
Improving a Neural-based Tagger for Multiword Expression Identification

Dušan Variš, Natalia Klyueva
Institute of Formal and Applied Linguistics, Charles University; The Hong Kong Polytechnic University

Malostranské náměstı́ 25, Prague; 11 Yuk Choi Rd, Hung Hom,
varis@ufal.mff.cuni.cz,

natalia.klyueva@polyu.edu.hk

Abstract
In this paper, we present a set of improvements introduced to MUMULS, a tagger for the automatic detection of verbal multiword
expressions. Our tagger participated in the PARSEME shared task and it was the only one based on neural networks. We show that
character-level embeddings can improve the performance, mainly by reducing the out-of-vocabulary rate. Furthermore, replacing the
softmax layer in the decoder by a conditional random field classifier brings additional improvements. Finally, we compare different
context-aware feature representations of input tokens using various encoder architectures. The experiments on Czech show that the
combination of character-level embeddings using a convolutional network, self-attentive encoding layer over the word representations
and an output conditional random field classifier yields the best empirical results.

Keywords: multiword expressions, machine learning, deep learning, conditional random field

1. Introduction
Multiword Expression (MWE) is a sequence of words for
which the meaning of a whole sequence cannot be derived
from the meaning of its components straightforwardly.
MWEs are viewed by computational linguists as a “pain
in the neck of NLP” due to their non-compositionality and
irregularity that can cause problems in areas such as ma-
chine translation, terminology extraction, etc. Regarding
this, MWEs are largely addressed in both the theoretical
and applied research. Associative measures (calculating
association between distinct words in MWE) are usually
used for extracting MWEs (Ramisch, 2015; Kilgarriff et
al., 2014). The identification of MWE in the text is thus a
challenging task.
Within PARSEME’s special MWE-related project1, re-
searchers from different countries created guidelines on
how to define MWEs in the text and annotated corpora in
18 languages. The focus was on verbal MWEs which were
categorized into five classes: idioms (ID), light verb con-
structions (LVC), inherently reflexive verbs (IReflV), verb-
particle constructions (VPC), and other (OTH). The process
of annotation was language-dependent. For instance, in
Hungarian, VPCs are annotated and IReflVs are not, how-
ever, in Czech it is the other way around.
These data then served as the training data for systems par-
ticipating in the shared task on automatic verbal multiword
expression (VMWE) identification (Savary et al., 2017). In
addition to the MWEs markings, morphosyntactic mark-
ings were provided in the corpora as well.
Seven systems based on various approaches and algorithms
participated in the task. Two of them were based on condi-
tional random field (CRF) (Maldonado et al., 2017; Boroş
et al., 2017), the other was trained using dependency pars-
ing (Simkó et al., 2017) and the winner was a transition-
based system exploiting syntactic rules (Al Saied et al.,
2017).
For some of the languages, our previous model based on
the neural networks (NN) had comparable scores with other

1https://typo.uni-konstanz.de/parseme/

multilingual systems, yet it performed best only in one lan-
guage – Romanian. Later comparison between our system
and the winner (transition-based approach) revealed a large
gap between the MWE-based scores, which focus on exact
matches between the hypothetical and the gold MWEs and
the token-based scores, which compare individual tokens
from the MWEs. Our approach does not perceive MWEs as
a whole, labeling each token individually, although, some-
times it can capture long distant dependencies between the
MWE components.
In this paper, we describe our ongoing work on improv-
ing our tagger, MUMULS, using the current state-of-the-
art sequence-to-sequence techniques applied in other NLP
tasks, including different styles of embedding of the input
tokens, creating a context-aware feature representation of
the input sequence and generating of the target labels.
This paper is structured as follows. We describe the data
preprocessing in Section 2. In Section 3., we describe the
proposed improvements. In Section 4., we describe the ex-
periments and analyze their results. We conclude our find-
ings in Section 5.

