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Abstract
The past several years have witnessed the rapid progress of end-to-end Neural Machine Translation (NMT). However, there exists
discrepancy between training and inference in NMT when decoding, which may lead to serious problems since the model might
be in a part of the state space it has never seen during training. To address the issue, Scheduled Sampling has been proposed.
However, there are certain limitations in Scheduled Sampling and we propose two dynamic oracle-based methods to improve it. We
manage to mitigate the discrepancy by changing the training process towards a less guided scheme and meanwhile aggregating the
oracle’s demonstrations. Experimental results show that the proposed approaches improve translation quality over standard NMT system.
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1. Introduction

Neural networks have been widely used contemporarily and
have achieved great performance on a variety of fields like
sentiment analysis (Santos and Gattit, 2014) and visual ob-
ject recognition (Ciregan et al., 2012)). For sequential prob-
lems, recurrent neural networks can be applied to process
sequences. To address issues like long term dependen-
cies in the data (Bengio et al., 1994), the Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber, 1997) or
Gated Recurrent Unit (GRU) can be used to tackle the prob-
lem (Cho et al., 2014). A straightforward application of the
LSTM and GRU architecture have already shown impres-
sive performance in several difficult tasks, including ma-
chine translation (Sutskever et al., 2014), and image cap-
tioning (Vinyals et al., 2015)).

Generally, a basic sequence-to-sequence model consists of
two recurrent neural networks: an encoder that processes
the input and a decoder that generates the output (Cho et
al., 2014). In many applications of sequence-to-sequence
models, at inference time, the output of the decoder at time
t is fed back and becomes the input of decoder at time ¢+ 1.
However, during training, it is more common to provide the
correct input to the decoder at every time-step even if the
decoder made a mistake before, which leads to a discrep-
ancy between how the model is used at training and infer-
ence. As has been pointed out by Bengio et. al. (2015),
although this discrepancy can be mitigated by the use of
a beam search heuristic maintaining several generated tar-
get sequences, for continuous state space models like re-
current neural networks, there is no dynamic programming
approach, so the effective number of sequences considered
remains small. The main problem is that mistakes made
earlier in the sequence generation process are fed as input to
the model and can be quickly amplified because the model
might be in a part of the state space it has never seen at
training time (Bengio et al., 2015)).

There are several existing methods to bridge the gap be-
tween training and inference. Bengio et. al. (2015) pro-
pose a method called Scheduled Sampling. Since the main
difference between training and inference for sequence pre-
diction tasks when predicting token y; is whether we use
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Figure 1: Scheduled Sampling

the true previous token y;_1 or an estimate §;_; coming
from the model itself, they apply a sampling mechanism
that will randomly decide, during training, whether to use
the true previous token y;_; or an estimate ¢;_; coming
from the model itself. Specifically, for every token, they
flip a coin and decide whether to use the true previous token
or an estimate coming from the model itself. Their general
framework is shown in Figure 1. At the beginning of train-
ing, the model is not well-trained and thus selecting more
often the true previous token should be helpful; whereas at
the end of training the sampling strategy should favor sam-
pling from the model more often, as this corresponds to the
true inference situation. Therefore, the probability of using
y;—1 will be initially high and then decrease during train-
ing. In their paper, they choose three different functions to
model the probability of using y;_; with respect to training
time and they achieve competitive results.

Although Scheduled Sampling has been proved to be help-
ful on several tasks (Bengio et al., 2015)), for machine trans-
lation tasks, in our experiments it does not show promising
performance. We have done a few research and found out
a dissatisfactory characteristic about Scheduled Sampling.
To illustrate, as we can see from Figure 2, since the refer-
ence has been altered, the original correct inputs would not
be accurate and therefore it is unwise to still provide the
model with the original inputs.
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Source : HRE Wi AN LI fE FUREL HAT B— B KA .
Truth : the first round of border talks between ukraine and russia in moscow.
SS : the first round of talks talks between ukraine and russia . moscow,
SS+LM : the first round of talks between russia and ukraine in moscow .

SS+PRE : the first round of talks between russia and ukraine in moscow .

Source: BB #& HIE A 4 .
Truth : estonia seeking nato membership .

SS : estonia seeking to membership of

SS+LM : estonia seeking to nato membership .

SS+PRE : estonia seeking to joining nato .

