TREEANNOTATOR: Versatile Visual Annotation of Hierarchical Text Relations

Philipp Helfrich, Elias Rieb, Giuseppe Abrami, Andy Liicking, Alexander Mehler
Goethe University Frankfurt, Text-Technology Lab
Robert-Mayer-Strale 10, 60325 Frankfurt am Main
helfrich@cs.uni-frankfurt.de, s0294036 @stud.uni-frankfurt.de, {abrami, luecking, mehler } @em.uni-frankfurt.de

Abstract
We introduce TREEANNOTATOR, a graphical tool for annotating tree-like structures, in particular structures that jointly map dependency
relations and inclusion hierarchies, as used by Rhetorical Structure Theory (RST). TREEANNOTATOR is browser-based, embedded
within the UIMA framework and provides two visualization modes. TREEANNOTATOR’s interoperability exceeds similar tools,
providing a wider range of formats, while annotation work can be completed more quickly due to a revised input method for RST
dependency relations. TREEANNOTATOR offers a multiple window view, which allows users to inspect several annotations side by
side. For storing and versioning annotations, the UIMA Database Interface (UIMA DI) was developed to save documents based on a
pre-defined type system. These features not only connect TREEANNOTATOR annotations to modern technological and dialog theoretical
work, but set it apart from related tools. The ease of use of TREEANNOTATOR and its newly designed user interface is evaluated in a

user study consisting of annotating rhetorical relations with TREEANNOTATOR and the classic RSTTool.

Keywords: text annotation, text visualization, multiple views, rhetorical structure theory, UIMA, database

1. Introduction

Over the past years, a lot of annotation tools have been de-
veloped for various tasks (for a recent process and feature
oriented overview see (Finlayson and Erjavec, 2017); for
an overview of multimodal tools see (Cassidy and Schmidt,
2017)).

For some reason, however, the domain of discourse annota-
tion, most notably in terms of Rhetorical Structure Theory
(RST) (Mann and Thompson, 1988)), has not gained much
attention for quite a long time. Most RST annotations, with
the RST Discourse Treebank (Carlson et al., 2003)(Carlson
et al., 2014) leading the way, are carried out with the orig-
inal RST Annotation Tool (O’Donnell, 1997) or its exten-
sion, the ISI RST Annotation Tool (Marcu, 1999). While
still usable, both tools, however, are not maintained any
more and do not comply to current annotation frameworks.
Due to such reasons, a third, browser-based RST annotation
tool has been developed recently: rstWeb (Zeldes, 2016).
Why, then, is there need for a new tool like TREEANNO-
TATOR?

We highlight three reasons in the following: Firstly,
TREEANNOTATOR, unlike rstWeb, follows the UIMA
framework, which supports current requirements of an-
notation pipelines (Wilcock, 2017). Note that also the
Atomic/ANNIS frameworks (Druskat et al., 2014; [Krause
and Zeldes, 2016) are not based on UIMA, and hence
TREEANNOTATOR is a module following a technologically
complementary approach, more related to the “NLP-affine”
text annotation tool BRAT (Stenetorp et al., 2012) (which in
turn is the technological and design source for UIMA-based
WebAnno (de Castilho et al., 2014)). Even extending such
frameworks, we developed an UIMA database interface in
order to provide a fine-grained type system-compliant stor-
age of documents.

Secondly, users of TREEANNOTATOR benefit from dif-
ferent visualizations. The usefulness of visualizing anno-
tations has been independently highlighted, for instance
by (Finlayson and Erjavec, 2017, p. 183) and (Biemann

et al., 2017, p. 236). In case of polynuclear hierarchies
there are several ways to display the resulting structures,
which in turn emphasize different structural features. Ac-
cordingly, TREEANNOTATOR provides — in addition to
the classical RST view — an inclusion view that adopts
rhetorical structure representations in the tradition of Dis-
course Representation Theory (DRT) (Kamp and Reyle,
1993)), namely Segmented Discourse Representation The-
ory (SDRT) (Asher and Lascarides, 2003). The visual-
ization flexibility not only provides alternative views on
given rhetorical structures, it also makes TREEANNOTA-
TOR’s output more “readable” to modern theoretical lin-
guistics. Thus, TREEANNOTATOR may reach a new group
of users.

