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Abstract

NLP and automatic text analysis necessarily involve the annotation of natural language texts. The Apache Unstructured Information
Management applications (UIMA) framework is used in several projects, tools and resources, and has become a de facto standard in this
area. Despite the multiple use of UIMA as a document-based schema, it does not provide native database support. In order to facilitate
distributed storage and enable UIMA-based projects to perform targeted queries, we have developed the UIMA Database Interface
(UIMA DI). UIMA DI sets up an environment for a generic use of UIMA documents in database systems. In addition, the integration
of UIMA DI into rights and resource management tools enables user and group-specific access to UIMA documents and provides data
protection. Finally, UIMA documents can be made accessible for third party programs. UIMA DI, which we evaluate in relation to file
system-based storage, is available under the GPLv3 license via GitHub.
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1. Introduction

NLP and automatic text analysis necessarily involve the
annotation of natural language texts. In various projects
(e.g. (Da Silva et al., 2006; Kano et al., 2009; Hemati et
al., 2016)), especially in an NLP context (e.g. (Savova et
al., 2010; Eckart de Castilho and Gurevych, 2014; Patter-
son et al., 2017; Kreimeyer et al., 2017; Rudzewitz et al.,
2017; Kassner et al., 2017)), the Apache Unstructured In-
formation Management applications (UIMA) (Ferrucci et
al., 2009) is used as a standard architecture for text anno-
tation. Accordingly, there are various tools for processing
and producing UIMA compliant documents (e.g. (Ogren et
al., 2008; Zeldes et al., 2009; Ferrucci et al., 2010; Hemati
et al., 2016; Niekler et al., 2017)). UIMA documents
are specified by means of UIMA Type System Descriptor
(UIMA TSD) files in order to enable interchangeability.
The usage of UIMA in numerous projects and tools shows
that this framework can be seen as a de facto standard in
the context of NLP (Wilcock, 2017). However, despite its
widespread usage, it is surprising that native database sup-
port is rarely found for UIMA documents. An exception
is (Fette et al., 2013) who introduced an approach to stor-
ing UIMA documents by means of relational databases. In
this article we want to close the gap between UIMA and
databases by looking at several database systems beyond
relational ones. In order to make UIMA-based projects
(as, for example, TREEANNOTATOR (Helfrich et al., 2018))
conform to the requirements of modern text technology,
database support is essential. This becomes clear when
comparing database usage with file system-based storage
and retrieval of UIMA documents. Generally speaking,
approaches using file system-based storage lead to several
bottlenecks:

(a) No redundancy: The document-based schema of the
UIMA framework, which is usually stored via XMmr1!
files, means that the results of UIMA processes can-
not be stored decentrally (e.g., in a cloud). However,

"http://www.omg.org/spec/XMI/

exclusively storing results in one file system without
being based on a suitable backup concept can lead to
data loss in the event of a system failure.

(b) No query options: To extract information from
UIMA documents, these documents must first be com-
pletely imported into the cache. However, it is not pos-
sible to select only those UIMA documents that are
required for a given application.

(c) No shared use: In projects including several partic-
ipants, sharing of results is only possible by copying
files. This in turn means that data security and tracking
of file versioning must be ensured not by the system,
but by the users.

(d) No data security: UIMA documents are not bound to
data security and cannot be made available individu-
ally to third parties.

To avoid all these bottlenecks, we developed the so-called
UIMA Database Interface (UIMA DI). It enables the
generic use of UIMA documents in database systems in the
context of NLP. In this paper, we explain the architecture of
UIMA DI and evaluate it against file storage systems: in
Section 2. we give a brief overview of application scenarios
of UIMA DI. These scenarios will be referred to through-
out the paper to exemplify the use of UIMA DI. In Section
3., we explain the architecture and the current implementa-
tion of UIMA DI. Its evaluation is documented in Section
4. and Section 5.. Finally, Section 6. and 7. summarize and
give an outlook on future work.