2. Data Preparation
The training data were provided in two files per each lan-
guage, one in the CoNLL-U format with the morphosyntac-
tic annotations and the other in a specially created parseme
TSV format with the respective annotations of VMWEs.
From these two files, we extract word forms, lemmas, part-
of-speech (POS) tags and target MWE labels and use them
to train our models.
The MWE labels have a following format:
“mwe id”:“mwe label” (e.g. 1:ID), where “mwe id”
is used to distinguish different MWEs within the same
sentence. A single token can also belong to multiple
MWEs having multiple labels separated by a semicolon
(e.g. 1:ID;2:IReflV).
Since it would be difficult to train a tagger using this spe-
cific label format, we preprocess the labels in a following
way: the first token from a MWE receives the MWE label

2526

https://typo.uni-konstanz.de/parseme/

without the “mwe id”2 and the following tokens receive
a special CONT label. During the postprocessing, we as-
sign an unique “mwe id” to each label except for CONT
and replace each of the following CONT labels with the
same “mwe id”. If the first label encountered in the la-
beled sequence is CONT, we use the most frequent MWE
label (based on the training data) to replace it.
Below is an excerpt from the training file for French with an
idiomatic expression mettre un terme – ‘finish’ (the fourth
and fifth column contain original and preprocessed labels
respectively):

Il il PRON _ _
met mettre VERB 1:ID ID
un un DET 1 CONT
terme terme NOUN 1 CONT
à à ADP _ _
sa son DET _ _
carrière carrière NOUN _ _

Clearly, our processing methods cannot handle several phe-
nomena, for example, crossing MWEs or tokens that belong
to multiple MWEs. For this reason, we used an “Oracle”
tagger that only applied preprocessing and postprocessing
on the gold labels in the test data and compared the pro-
duced output with the original labels. The results showed
that using our processing methods can still produce a tagger
with an f-measure score of 0.95 and higher. Therefore, we
consider the suggested processing methods sufficient for
this task.

3. System Description
Our MWE tagger is a sequence classifier that predicts the
target labels using feature representations computed by a
deep neural network (DNN). In the last few years, DNNs
started achieving the state-of-the-art results in many NLP
tasks including machine translation (Sutskever et al., 2014),
natural language generation (Wen et al., 2015) and more
importantly POS tagging (Pérez-Ortiz and Forcada, 2001)
and named entity recognition (Lample et al., 2016). The
system we submitted to the VMWE shared task 3 was
implemented using the TensorFlow4 open source library
(Abadi et al., 2016). However, our current research-in-
progress is implemented in the Neural Monkey5 (Helcl and
Libovický, 2017) framework for sequence modeling, be-
cause it enables easier prototyping and replication of the
experiments.6

Figure 1 shows a general overview of the system architec-
ture. It consists of three separate layers, the embedding
layer, which assigns an embedding vector to each input

2In the case of multiple MWE labels, the token receives only
the first one.

3See code https://github.com/natalink/mwe_
sharedtask/tree/refactor

4www.tensorflow.org
5http://ufal.mff.cuni.cz/neuralmonkey
6The code used during experiments together with

the experiment configurations is available at https:
//github.com/ufal/neuralmonkey/tree/lrec_
mwe/neuralmonkey.

Il met un term ...

_ ID CONT CONT _

Embedding layer

Encoder layer

Classifier layer

e1 e2 e3 e4 e5

h1 h2 h3 h4 h5

Figure 1: General overview of the MUMULS MWE tagger.
ei represents the embedding of the i-th word, hi represents
its context-aware representation.

token, the encoder layer, which transforms each embed-
ding vector to a context-aware vector representation and
the classifier layer, which assigns an output label to each
token based on the context-aware representation. We de-
scribe each layer in more detail in the following sections.

3.1. Embedding Layer
The role of the embedding layer is to assign each wordwi in
the input sequence w = (w1, .., wn) an embedding vector
ei ∈ Rd where d is the embedding size, creating a sequence
representation e = (e1, .., en). We can accomplish this in
two ways: either by using an embedding lookup table or
by computing the embedding using the embeddings of its
characters. We call the former method word-level embed-
ding and the latter a character-level embedding.
Figure 2 illustrates an embedding assignment using the em-
bedding lookup table. Each word is mapped to an em-
bedding based on its vocabulary index. OOV words are
mapped to a special “UNK” embedding. The poor handling
of OOV words and the size of the embedding lookup table
are the main issues when using the word-level embeddings
and can be eliminated to a certain degree by the character-
level embeddings.