Thirdly, the newly designed graphical interface of TREE-
ANNOTATOR significantly improves the tool’s usability for
rhetorical annotations: this has been evaluated in a study in
comparison to the RST7ool.

The components, annotation processes, and visualizations
of TREEANNOTATOR are described in Sec. 2] The usabil-
ity study is reported in Sec. Future developments are
summarized in Sec. (4]

2. TreeAnnotator

2.1. Annotating Tree-like Text Structures in
TreeAnnotator

TREEANNOTATOR is an up-to-date, browser-based and
freely available device for discourse annotation. It is de-
signed as a module of the still-developing annotation suite
TEXTANNOTATOR. TEXTANNOTATOR in turn draws on
the architecture of TEXTIMAGER (Hemati et al., 2016), an
UIMA-based framework that offers a wide range of NLP
and visualization tools through a user-friendly GUI. All
NLP tools that are available via TEXTIMAGER can be uti-
lized for preprocessing input documents, say, in terms of
tokenization, lemmatization or pos tagging. TREEANNO-
TATOR’s front-end is based on the Ext JS framework] and

Thttps://www.sencha.com/products/extjs/#overview

1958

https://www.sencha.com/products/extjs/#overview

Interpretation

1-4

e —— e ——
1-2 3-4

Elaboration

2: and fast.

1: The administration must come

to a decision,

Disjunction

3: Either save money at all 4: or put priority on
costs education.

Figure 1: TREEANNOTATOR's classical RST mode, illustrating the same RST structure as shown in Fig. 2]

uses the D3. jsEl library for visualizations. It was designed
for annotating RST trees (Mann and Thompson, 1988)) and
structures that jointly map dependency relations and inclu-
sion hierarchies. As such, TREEANNOTATOR covers and
extends the functionality of previous RST annotation tools,
but is completely newly developed in order to meet current
technological standards and requirements.

The user interface characteristics of TREEANNOTATOR
give rise to the following features, which are elaborated
subsequently:

e the number of mouse clicks for carrying out an RST
annotation is significantly reduced, thanks to a new ap-
proach of how to annotate rhetorical structures. In partic-
ular, spans no longer have to be added manually, but are
included automatically based on selected relation types —
a respective user study is reported in Sec.[3}

* the flexibility and interoperability exceeds comparable
tools by offering new output formats (e.g. I&IEX and
XML, see Sec.[2.2] and Sec. 2.3] respectively);

* TREEANNOTATOR provides an alternative mode of in-
teractive visualization (and, hence, annotation), including
a split-window facility, which extends the classical RST
view (Sec. 2.2));

* finally, TREEANNOTATOR includes a redo/undo func-
tionality due to an underlying versioning system (Sec.

2.4).
2.2. Visualizing Annotations in TextAnnotator

TREEANNOTATOR’s visualization addresses current work-
flow needs more specifically than comparable tools: In par-
ticular, (a) a second mode of visualization is available, in-
dependent from classical RST trees; (b) IZIEX output for
scientific publications can be generated; (c) a multiple win-
dow view to inspect annotations side by side is provided.

(a) Visualization Modes Representing data by means of
alternative modes helps in understanding and interpreting
the subject matter. To this end, TREEANNOTATOR sup-
ports two modes of visualizing tree-like structures: clas-
sical RST trees and dependency-oriented inclusion hierar-
chies (DIH) (see Fig.[T]and 2). TREEANNOTATOR allows
for switching between the two available visualizations even
during annotation.

Visualizations in RST mode are similar to those of (ISI)
RSTTool and rstWeb. However, TREEANNOTATOR’S

Zhttps://d3js.org/

mouse wheel zooming and dragging functionality adds
a useful feature, especially for annotating larger tree
structures: TREEANNOTATOR has been tested with trees
of more than one hundred Elementary Discourse Units
(EDUgs, the text spans connected by rhetorical relations);
RSTTool and rstWeb in comparison are limited to display-
ing roughly two dozen EDUs simultaneously on screen.
Unlike ANNIS, which was developed for generic graph vi-
sualizations, TREEANNOTATOR offers two dedicated RST
modes, specifically designed for quick annotation work.
ANNIS’ latest version, ANNIS3, provides a solution for
RST trees by means of a visualization plugin (Krause and
[Zeldes, 2016). However, the application is limited to only
displaying previously annotated corpora. The correspond-
ing annotation tool Atomic (Druskat et al., 2014) is cur-
rently still in development and not available as a browser-
based tool.