2. Application cases

UIMA DI is currently used in three different application
scenarios:

TEXTIMAGER TEXTIMAGER (Hemati et al., 2016) is
an application for analyzing and visualizing textual data
based on UIMA. Further, a tool for annotating hierarchi-
cal text relations (RST), called TREEANNOTATOR, is cur-
rently under development that utilizes the preprocessing
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methods of TEXTIMAGER. To meet the needs of automatic
text processing (TEXTIMAGER) and manual text annotation
(TREEANNOTATOR) we decided for UIMA TSD as the
underlying data model, while UIMA DI is used to man-
age the resulting UIMA documents.

STOLPERWEGE STOLPERWEGE (Mehler et al., 2017) is
an application for modeling and visualizing the biographies
of victims of the Holocaust. For this purpose, geo-data has
to be managed in order to be used in related search queries.
Once more, UIMA DI has the task to perform this data
management.

EHUMANITIES DESKTOP The EHUMANITIES DESK-
TOP (Gleim et al., 2012) provides a range of applications
and services for humanities scholars. This includes the so-
called ResourceManager (see Figure 1): using UIMA DI,
the ResourceManager makes UIMA documents indepen-
dent resources that can be integrated into larger contexts
(e.g., projects or repositories) and, therefore, avoids Bottle-
neck (c) of Section 1. This also includes the AuthorityMan-
ager, which enables the management of resource access
rights at the level of individual users or groups of them, thus
enabling privacy and data security. Thus, by being based on
UIMA DI, the AuthorityManager avoids Bottleneck (d).

= =

Figure 1: Application scenarios (orange) and software com-
ponents (green) using UIMA DI.

Filesystem

3. UIMA Database Interface

UIMA TSD is an architecture that provides format and
definition concepts for annotations stored in XMI files.
Since UIMA TSD does not provide a built-in database
solution, it is necessary to extend it. This is done by
UIMA DI. To ensure uniqueness of documents man-
aged by UIMA DI, it is necessary to reference exported
XMI documents with their corresponding database records.
For this reason, UIMA DI enables the generic storage
and retrieval of UIMA documents by means of different
databases.

3.1. Architecture

UIMA DI is an interface developed in Java and hosted at
GitHub (GPLv3 license). In order to resolve dependencies,
Apache Maven? is used. The core functions of UIMA DI
address the following tasks:

Zhttps://maven.apache.org/

(a) Analysis of UIMA TSD Analysis of the embedded
UIMA TSD for generating meta information to enable the
document to be stored in the used database which is im-
plemented in UIMA DI. This is realized by analyzing the
specified UIMA TSD. In addition, annotation templates
can be created with the generated meta information, which
can be used, for example, by TREEANNOTATOR and the
project STOLPERWEGE (see Section 2.).

(b) (De-)Serialization of CAS UIMA documents are en-
coded in terms of CAS (UIMA COMMON ANALYSIS SYS-
TEM) (Gotz and Suhre, 2004) representations. CAS files
are serialized according to JSON? to be stored completely
in the database. This enables lossless de-serialization of the
entire UIMA documents.

(c) Dynamic ID insertion Each UIMA document and its
content is mapped to a “Subject OF Analysis” (sofa) ele-
ment. To prepare a UIMA document for database storage,
an empty database entry is created and the resulting ID is
stored as an additional sofa within the UIMA document.
This sofa is identified during the import of previously ex-
ported UIMA documents: it enables a synchronization with
the existing database entry. The generated database entry
will then be updated with the previously generated meta in-
formation and the serialized CAS representation. Section
3.2. explains the corresponding data structures involved in
the current implementation of UIMA DI regarding two
databases: MongoDB and Neo4J. Figure 2 gives a visual
depiction of the underlying process of document conver-
sion.
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Figure 2: Process diagram of UIMA DI: A text is pro-
cessed by TEXTANNOTATOR; then, the resulting XMI doc-
ument z is sent to UIMA DI. If x is already stored in the
database, the corresponding database entry is updated. If
not, the XMI document is prepared for being processed by
UIMA DI and stored in the underlying database system.