Figure 2: Sampling Results

In another words, Scheduled Sampling still uses the gold
word for training whereas it would be no longer correct,
which is a static oracle fashion. We believe that if we can
use a certain strategy, such as dynamic oracle, to always
provide the model with accurate inputs, the performance
will be better.

In this paper, based on the aforementioned idea, we propose
two methods which use dynamic oracle to solve the issue
mentioned above. To illustrate, once we decide to use an
estimated token coming from the model itself, our oracle
can help us select the next suitable word and feed it into
the model. Therefore, even during training time the truth
have been completely altered, our method will always pro-
vide the model with the best suitable token in the following
time-steps. In this way, we hope that the aforementioned
problem in Scheduled Sampling would be mitigated.

Here we develop two strategies to implement the dynamic
oracle, one is based on language model and the other is
based on pre-trained neural machine translation system.
These two methods could manage to feed the correct word
into the model so that they may enhance the performance
of Scheduled Sampling.

To verify the effectiveness of our methods, we conduct
experiments on Chinese-English datasets and the experi-
mental results indicate that our method can achieve +1.06
BLEU improvements.

2. Related Work

To the best of our knowledge, Goldberg et. al. (2012) first
define the concept of dynamic oracle and propose an online
algorithm for parsing problems, , which provides a set of
optimal transitions for every valid parser configuration. For
configurations which are not part of a gold derivation, their
dynamic oracle permits all transitions that can lead to a tree
with minimum loss compared to the gold tree. Based on
their approach, several other methods using dynamic oracle
have been proposed (Goldberg and Nivre, 2013) (Gomez-
Rodriguez et al., 2014). However, their work in the field of
parsing cannot be directly applied in neural machine trans-
lation.

To mitigate the discrepancy between training and inference,
Daume et al. (2009) introduce SEARN, which aims to
tackle the problems that training examples might be dif-
ferent from actual test examples. They show that struc-
tured prediction can be mapped into a search setting us-

ing language from reinforcement learning, and known tech-
niques for reinforcement learning can give formal perfor-
mance bounds on the structured prediction task. In addi-
tion, Dataset Aggregation (DAgger) (Ross et al., 2011)) is
another method which adds on-policy samples to its dataset
and then re-optimizes the policy by asking human to label
these new data.

3. Proposed Methods

In this section, we first give a brief introduction of neu-
ral machine translation. And then we present the general
framework for our algorithms. At last, we describe our
two methods respectively, namely language model guided
scheduled sampling and pre-trained model guided sched-
uled sampling.

3.1. Neural Machine Translation

Neural machine translation aims to directly model the con-
ditional probability p(Y|X) of translating a source sen-
tence, x1,..., Ty, tO a target sentence, yi, ..., Ym. Gener-
ally, it accomplishes this goal through an encoder-decoder
framework (Kalchbrenner and Blunsom, 2013)). Basically,
the encoder generates a context vector for each source sen-
tence and then the decoder outputs a translation, one target
word at a time.

During training when we are decoding, we always provide
the model with true previous token at every time step. Mini-
batch stochastic gradient descent is applied to look for a
set of parameters 0* that maximizes the log likelihood of
producing the correct target sentence. Specifically, given a
batch of training pairs {(X*, Y*)}, we aim to find 0* which
satisfies:

. iy
0 = argmax Z logp(Y*|X*; 6) @)
(X%,Y")

Whereas during inference the model can generate the tar-
get sentence one token at a time, advancing time by one
step. This procedure will continue until an <EOS> token
is generated. Since at time ¢ we do not have access to the
true previous token, normally we just feed the model with
the most likely token given our model at time ¢. To search
for the sentence with the highest probability, beam search
is often used.

The log conditional probability can be decomposed as:

logp(Y|X) = > logp(yily<:, C), ©)

t=1

where C' is the context vector for source sentence.

The log conditional probability log p(y:|y<:,C) is com-
puted in different ways according to the choice of the con-
text C' at time 7. Bahdanau er. al. (2014) use different
context c¢; at different time step while Cho et. al. (2014)
choose C'=hr,.