The adminstration

must come to a and fast.

decision,

Elaboration

Observe: rhetorical
surface marker
“either...or”

Interpretation

EEfther save or put priority on }

money at all costs |'pjsjunction | education.

Figure 2: DIH: Mode to view integrated dependency and
inclusion hierarchies in TREEANNOTATOR. The comment
is added to the PGF/TikZ source code.

The DIH mode is not just a further means of visualization,
it opens up a new domain of application, since it connects
RST annotations to dynamic semantics in the DRT
tradition. The nested boxes representa-
tion format is familiar to formal semanticists from SDRT
(Asher and Lascarides, 2003, e.g. p. 33), from where it
is adopted in the first place. A particularly nice feature of
the inclusion hierarchy representation — in contrast to the
original RST rendering — is that the right frontier of a text
becomes visible: the right frontier constitutes the structural

1959

https://d3js.org/

examplel.rs3 4 v ax

1-3
Motivation
i 23

Motivation

2: Then we can go to the 3: That way we can finish the
hardware store before it closes. tonight.

RST (Dep. & Incl.)

Figure 3:
collapsible annotation views can be visualized.

boundary for anaphoric attachment sites and, hence, is of
importance for any further co-reference annotation.

(b) Graphics Output Besides screenshot-like graphics
(PNG), TREEANNOTATOR allows for generating IATEX
output: RST trees are exported using the rst package
ter, 2002), DIHs are output to PGF/TikZ (Tantau, 2015).
PGF/TikZ are formal languages that can be interpreted
by TeX (Knuth, 1989), LTEX (including
XAIATEX), and ConTXt (Hagen and Hoekwater, 2013)) (in-
cluding LuaTEX) to produce vector graphics output. The
PGF/TikZ format is not only suitable for direct inclusion
in IfTEX documents — the standard format of many scien-
tific publication organs —, but enables further modifications
within the graphic’s source code. By this means, relevant
features can be highlighted for publications — as illustrated
in Fig.[2]—, or visualizations can be uncovered piecewise in
presentations for talks.

(c) Multiple Window View A well-known problem of
RST annotations is that there may be several, equally jus-
tified but concurring rhetorical analyses and structures of
text spans (Moore and Pollack, 1992)). Since this pluralism
of rhetorical analyses is perfectly legitimate according to
RST (Das et al., 2017), it has to be accounted for in the an-
notation workflow. Accordingly, a multiple window view
was developed, which allows users to simultaneously in-
spect multiple annotations of the same text side by side, see
Fig.[3] In the current version, this is achieved by simply
creating a copy of the document. In future releases, the dif-
ferent annotations will be stored in the same document by
using different Subjects of Analysis, that is, specific UIMA
objectsﬂ, which will further open up the possibility of hav-
ing different annotations even for fragments of a text.

2.3. Storing Annotations in TextAnnotator

Since the Apache UIMA framework (Ferrucci et al., 2009)
is one of the standards in projects within an NLP con-
text (Wilcock, 2017), it is also used in the TEXTANNOTA-
TOR suite. However, somewhat surprisingly this document-
based schema does not provide native database support.

3https://uima.apache.org

example2.rs3 v ax
C——
1-3

Condition

1 _2 3: That way we can finish the
bookshelves tonight

Condition

1: Come home by 5:00. 2: Then we can go to the
hardware store before it closes.

RST (Dep. & Incl.)

Multiple window view, showing two concurring annotations (Moore and Pollack, 1992, p. 542f.). Several

To this end, we developed the UIMA Database Interface
(UIMA DI) (Abrami and Mehler, 2018): it stores arbi-
trary UIMA documents based on their associated UIMA
Type System Descriptions (UIMA TSD) in any database
back-end (see Fig. |4). In the current versiorﬂ the connec-
tions to MongoDBp’| and Neo4ﬂ are already implemented
and further database back-ends can be added easily.