3.1.1. Character-level embeddings
Character-level embeddings are word representations cre-
ated by combining the embeddings of the characters in the
word. To capture dependencies between the characters in
the word, we use either a recurrent neural network (RNN)
or a convolutional neural network (CNN).
Figure 2 shows the process of creating the character-level
embedding using the RNN. A sequence of embedded char-
acters ch = (ch1, .., chn), chi ∈ Rdch , which is cre-
ated using an embedding lookup table similar to the word-
level embedding method, is fed to the bidirectional RNN
(BiRNN) (Graves and Schmidhuber, 2005). The BiRNN
creates a context-aware representation of each character
h = (h1, .., hn),7 hi ∈ Rdh in a recurrent fashion using

7Since we use BiRNN there are actually two states, hR
i and hL

i

2527

https://github.com/natalink/mwe_sharedtask/tree/refactor
https://github.com/natalink/mwe_sharedtask/tree/refactor
www.tensorflow.org
http://ufal.mff.cuni.cz/neuralmonkey
https://github.com/ufal/neuralmonkey/tree/lrec_mwe/neuralmonkey
https://github.com/ufal/neuralmonkey/tree/lrec_mwe/neuralmonkey
https://github.com/ufal/neuralmonkey/tree/lrec_mwe/neuralmonkey

Il met un term ...

e1 e2 e3 e4 e5

Figure 2: A word-level embedding example. Every input
word is assigned an embedding depending on its vocabu-
lary index.

t e r m e

e

p o o l i n g

Figure 3: An illustration of the character-level RNN em-
bedding. The outputs from each step of the BiRNN are
concatenated and the whole output sequence is pooled to
create the embedding of the word. The embeddings of the
individual characters are omitted for simplicity.

the following formula:

hi = f(hi−1, chi) (1)

The function f(h, ch) is computed by a recurrent cell,
usually the Long-Short Term Memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) or the Gated Recurrent Unit
(GRU) (Chung et al., 2014). After we get the context-aware
representation of each character, we apply pooling (maxi-
mum or average) over the whole sequence h to get the em-
bedding of the word.
Initially created and applied in image recognition task,
CNNs became popular in the NLP tasks as well. The
method relies on kernel sliding, however, the kernel slides
over the sequence of embedded characters instead of image
pixels. The Figure 4 shows the architecture of the CNN
that can be used to create character-level embeddings. We
apply a set of filters F = [filt1, .., filtk] on the sequence
of embedded characters. A filter filtj of width l takes an
input X ∈ Rl×dch and transforms it into a single output
Y ∈ Rd/|F |, where d is again the size of the output word
embedding. We pad the sequence of characters to make

for each i, created by the forward and backward run respectively.
The states are concatenated to create the representation hi

t e r m e

e

p o o l i n g

Figure 4: An illustration of the character-level convolu-
tional embedding. The sequence of characters is padded
to guarantee equal length of the filter outputs. We omit the
embeddings of the individual characters for simplicity.

h2 h3 h4 h5h1

e2 e3 e4 e5e1

Figure 5: An illustration of the BiRNN encoder. Each em-
bedding ei is pasted to the RNN cell to produce a context-
aware representation hi.

each filter produce a sequence of the same length. These
output sequences are then concatenated element-wise to
produce a single sequence h = (h1, ..hn) and a we apply
pooling to produce the embedding of the word.
To provide additional information for the tagger, we encode
not only the word forms but also lemmas and POS tags that
are available in the training data. For each token, we en-
code its word form, lemma and POS tag using a separate
embedding lookup table in case of the word-level embed-
ding and a separate character-level encoder in case of the
character-level embedding. The resulting embeddings of
the word form, lemma and POS tag are then concatenated
to create the embedding of the token.