Shttp://www.json.org/
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3.2. Current Implementations

The current version (1.0) of UIMA DI implements two
database systems, namely MongoDB (3.2.1.) and Neo4J
(3.2.2.). These databases utilize schema-free models and
therefore allow for external database queries without pre-
supposing knowledge about the database structure (as re-
quired, for example, by relational databases). Further
databases can be easily adapted by the interface-based pro-
gramming on which UIMA DI is based. Note also that our
implementation includes a RESTful web service and anal-
ysis methods for the integrated UIMA TSD. The REST
methods are implemented using Spark* while Swagger’ is
used for documenting the API of UIMA DI. Note that
MongoDB and Neo4] allow for cloud-based storage en-
abling distributed data usage. Based on this analysis, we
can state that our current implementation avoids Bottleneck
(a) of Section 1. Furthermore, since the latter two databases
provide highly specialized query languages, we also avoid
Bottleneck (b).

3.2.1. MongoDB

We developed a UIMA Database Interface (UIMA DI)
that allows for storing UIMA documents by means of the
document-oriented database MongoDBS. When the CAS
structure is serialized into JSON (see Section 3.1. above),
three data fields are created as entries in MongoDB in the
context of the applications enumerated in Section 2. (see
Figure 3 for an example):

» uima: The serialized CAS representation of any input
UIMA document is stored as such in MongoDB using
the data field named uima (see Figure 3).

* meta is an array storing information about UIMA
TSD-related data types instantiated by the input docu-
ment. In this case, non-primitive data types are stored
as references to objects.

* geo stores geospatial information (as needed, e.g.,
by the project STOLPERWEGE — see Section 2.). A
geospatial index has been added for this purpose.

3.2.2. Neod]

The graph database Neo4]” uses another storage structure
than MongoDB (see Figure 3.2.2.): UIMA documents are
now stored as nodes whose attributes denote simple data
types and relations to other UIMA documents. The names
of the attributes and relations are defined by the UIMA
TSD associated with the document. The number of rela-
tionships to other objects is determined by the respective
references in the UIMA document. As in the case of Mon-
goDB, each node contains the complete serialization of the
respective UIMA document (see Figure 4).

Note that we implemented UIMA DI by example of Mon-
goDB and Neo4;j to capture two paradigms of data model-
ing, that is, graph-oriented (Neo4j) and document-oriented

*http://sparkjava.com
Shtps://swagger.io/
®https://www.mongodb.com/
"https://neodj.com/

"_id" : ObjectId("5968
— e2fbblde9ed0e23b7ele"),
"geo" : {
"coordinates" : [
16.9327791,
54.4322101
]7
"type" "Point"
}l
"meta" : {
"firstName"
"lastName" "Hoch™",
"deathDate" "5968
— e2fbblde9e40e23bT7ele",
"id" : "5968e2fbbl4e9e40e23biele
c—>"I
"type" "org.hucompute.
— publichistory.datastore.
— typesystem.Person",
"value" "Gustav, Hoch",
"birthDate" "5968
— e2fbbl4e9e40e23bT7ele"

"Gustav",

}l

"uima" : {
"childNodes" : [
{
" _indexed" : 0,
"_id" : 1,
"sofaID" "5968
— e2fbbl4e9e40e23b7ele
=",
"tagName" "uima.cas.Sofa
(_>“7
"sofaNum" : 2
}!
[...]
{
"_ref_ deathDate" : 46,
" _indexed" : 2,
"firstName" "Gustav",
"lastName" "Hoch",
"end" : O,
"_id" : 8,
"tagName" "org.hucompute.
— publichistory.
— datastore.typesystem.
— Person",
"_ref_sofa" : 1,
"begin" : O,
"value" "Gustav, Hoch",

" _ref_birthDate" : 32

}

Figure 3: Excerpt from an entry of a UIMA document
stored in MongoDB. The example is taken from the project
STOLPERWEGE.

modeling (MongoDB). In this way, UIMA DI already cov-
ers a wider range of databases. In the next section, we show
how to evaluate this implementation.