For the general purpose of storing and using tree-like struc-
tures in UIMA frameworks, we developed a new UIMA
TSD for graphsﬂ compliant to the GraphMIﬂ format.
Based on the UIMA TSD we defined an object model
for RST trees, which is used in TEXTANNOTATOR (and
thereby in TREEANNOTATOR). In order to efficiently store
and retrieve annotations created by those tools, we employ
established database technologies. Within this technologi-
cal context, annotations are stored in the XM]El format dur-
ing annotation processes. The resulting XMI document
can be stored in any database integrated into UIMA DI or
downloaded to a text file.

[Joiia]
=

Figure 4: Components of the architecture

Filesystem

Table|[T]summarizes the input/output formats which are cur-

*Available on GitHub, under GPLv3.
>https://www.mongodb.com/

®https://neodj.com
"http://www.textannotator.hucompute.org/typesystem/graph
8http://graphml.graphdrawing.org/index.htm]
“http://www.omg.org/spec/XMI/

1960

https://uima.apache.org/d/uimaj-2.4.0/tutorials_and_users_guides.html
https://github.com/texttechnologylab/UIMADatabaseInterface.git
https://www.mongodb.com/
https://neo4j.com
http://www.textannotator.hucompute.org/typesystem/graph
http://graphml.graphdrawing.org/index.html
http://www.omg.org/spec/XMI/

Input Data output Graphical
output

plain text, UIMA-conform KIEX

RST file format ~ XMI file (PGF/TikZ),
PNG

Table 1: Input/output formats of TREEANNOTATOR.

rently supported by TREEANNOTATOR.

2.4. Versioning Annotations in TextAnnotator

When dealing with error-prone, highly interpretive anno-
tation tasks like RST analysis, undoing and redoing oper-
ations should be a fundamental part of the workflow (see
e.g. the results in Sec. [3.2)). TEXTANNOTATOR currently
supports an undo/redo functionality within the same ses-
sion by versioning the XMI file in the internal memory.
TREEANNOTATOR inherits TEXTANNOTATOR’s version-
ing facility and thus provides the same functionality as rst-
Web (v2.0) and RSTTool (v3.0), but exceeds tools such as
WebAnno (v3.2.2), which does not offer an undo function.
Thus, any annotation can be revised during the actual ses-
sion. Since storing a copy of the complete file for every re-
vision leads to a high memory usage, especially for larger
documents, we are currently looking into genuine version
control systems. Using such a system will not only lead to
reduced memory usage, but will also allow TREEANNO-
TATOR to provide an undo/redo functionality even beyond
sessions.

2.5. Managing Annotations in TextAnnotator

Since it cannot be guaranteed in any case that the natural
language texts to be annotated are free of copyright restric-
tions, a rights and resource management is required. To
this end, TEXTANNOTATOR uses components of the eHu-
manities Desktop (Gleim et al., 2012) which allows man-
aging user rights and resources: AuthorityManager and Re-
sourceManager (see Fig. [). By integrating UIMA DI
into ResourceManager, any UIMA document becomes ac-
cessible as a resource and organized in projects, which are
defined as repositories. That is, user rights can be inher-
ited from higher-level groups via restriction or extension in
order to specify resource-specific permissions. Apart from
that, TEXTANNOTATOR can also be used anonymously.
The need for a fine-grained rights management is evidenced
by sample use-cases. A common classroom situation, for
instance, involves students that work on an annotation task.
The original texts are provided in a folder for which the
group of students have only reading rights so that it is se-
cured that the files cannot be modified or deleted by acci-
dent. Annotation results are stored in a second folder where
students have write permission. The results of the other
students cannot be changed or seen, as the students do not
have reading rights to each other’s documents, as required
for inter-annotator evaluations.

In the context of research projects, files to be annotated are
usually stored in a folder that is shared among the different
project partners. All project partners have at least writing
permissions and can therefore jointly work on the annota-

tion sources. Now annotation results can be published in a
targeted manner: they can be shared with individual users
or made public to a wider audience simply by assigning ap-
propriate authentications to files and users.