3.2. Encoder Layer
The purpose of the encoder layer is to take the embed-
dings of the words e = (e1, .., en) provided by the em-
bedding layer and transform them to a representation h =
(h1, .., hn) where each embedding hi contains additional
information about its neighbors. We examine three meth-
ods of doing so: using a BiRNN, a deep convolutional net-
work and a self-attentive network.
Figure 5 shows the architecture of the BiRNN encoder. The
process is similar to the character-level BiRNN encoder:
the input embeddings e are transformed to h using the fol-
lowing formula:

hi = f(hi−1, ei) (2)

The function f again represents the recurrent cell.

2528

h2 h3 h4 h5h1

e2 e3 e4 e5e1

GLU

+

GLU

+

GLU

+

GLU

+

GLU

+

Figure 6: An illustration of the deep convolutional encoder
with depth 1. The filter creates an itermediate embedding
with double of the original embedding size and the GLU
gating mechanism reduces the embedding back to the orig-
inal size. Residual connections are applied to allow deep
convolutions. The output of the layer can be used as input
to another layer.

h2 h3 h4 h5h1

e2 e3 e4 e5e1

+

+

Multi-head Attention

Feed Forward

Figure 7: A simplified illustration of a single self-attentive
layer consisting of a multi-head attention and feed forward
sublayer. After each sublayer, residual connections and a
layer normalization are applied. The layers can be stacked
to create a deeper architecture.

Figure 6 describes the deep convolutional encoder architec-
ture first used by a Facebook machine translation system
(Gehring et al., 2017). In contrast to the RNN, convolu-
tions do not provide explicit way to encode the position of
a word in the input sequence. To counter this, we add ad-
ditional positional information to the embeddings (Gehring
et al., 2017; Vaswani et al., 2017). The position-aware em-
beddings are then transformed using a filter F ∈ R2d×ld,
where l is the width of the filter. The filter takes l input
embeddings and transforms them into a single output em-
bedding h′ ∈ R2d. A Gated Linear Unit (GLU) (Dauphin
et al., 2016), is applied on the h′ as a gating mechanism to
introduce non-linearity, producing h ∈ Rd. We also add
residual connections (He et al., 2016) to the output of the
GLU to enable deep convolutions. These convolutional lay-
ers can be stacked one on top of another producing deeper
representations. We use the output from the last layer as the

MWE-based F1 token-based F1

word-lvl 0.42 0.57
char-rnn-gru-avg 0.59 0.69
char-rnn-lstm-avg 0.59 0.69
char-rnn-gru-max 0.64 0.73
char-rnn-lstm-max 0.65 0.73
char-conv-5-avg 0.58 0.68
char-conv-6-avg 0.58 0.68
char-conv-5-max 0.69 0.78
char-conv-6-max 0.69 0.78

Table 1: Comparison between different embedding meth-
ods.

MWE-based F1 token-based F1

birnn-softmax 0.69 0.78
birnn-crf 0.73 0.78
deep-convo-softmax 0.55 0.71
deep-convo-crf 0.59 0.72
self-att-softmax 0.70 0.78
self-att-crf 0.74 0.79

Table 2: Comparison between different encoder architec-
tures and output classifiers.

input for the classifier layer.
The structure of the self-attentive encoder (Vaswani et al.,
2017) is described in Figure 7. Similar to the convolu-
tional encoder, the self-attentive encoder does not explic-
itly capture information about the position of the input in
the sequence. Therefore, we use the position-aware em-
beddings again. We apply a multi-head attention mech-
anism on these embeddings (Vaswani et al., 2017) and a
position-wise fully-connected layer. After each sublayer,
a layer normalization (Ba et al., 2016) and a residual con-
nections are added. Again, the process can be repeated by
stacking multiple layers using the output of the previous
layer as the input of the following one. We pass the output
of the last layer to the classifier layer.