4. Experiments

Since there is no database solution for UIMA documents
yet, our experiments are limited to measuring the reading,
writing and querying time of UIMA documents in the re-
spective database system and comparing it to the same op-
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“Gustav”

Figure 4: Schematic depiction of an entry of a UIMA doc-
ument stored in Neo4J. The example is taken from the
project STOLPERWEGE.

erations performed on the native file system. As test doc-
uments, we choose the German and English Wikipedia ar-
ticles of six top candidates for the federal election in Ger-
many 2017 (Angela Merkel, Martin Schulz, Katrin Géring-
Eckardt, Sahra Wagenknecht and Alexander Gauland). The
texts are preprocessed by means of TEXTIMAGER using the
following taggers:

+ Stanford NER Tagger®
» Stanford POS Tagger’
* Heideltime'”

In this example, UIMA DI includes the following UIMA
TSD as aresult of using Maven as an interface to TEXTIM-
AGER data:

* Heideltime and
* DKPro-Core (contains the taggers listed above) (Eckart
de Castilho and Gurevych, 2014).

After having preprocessed and stored the test documents
using the systems to be evaluated (i.e., Neo4J, MongoDB
and XMI files), we performed our evaluation. For this pur-
pose, we selected all German and English texts separately
to determine which storage system is the fastest to retrieve
the corresponding UIMA documents. To this end, we did
not optimize the (de-)serialization of the UIMA-CAS in-
volved.

5. Results

Our results show that the read (see Figure 5) and write
speed (see Figure 6) of both databases are slower than what
is reached by the UIMA method of storing documents in
XMI files. This is caused by the (de-)serialization of CAS
elements into the JSON format. A second reason con-
cerns the overhead induced by generating meta informa-
tion. The more annotations a UIMA document contains,

8https://nlp.stanford.edu/software/CRF-NER.shtml
*https://nlp.stanford.edu/software/tagger.shtml
https://github.com/Heidel Time/heideltime

the more time is needed because different attributes and re-
lations (based on the database) have to be created. How-
ever, for projects in which UIMA documents have to be
shared, distributed document management is more impor-
tant than reading and writing time. The same is true for
projects which require sophisticated database query capa-
bilities. Approaches being based on the file system re-
quire to import all XMI files to extract queried content.
Obviously, this may induce a problematic memory load.
In contrast to this, using UIMA DI as an interface to a
database like Neo4j enables sophisticated content-related
queries which can be faster than file-based approaches as
shown in Figure 7.

time in ms

7741 7994 23562 8850 31446 6676 2899 2796 2586 5196 15764 8210
annotated tokens in documents

B Filesystem M MongoDB M Neo4J

Figure 5: Measurement results with respect to reading.

time in ms

7741 7994 23562 8850 31446 6676 2899 2796 2586 5196 15764 8210
annotated tokens in documents

B Filesystem B MongoDB B Neo4J

Figure 6: Measurement results with respect to writing.
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time in ms

Figure 7: Measurement results with respect to querying.
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6. Conclusion

We introduced UIMA DI as a generic interface to databa-
ses for managing UIMA documents. Our evaluation shows
that our implementation of UIMA DI outperforms file-ba-
sed systems when considering database queries. In projects
related to digital humanities, querying UIMA documents in
a sophisticated manner can be more important than optimiz-
ing reading and writing of UIMA documents as a whole.
This is enabled by UIMA DI. Beyond that, several other
bottlenecks of the file-based approach to processing UIMA
documents are avoided by UIMA DI. Among other things,
this concerns data security and protection. UIMA DI is
available under license GPLv3 via GitHub'! and is open to
anyone interested in using or extending it.

7. Future Work

The future development of UIMA DI will primarily in-
volve the implementation of further database systems like
Elasticsearch'? and Blazegraph!®. With the help of Elastic-
search, we can avoid the document size limitation of Mon-
goDB while ensuring a similar performance. Further, it is
planned to accelerate the conversion from CAS to JSON by
developing a converter specialized on this task.
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