Tab. |2 compares TEXTANNOTATOR’s rights and resource
management, as facilitated by AuthorityManager and Re-
sourceManager, to that of rstWeb and the widespread We-
bAnno: The access options applied by TEXTANNOTA-
TOR are more elaborate than those of the compared tools.
Especially, TEXTANNOTATOR acknowledges the level of
groups, allows to share results with third parties and pro-
vides data access for external tools.

Feature WebAnno | rstWeb | TextAnnotator
user management v v v
group management X X v
user permissions on projects / collections v v v
user permissions on documents X v v
group permissions on projects X X v
group permissions on documents X X v
project-independent document usage X X v
document organisation in repositories X X v
hierarchical repositories X X v

Table 2: Comparison of TEXTANNOTATOR, WebAnno and
rstWeb with regards to rights and resource management

3. Evaluation
3.1. Setting

In a usability study, two groups of five test subjects each
were asked to annotate pre-specified RST trees, comparing
TEXTANNOTATOR to the most widely used RST annota-
tion software, RSTTool. The subjects had no prior acquain-
tance with RST tools and RST annotations. However, they
had a brief introduction into Rhetorical Rtructure Theory
and its polynuclear relations. Twelve text segments (with
three, five and seven RST relations, respectively) of the
Potsdam Commentary Corpus (Stede, 2004) (Applied CL
Discourse Research Lab, 2017) were handed out on paper.
Group one annotated using TREEANNOTATOR, group two
worked with RSTTool. The results are shown below.

3.2. Results

Using TREEANNOTATOR resulted in a decrease of mouse
clicks per annotation. On average, annotators working with
TREEANNOTATOR needed 14.9 clicks less compared to an-
notators using RSTTool; the median was improved by 18.0
clicks (or —32.7%, see Tab.[3).

RSTTool TreeAnnotator improvement
avg med. | avg med. avg % med. %
short 36.8 365 | 224 19.0 | =39.0% —47.9%
medium 454 46.5 | 32.1 280 | —293% —39.8%
long 549 555 | 378 360 | —31.2% —35.1%
total 45.7 465 | 30.8 285 | —=32.7% —38.7%

avg — average (arithmetic mean), med. — median

Table 3: Number of mouse clicks for 12 pre-specified RST
annotations with RST7ool and TREEANNOTATOR

In terms of annotation time, TREEANNOTATOR again per-
formed better in all measured categories. Using RSTTool,

1961

annotators needed 104.9 sec for the twelve texts on aver-
age, while user of TREEANNOTATOR managed an average
time of 96.3 sec (an improvement of —8.6 sec or —8.2%;
see Tab.).

RSTTool TreeAnnotator improvement

avg med. avg med. avg % med. %
short 843 780 | 708 58.0 | —16.0% —25.6%
medium 101.9 101.5 | 929 82.5 —88% —18.7%
long 128.6 1245 | 1253 1165 | —25% —64%
total 1049 1015 | 96.3 950 | —-82% —6.4%

avg — average (arithmetic mean), med. — median

Table 4: Required time (in sec) for 12 pre-specified RST
annotations with RSTTool and TREEANNOTATOR

The number of annotation errors for both tools is virtually
the same (see Tab.[5). However, the types of errors differed:
annotators working with RST7ool mainly erred with respect
to RST tree structures, while annotators using TREEANNO-
TATOR mainly produced incorrect text segmentations. As
a result, TREEANNOTATOR’s text segmentation was sub-
sequently altered to make the currently selected segment
more obvious for users.