3.3. Classifier Layer
The classier layer takes the output representations h =
(h1, .., hn) produced by the encoder layer and uses them
to predict the target sequence. We compare two methods: a
softmax classifier and a CRF classifier.
The softmax classifier first transforms each hidden repre-
sentation hi into a vector of logits yi ∈ R|V |, where |V |
is the size of the target vocabulary. The logits y are then
normalized using a softmax function creating a distribution
over the target vocabulary. During training, we minimize
the cross-entropy between the output distribution and the
gold labels. During the inference, a label with the highest
probability is selected.
The CRF classifier uses conditional random field to pre-
dict the whole output sequence instead of predicting each
target label separately. This helps us to take into account
dependencies between the predicted labels. Again, we first
transform the hidden representation of each token into a
vector of logits using a linear layer. During training, the

2529

System MWE F1 token F1 System MWE F1 token F1

BG
MUMULS-old 0.34 0.59

LT
MUMULS-old 0.00 0.00

MUMULS 0.50 0.62 MUMULS 0.19 0.25
PARSEME winner 0.61 0.66 PARSEME winner 0.28 0.25

CS
MUMULS-old 0.16 0.23

PT
MUMULS-old 0.44 0.60

MUMULS 0.67 0.73 MUMULS 0.40 0.52
PARSEME winner 0.71 0.73 PARSEME winner 0.67 0.71

DE
MUMULS-old 0.21 0.34

RO
MUMULS-old 0.77 0.84

MUMULS 0.33 0.40 MUMULS 0.66 0.71
PARSEME winner 0.41 0.45 PARSEME winner 0.77 0.84

FR
MUMULS-old 0.09 0.29

SL
MUMULS-old 0.31 0.45

MUMULS 0.38 0.48 MUMULS 0.32 0.40
PARSEME winner 0.51 0.61 PARSEME winner 0.43 0.47

IT
MUMULS-old – –

TR
MUMULS-old 0.34 0.45

MUMULS 0.07 0.07 MUMULS 0.40 0.48
PARSEME winner 0.40 0.44 PAESEME winner 0.55 0.55

Table 3: Comparison between our best systems configuration, old MUMULS system performance and the best submitted
system across languages participating in the PARSEME Shared Task.

CRF classifer tries to minimize the negative log-likelihood
of the gold target sequence y = (y1, .., yn) based on the
following probability:

p(y|h; θ) ∼ epx(
n∑

i=0

s(yi) +

n∑
i=1

s(yi, yi−1)) (3)

s(yi) is the score of the individual label based on its hid-
den representation hi and s(yi, yi−1 is a transition score
between the labels computed using transition parameters
θ ∈ R|V |x|V |, where |V | denotes the size of the target label
vocabulary. During the inference, the CRF classifier uses
the Viterbi decoding algorithm (Forney, 1973) to output the
sequence with the highest score.

4. Experiments
When we evaluated the suggested system configurations,
we compared each layer configurations separately. We used
the Czech dataset available for the PARSEME shared task.
We used the MWE-based F1 measure metric to evaluate the
performance of each system configuration. The metric is a
standard F1 measure based on the precision and recall of
the evaluated systems. For each MWE (represented as a
set of word indices) in the reference, it searches for exact
matches in the predicted MWEs. For comparison, we also
used a fuzzy, token-based F1 measure which allows partial
matches between the gold and predicted MWEs.
First we compared the variants of the embedding layer. We
used the embedding size 100 for each word form, lemma
and POS tag, resulting in a token embedding size 300.
We fixed the encoder layer to a BiRNN with the hidden
state size 300 and an LSTM recurrent cell. We only used
the softmax classifier during this comparison. All experi-
ments had a fixed dropout of 0.8. The word-level embed-
ding method used a separate vocabularies for word forms,
lemmas and POS tags. The character-level embeddings
used the same character vocabulary for each factor. In the
character-level RNN embedding, we set the size of the hid-
den state to the size of the input embedding. We compared
the performance of both LSTM (char-rnn-lstm) and GRU