The architecture of recurrent neural network may differ in
terms of architecture and type. For example, there can
be unidirectional, bidirectional or deep multi-layer RNN;
and RNN type can be LSTM (Hochreiter and Schmidhu-
ber, 1997) or the GRU(Cho et al., 2014).
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3.2. General Framework and Definitions

The general goal of our work is to mitigate the discrepancy
between training and inference when using recurrent neu-
ral network. To achieve this goal, we borrow the idea from
Scheduled Sampling. Specifically, during training when de-
coding, there is a possibility that we feed our model with an
estimate ¢, coming from the model itself rather than true
previous token y,_;. Different from Scheduled Sampling,
once we decide to use ¢j;_1, the original ground-truth would
not be accurate any more and thus we use dynamic oracle
to generate the next suitable token y;_; and regard it as our
true token. The pseudo-code of our general framework is
shown in Algorithm 1.

Algorithm 1 General Framework
Input: At time ¢ when decoding
Output: Input token ¢4

1: Sampling p from [0, 1]

2: if p < ¢; then

33 1 =P

4: else

5. if have notused ;,7 = 1,2, ...,t — 2 before then
6 i1 = Yt—1

7 else

8 Generating y = y;_; by dynamic oracle
9: -1 = Y1

10:  end if

11: end if

3.3. Language Model-based Dynamic Oracle

Our first method utilizes language model to guide the train-
ing procedure.

The goal of language modeling is to predict the next word
in textual data given specific context. Here we use recur-
rent neural network based language models. Traditionally,
backing-off language models rely on the n-gram approxi-
mation, which are often criticized because they could only
store limited information and thus lack any explicit repre-
sentation of long range dependency. In contrast, Recurrent
neural network language models always estimate probabil-
ities based on the full history (Sundermeyer et al., 2012)) In
other words, recurrent neural networks do not use limited
size of context, which is the major reason why we choose
recurrent neural network language models.

Our first oracle is based on language model. Basically, the
well-trained language model will help us to generate y;_;
given partially decoded sentence. Therefore, it could guar-
antee the coherence of our generated sentence.

It should be noticed that in our scenario, even though the
language model would predict a probability distribution
over the whole dictionary, we only select the word with the
highest probability within the reference of the source sen-
tence. In this way, we hope that the generated sentence can
be both coherent and precise.

3.4. Pre-trained Model-based Dynamic Oracle

Our second method utilizes a pre-trained neural machine
translation model to guide the training procedure.

The basic procedure is similar to our first method i.e. we
randomly decide whether to use the true previous token or
the estimated token coming from the model itself. Once we
choose an estimated word, the next time when we decide to
choose the true previous token, we provide the model with
the token generated by the pre-trained model.

At this time, we do not have to select the word with the
highest probability within the reference of the source sen-
tence rather than the whole dictionary. Compared to the
previous method, this pre-trained model guided scheduled
sampling not only utilize the information in the target sen-
tence, but also utilize the information in the source sen-
tence. Therefore, we would expect the performance of the
second method would be better than the first method.

Also, since at this time we do not limit our selections within
the reference if source sentences, this model could add
more diversity into the model and thus allow one sentence
to have more translations.

4. Experiment

In this section we first describe the dataset used in our ex-
periments, the training and evaluation details , the baseline
model we compare in experiments. And then we present
the quantitive results of our experiments. At last, we would
show some qualitative characteristics and demonstrate the
potential of our model

4.1. Dataset and Setup

We carry out experiments on a Chinese-English translation
task. Our training data for the translation task consists of
1.25M sentence pairs extracted from LDC corporaF_], with
27.9M Chinese words and 34.5M English words respec-
tively. For our development set, we choose NIST 2002
dataset. Also, we choose the NIST 2003, 2004, 2005 as
our test sets.

Each neural machine translation model is trained using
stochastic gradient descent algorithm AdaGrad (Fazayeli,
2014). We use mini-batch size of 32. The word embedding
dimension of source and target language is 600 and the size
of hidden layer is set to 1000. Also, for efficient training of
the neural networks, we limit the source and target vocab-
ularies to the most frequent 30K words in Chinese and En-
glish , covering approximately 97.7% and 99.3% of the two
corpora respectively. All the out-of-vocabulary words are
mapped to a special token “UNK”. We use case-insensitive
4-gram BLEU score as the evaluation metric (Papineni et
al., 2002).