RSTTool | TreeAnnotator
Incorrect relation name 3 1
Incorrect RST structure 6 2
Incorrect text segmentation 0 5
Output file missing entirely 1 1
total 10 9

Table 5: Number of errors for each annotation tool (60 pre-
specified RST annotations per group in total)

Users of TREEANNOTATOR (on average) needed 28.5% of
their time for segmentation, while the program’s undo func-
tion was used very sparsely. One concern illustrated in Tab.
[6] is the fact that the time per newly included relation in-
creases with text length, a problem partly due to the hard-
ware used during the study, which did not allow for smooth
zooming and moving of larger RST trees.

time for Undo | Time per Time per

text . . .
leneth segmentation actions | new EDU | new relation
g (% of total time) | (per text) (in sec) (in sec)
short 29.6% 0.30 4.4 5.1
medium 28.6% 0.35 4.1 8.2
long 27.3% 0.15 4.1 12.1
total 28.5% 0.27 4.2 8.5

Table 6: Average user behavior for pre-specified RST an-
notations in TREEANNOTATOR

3.3. Summary

TREEANNOTATOR provides a state of the art approach to
rhetorical structure annotation. TREEANNOTATOR outper-
forms RSTTool in all categories shown above (albeit only
minimally in terms of error-proneness). Improvements in
the number of needed mouse actions is a particularly re-
markable result. Furthermore, we found a reduced annota-
tion time, especially for shorter to medium length texts.

4. Outlook

TREEANNOTATOR offers a modern and arguably intuitive
approach to discourse annotations for RST-like structures,
with unique features that set it apart from related tools.
Future versions will add support for annotations based on
representations from DRT and SDRT and a newly designed
module for semantic analysis, utilizing various lexical re-
sources to create a comprehensive model of semantic rep-
resentation. However, rhetorical structure annotations will
not be overloaded by adding, say, semantic or anaphoric
annotations. Rather, a multilayer annotation scenario will
be implemented, which has already proven to be useful,
for instance, in the GUM project (Zeldes, 2017). TEXT-
ANNOTATOR’s code will be made available on GitHub
in the future. Meanwhile, the tool can be reviewed at
http://www.textannotator.hucompute.org (login: textAnno-
tator, password: textAnnotator).

5. Bibliographical References

Abrami, G. and Mehler, A. (2018). A UIMA Database
Interface for Managing NLP-related Text Annotations.
In Proceedings of the 11th edition of the Language Re-
sources and Evaluation Conference, May 7 - 12, LREC
2018, Miyazaki, Japan.

Asher, N. and Lascarides, A. (2003). Logics of Conversa-
tion. Cambridge University Press, Cambridge.

Biemann, C., Bontcheva, K., Eckart de Castilho, R.,
Gurevych, 1., and Yimam, S. M. (2017). Collabora-
tive web-based tools for multi-layer text annotation. In
Nancy Ide et al., editors, Handbook of Linguistic Anno-
tation, pages 229-256. Springer Netherlands, Dordrecht.

Carlson, L., Marcu, D., and Okurowski, M. E. (2003).
Building a discourse-tagged corpus in the framework
of Rhetorical Structure Theory. In Jan van Kuppevelt
et al., editors, Current and New Directions in Discourse
and Dialogue, pages 85—112. Springer Netherlands, Dor-
drecht.

Cassidy, S. and Schmidt, T. (2017). Tools for multimodal
annotation. In Nancy Ide et al., editors, Handbook of
Linguistic Annotation, pages 209-227. Springer Nether-
lands, Dordrecht.

Das, D., Taboada, M., and Stede, M. (2017). The good,
the bad, and the disagreement: Complex ground truth
in rhetorical structure analysis. In Proceedings of the
6th Workshop Recent Advances in RST and Related For-
malisms, pages 11-19, Santiago de Compostela, Spain.

de Castilho, R. E., Biemann, C., Gurevych, I., and Yi-
mam, S. M. (2014). WebAnno: a flexible, web-based
annotation tool for CLARIN. In Proceedings of the
CLARIN Annual Conference 2014, CAC’ 14, Utrecht,
Netherlands.

Druskat, S., Bierkandt, L., Gast, V., Rzymski, C., and
Zipser, F. (2014). Atomic: an open-source software
platform for multi-layer corpus annotation. In Proceed-
ings of the 12th Konferenz zur Verarbeitung natiirlicher
Sprache, KONVENS 2014, pages 228-234.

Ferrucci, D., Lally, A., Verspoor, K., and Nyberg, E.
(2009). Unstructured information management architec-
ture (UIMA) version 1.0. OASIS Standard, mar.