(char-rnn-gru) cell. In the character-level CNN (char-conv),
we tried sets of filters of lengths ranging from 2 to 5 and 2
to 6 respectively. In both character-level embedding meth-
ods, we compared both maximum (max) and average (avg)
pooling.
Table 1 shows the individual performance of each embed-
ding method. First, we can see that using the character-
level embeddings brings significant improvement over the
word-level embeddings. Second, the choice of the RNN
cell seems to have little to no impact on the performance of
the char-rnn embedding method. Finally, the results show
that the char-conv embedding method yields the best results
and that the maximum pooling method outperforms the av-
erage pooling.
Next, we compared the suggested encoder layer configura-
tions. We used the convolutional character-level CNN with
maximum pooling for embedding layer. The BiRNN on
the encoder layer was identical to the one used during the
embedding layer comparison. The deep convolutional en-
coder (deep-convo) had three layers, each having the filter
width 3. The self-attention encoder (self-att) also had three
layers, each having 10 attention heads and a feed-forward
network with the hidden size 450. We chose the parameters
so that each model had a comparable number of trainable
variables. For each encoder, the size of the output hidden
states was identical to the size of the input embeddings. We
compared both the softmax and CRF classifier with each
encoder.
Table 2 compares the performance of each encoder ar-
chitecture and classifier method. The self-attention en-
coder achieved the best results being slightly better than
the BiRNN encoder. The results also show that replacing
the softmax layer with the CRF classifier consistently im-
proves the performance.
Based on the results of the previous experiments we chose
the following architecture to train the models for the
other PARSEME Shared Task languages: convolutional
character-level embedding network with filters of width 2
to 6 and maximum pooling layer, self-attention encoder
layer and a CRF classifier. Table 3 shows a comparison

2530

of the models with the results reported in the shared task.
We can see, that our improvements were reflected in the
MUMULS performance when compared with our old sub-
mission. However, we still were not able to beat the best
submission. The lower performance of the improved MU-
MULS on the Romanian requires additional investigation
in the future.

5. Conclusion
We described an ongoing work on improving MUMULS,
a neural-based system for automatic identification of ver-
bal multiword expressions. We compare several state-of-
the-art architectures, experiment with different embedding
methods and implement sequence model for label predic-
tion using CRF. The results show that for most of the lan-
guages, our modifications bring additional boost in the sys-
tem performance.
In the future, we plan to further investigate the possibili-
ties of scaling the presented architectures and studying the
model capacities with respect to the provided data. Special
attention will be focused on investigating the decrease in
performance for the Romanian because it is a language in
which the old version of MUMULS yielded the best results.

6. Acknowledgements
The first author has been supported by the LIN-
DAT/CLARIN project of the Ministry of Education, Youth
and Sports of the Czech Republic (projects LM2015071
and OP VVV VI CZ.02.1.01/0.0/0.0/16 013/0001781), by
the Charles University SVV project number 260 453 and
by the Meta-Net/T4ME Net project of the European Union
(project FP7-ICT-2009-4-249119).
The second author has been supported by the postdoctoral
fellowship grant of the Hong Kong Polytechnic University,
project code G-YW2P.

7. Bibliographical References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
et al. (2016). Tensorflow: Large-scale machine learn-
ing on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467.

Al Saied, H., Constant, M., and Candito, M. (2017).
The ATILF-LLF System for Parseme Shared Task: a
Transition-based Verbal Multiword Expression Tagger.
In Proceedings of the 13th Workshop on Multiword Ex-
pressions (MWE 2017), pages 127–132, Valencia, Spain,
April. Association for Computational Linguistics.

Ba, L. J., Kiros, R., and Hinton, G. E. (2016). Layer nor-
malization. CoRR, abs/1607.06450.

Boroş, T., Pipa, S., Barbu Mititelu, V., and Tufiş, D. (2017).
A data-driven approach to verbal multiword expression
detection. PARSEME Shared Task system description
paper. In Proceedings of the 13th Workshop on Multi-
word Expressions (MWE 2017), pages 121–126, Valen-
cia, Spain, April. Association for Computational Lin-
guistics.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y., (2014).
Empirical evaluation of gated recurrent neural networks
on sequence modeling.

