean of sub-models.

max predictions? We have set N = 10 in our exper- e RQ 4: How do methods compare with different clas-
iment and are 99% confident that our ensemble ap- sification tasks (e.g. Abusive speech vs. Sentiment)?
proach will significantly improve F-1 scores 98% of As outlined in results Section 4 and Table[3] the meth-
the time compared to results from a single model. ods produce similar results when run on a sentiment

analysis test set.

o RQ 3: With all model initialization parameters fixed,
how do variations in batch size and number of epochs
impact ensemble results? We answer this question
with relative improvements in F-1 scores between We have demonstrated the usefulness of ensemble meth-
mean of individual models and mean of ensemble ods with a neural network configuration. We have shown
models. As shown in Table[2land discussed in Section that weight initialization methods are an important fac-
M] the greatest improvements are made with smaller  tor to consider in any research using deep learning. We

5. Discussion and Conclusions: Learnings
from Experiments

batch sizes and larger number of epochs. Variabil- demonstrated that a simple ensemble method for neural
ity, as measured by standard deviation, consistently networks has statistically significant improvement over a
reduces for all parameters. single model. Furthermore, we have shown that individ-
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True None None None Race Race Race  Sex Sex  Sex

Pred None Race Sex None Race Sex None Race Sex
Fold 1 1053 42 59 66 129 2 113 0 225
Fold 2 1054 52 48 48 148 1 122 1 215
Fold 3 1053 40 61 50 143 4 106 1 231
Fold 4 1066 29 59 58 136 3 106 0 232
Fold 5 1040 38 76 45 152 0 94 0 244
Fold 6 1032 46 75 49 147 1 106 4 228
Fold 7 1055 40 58 57 138 2 113 2 223
Fold 8 1055 37 61 55 142 0 122 1 215
Fold 9 1046 47 60 51 143 3 100 2 235
Fold 10 1064 44 45 50 147 0 113 1 223

Table 4: Confusion scores for all 10-fold ensembles (best in grey) on the (Waseem and Hovy, 2016) dataset. Gold standard
and predicted classifications for the dataset are Sex = sexism, Race = racism and None = neither racism nor sexism.

mean of sub-models 75.65%
std deviation of sub-models 1.54%
mean of ensembles 78.62%
ensemble improvement on sub-model mean  2.96%
std deviation of ensembles 1.08%
best results from original author 73.93%
improvement on original work 4.69%

Table 5: Comparison of ensemble method on (Waseem and
Hovy, 2016)) dataset vs. results from original best method
(Waseem and Hovy, 2016). Values are based upon F-1
Measure.

ual models have high variance when compared to the vari-
ance of ensemble models. Thus, one might place lower
confidence in their model when an ensemble approach is
not used. Also, in all trials, we find that ensemble models
perform better on test sets compared to the mean of sub-
models. The ensemble approach appears to leverage the
high variance as an advantage for final classification via the
simple method of averaging soft-max output.

5.1.

Several difficulties were encountered in our initial experi-
ments due to weight initializations often not being reported
by other authors coupled with the issue of a deep learn-
ing library lacking reproducibility due to seed setting. In
our case, we had originally used Keras with a TensorFlow
back-end. Post experimentation, we investigated this matter
more and found that the issue with reproducibility of weight
initializations is resolved with use of a Theano back-end.
Nonetheless, this painful experience not only demonstrates
the need to publish more details, it also can lead to better
solutions, such as a more robust ensemble approach.

Difficulties encountered

5.2. A request for future research

We note that in many papers reviewed for our work, re-
searchers failed to publish their weight initialization meth-
ods. There are many choices available for weight initial-
ization of a neural network and it is one of many important

factors. Deep learning has many other considerations too,
and the details provided in published work are frequently
light in detail. When considering all of the parameters
available (e.g. number of layers, embedding options, opti-
mizers, weighting schemes, activation functions, libraries,
etc.), neural networks can become very complex and there-
fore more details should be recorded for reproducibility. As
our work demonstrates, seemingly innocuous values such
as batch size, can have significant impacts on results. Fill-
ing in the missing details from published work is a time
consuming task, which is best resolved through communi-
cation with original authors that may no longer be available
due to various factors. As such, it may be worthwhile to
make every effort to include all parameter choices, includ-
ing weight initialization methods, in future Wor

Additionally, a set of confusion matrices was provided in
previous work on the abusive dataset (Gambéack and Sik-
dar, 2017). We have also provided confusion matrix results
in Table 4] This information is useful for reproducibility,
as you can compare many more evaluation metrics than
the popular single aggregate measure F-1 macro weighted
score. Reporting of confusion matrices opens the door to
other metrics such as F-1 micro unweighted or F measure
with different beta values. This information could easily
be provided online, as publications often have space limita-
tion, therefore it is worth consideration of a better approach.

5.3. Future work

Future work would consider evaluation of ensemble meth-
ods on additional test sets (e.g. SemEval 2014 and 2015
for example). Also, a comparison of different weighting
schemes is likely useful to understand variations within this
parameter. Beyond that, building models with different net-
work configurations and embedding models are all consid-
ered to be natural next steps. Different approaches, such
as LSTM networks based on character representations (as
opposed to word embeddings) should be considered. Re-
producing the promising results using LSTM and Gradient

"We made our code publicly available for
other researchers, which can be found at
https://github.com/stevenzim/lrec-2018.
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Boosted Decision Trees (Badjatiya et al., 2017) on addi-
tional datasets is a worthwhile exercise too. Given knowl-
edge that neural network performance improves as datasets
become larger, it would be an interesting experiment to gain
insight as to what amount of data is sufficient enough where
ensemble methods do not provide a boost in performance.
Therefore one possible next step for our work would be to
try our methods on progressively larger datasets to empir-
ically show that ensembles provide smaller improvements
as training data increases.
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