1962

http://www.textannotator.hucompute.org

Finlayson, M. A. and Erjavec, T. (2017). Overview of
annotation creation: Processes and tools. In Nancy Ide
et al., editors, Handbook of Linguistic Annotation, pages
167-191. Springer Netherlands, Dordrecht.

Gleim, R., Mehler, A., and Ernst, A. (2012). Soa imple-
mentation of the ehumanities desktop. In Proceedings of
the Workshop on Service-oriented Architectures (SOAs)
for the Humanities: Solutions and Impacts, Digital Hu-
manities 2012, Hamburg, Germany.

Hagen, H. and Hoekwater, T., (2013). ConTgXt reference
manual.

Hemati, W., Uslu, T., and Mehler, A. (2016). Textimager:
a distributed UIMA-based system for NLP. In Proceed-
ings of the COLING 2016 System Demonstrations. Fed-
erated Conference on Computer Science and Information
Systems.

Kamp, H. and Reyle, U. (1993). From Discourse to Logic.
Kluwer Academic Publishers, Dordrecht.

Knuth, D. E. K. (1984). The TgX Book. Addison-Wesley.

Krause, T. and Zeldes, A. (2016). ANNIS3: A new archi-
tecture for generic corpus query and visualization. Digi-
tal Scholarship in the Humanities, 31(1):118-139.

Lamport, L. (1994). BIEX — A Document Preparation Sys-
tem: User’s Guide and Reference Manual. Addison-
Wesley.

Mann, W. and Thompson, S. (1988). Rhethorical structure
theory: Towards a functional theory of text organization.
Text, 8(3):243-281.

Marcu, D., (1999). Instructions for Installing the Rhetori-
cal Annotation Tool.

Moore, J. D. and Pollack, M. E. (1992). A problem for
RST: The need for multi-level discourse analysis. Com-
putational Linguistics, 18(4):537-544.

O’Donnell, M. (1997). RST-Tool: An RST analysis tool.
In Proceedings of the 6th European Workshop on Natural
Language Generation.

Reitter, D., (2002). Rhetorical theory in BIEX with the rst
package. Technical Manual.

Stede, M. (2004). The Potsdam Commentary Corpus. In
Proceedings of the 2004 ACL Workshop on Discourse
Annotation. Association for Computational Linguistics.

Stenetorp, P., Pyysalo, S., Topi¢, G., Ohta, T., Ananiadou,
S., and Tsujii, J. (2012). BRAT: a web-based tool for
NLP-assisted text annotation. In Proceedings of the 13th
Conference of the European Chapter of the Association
for Computational Linguistics, EACL 2012, pages 102—
107, Avignon, France.

Tantau, T., (2015). The TikZ and PGF Packages, manual
for version 3.0.1a edition.

Wilcock, G. (2017). The evolution of text annotation
frameworks. In Nancy Ide et al., editors, Handbook of
Linguistic Annotation, pages 193-207. Springer Nether-
lands, Dordrecht.

Zeldes, A. (2016). rstWeb — a browser-based annotation
interface for rhetorical structure theory and discourse
relations. In Proceedings of NAACL-HLT 2016 System
Demonstrations, pages 1-5.

Zeldes, A. (2017). The GUM corpus: creating multilayer

resources in the classroom. Language Resources and
Evaluation, 51(3):581-612.

6. Language Resource References

Applied CL Discourse Research Lab. (2017). Potsdam
Commentary Corpus. 2.0, ISLRN 867-681-112-435-1.
Carlson, Lynn and Marcu, Daniel and Okurowski, Mary
Ellen. (2014). RST Discourse Treebank. Linguistic Data

Consortium, 1.0, ISLRN 299-735-991-930-2.

1963

	Introduction
	TreeAnnotator
	Annotating Tree-like Text Structures in TreeAnnotator
	Visualizing Annotations in TextAnnotator
	Storing Annotations in TextAnnotator
	Versioning Annotations in TextAnnotator
	Managing Annotations in TextAnnotator

	Evaluation
	Setting
	Results
	Summary

	Outlook
	Bibliographical References
	Language Resource References