Dauphin, Y. N., Fan, A., Auli, M., and Grangier, D. (2016).
Language modeling with gated convolutional networks.
arXiv preprint arXiv:1612.08083.

Forney, G. D. (1973). The viterbi algorithm. Proc. of the
IEEE, 61:268 – 278, March.

Gehring, J., Auli, M., Grangier, D., Yarats, D., and
Dauphin, Y. (2017). Convolutional sequence to se-
quence learning.

Graves, A. and Schmidhuber, J. (2005). Framewise
Phoneme Classification with Bidirectional LSTM and
other Neural Network Architectures. Neural Networks,
18(5):602–610.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep
residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016,
pages 770–778. IEEE Computer Society.

Helcl, J. and Libovický, J. (2017). Neural Monkey: An
Open-source Tool for Sequence Learning. The Prague
Bulletin of Mathematical Linguistics, 107:5–17.

Hochreiter, S. and Schmidhuber, J. (1997). Long
short-term memory. Neural Comput., 9(8):1735–1780,
November.

Kilgarriff, A., Baisa, V., Bušta, J., Jakubı́ček, M., Kovář, V.,
Michelfeit, J., Rychlý, P., and Suchomel, V. (2014). The
sketch engine: ten years on. Lexicography, pages 7–36.

Lample, G., Ballesteros, M., Subramanian, S., Kawakami,
K., and Dyer, C. (2016). Neural architectures for named
entity recognition. In Kevin Knight, et al., editors, HLT-
NAACL, pages 260–270. The Association for Computa-
tional Linguistics.

Maldonado, A., Han, L., Moreau, E., Alsulaimani, A.,
Chowdhury, K. D., Vogel, C., and Liu, Q. (2017). De-
tection of Verbal Multi-Word Expressions via Condi-
tional Random Fields with Syntactic Dependency Fea-
tures and Semantic Re-Ranking. In Proceedings of the
13th Workshop on Multiword Expressions (MWE 2017),
pages 114–120, Valencia, Spain, April. Association for
Computational Linguistics.

Pérez-Ortiz, J. A. and Forcada, M. L. (2001). Part-of-
speech tagging with recurrent neural networks. In Pro-
ceedings of the International Joint Conference on Neural
Networks, IJCNN 2001, pages 1588–1592.

Ramisch, C. (2015). Multiword Expressions Acquisition:
A Generic and Open Framework, volume XIV of The-
ory and Applications of Natural Language Processing.
Springer.

Savary, A., Ramisch, C., Cordeiro, S., Sangati, F., Vincze,
V., QasemiZadeh, B., Candito, M., Cap, F., Giouli, V.,
Stoyanova, I., and Doucet, A. (2017). The PARSEME
Shared Task on Automatic Identification of Verbal Multi-
word Expressions. In Proceedings of the 13th Workshop
on Multiword Expressions (MWE 2017), Valencia, Spain.

Simkó, K. I., Kovács, V., and Vincze, V. (2017). USzeged:
Identifying Verbal Multiword Expressions with POS
Tagging and Parsing Techniques. In Proceedings of the
13th Workshop on Multiword Expressions (MWE 2017),
pages 48–53, Valencia, Spain, April. Association for
Computational Linguistics.

2531

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence
to sequence learning with neural networks. In Proceed-
ings of the 27th International Conference on Neural In-
formation Processing Systems, NIPS’14, pages 3104–
3112, Cambridge, MA, USA. MIT Press.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017).
Attention is all you need.

Wen, T.-H., Gasic, M., Mrksic, N., hao Su, P., Vandyke, D.,
and Young, S. J. (2015). Semantically conditioned lstm-
based natural language generation for spoken dialogue
systems. In Lluı́s Màrquez, et al., editors, EMNLP, pages
1711–1721. The Association for Computational Linguis-
tics.

2532

	Introduction
	Data Preparation
	System Description
	Embedding Layer
	Character-level embeddings

	Encoder Layer
	Classifier Layer

	Experiments
	Conclusion
	Acknowledgements
	Bibliographical References