4.2. Baseline Model

In this work, our baseline neural machine translation sys-
tem is attentional encoder-decoder networks as imple-
mented in DL4MTE], which is an open source phrase-based
translation system available in github. In this framework,
the baseline uses conditional Gated Recurrent Unit (cGRU)

'The corpora include LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07, LDC2004T08
and LDC2005T06.

Zhttps://github.com/nyu-dl/dI4mt-tutorial

907



MT02 MTO03
baseline | 33.55 31.01
SS 33.47 31.88
SS+LM | 34.56 32.16
SS+PRE | 34.63 32.18

MT04 MTO5 AVG
33.28  30.29 32.03
3298  30.72  32.26
33.36  30.79 32.71
3418 31.37 33.09

Table 1: BLEU results

with attention mechanism as the hidden unit type. The spe-
cific details of cGRU can also be found in github ]

4.3. Results

Table 1 shows the BLEU results for the baseline systems
and the dynamic oracle guided machine translation sys-
tems. As we can see from the table, our method gener-
ally achieve better performance than the baseline models.
Moreover, the best average BLEU results improve more
than 1 point on our dataset. Since the language model only
utilizes the information in the target sentence, as we would
expect, the pre-trained model behaves better. However, the
language model-based oracle also improves the translation
performance further testify the effectiveness of our algo-
rithms.

4.4. Case Studies

In order to testify that our methods guide the system to-
wards the right way, we sample a few examples, as illus-
trated in Figure 2.

As we can see, in the first sentence, we need to trans-
late the Chinese sentence into “the first round of border
talks between ukraine and russia in moscow .” If we just
use Scheduled Sampling, then at fourth time the model
will make a mistake and generate “talks” instead of “bor-
der”. Therefore, the next time if we still choose the orig-
inal true previous token “talks”, the sentence will not be
accurate. In such scenario, our dynamic oracle can be help-
ful. In this case, both the language model-based oracle and
pre-trained model-based oracle can generate “between” in-
stead of “talks”, which make the reference become accurate
again.

In the second sentence, we want our system to output “es-
otina seeking nato membership .”, whereas Scheduled Sam-
pling generates “esotina seeking to membership of”. Here,
the model makes a mistake by generating the word “to”.
Again, as shown in the figure, our oracle can feed the model
with the suitable word.

These examples demonstrate that our methods can be help-
ful in some cases and thus the improvement in BLEU would
be unsurprising.

4.5. Analysis of Translation Results

An important property of our second method, namely the
pre-trained model-based dynamic oracle for NMT, is that it
may provide the system with various translations for each
sentence. Traditionally, the model can only be trained with
one unchangeable reference for each sentence while there
may exist a couple of correct references. In our second

3https://github.com/nyu-dl/dl4mt-
tutorial/blob/master/docs/cgru.pdf

proposed method, since the baseline model may generate
token which is not limited to single reference, we could add
some diversity to NMT system. To verify our hypothesis,
we present a few samples from the baseline model and our
second method.

Reference: japan temporarily freeze humanitar-
ian assistance to russia .

Baseline: japan freezes its offer of humanitarian
assistance to russia in the interim .

SS+PRE: japan freezes humanitarian aid to rus-
sia for the time being .

As shown above, in the first example our reference is
“japan temporarily freeze humanitarian assistance to russia
”> Clearly, if we train the model with our second method,
it will output which is both precise and not limited to the
original reference.

Let us consider another example:

Reference: at this time , the police have blocked
the bombing scene .

Baseline: at this time , the police have UNK the
blast at the scene .

SS+PRE: the police have blocked the scene at the
moment .

This example is another proof which shows that our second
method could indeed add some diversity into NMT system.

5. Conclusion and Future Work

In this paper we highlight a major issue for NMT, i.e. the
mismatch between where a model may end up in training
and testing in the search space.

Scheduled Sampling has been proposed to deal with this
and we propose two methods to fix the drawbacks of the
Scheduled Sampling . Scheduled Sampling only feeds the
previous predicted word into RNN decoder but still using
the gold word for training, which is a static oracle fashion.
The training oracle of our proposed method, on the other
hand, is dynamic, according to a language model or a pre-
trained NMT model.

Also, as has been shown in Section 4.5, our second model,
namely the pre-trained model-based dynamic oracle for
NMT, could provide the system with various translations
for each sentence. This feature is worth further research
and could help enhance the performance of the model fur-
ther.

Scheduled Sampling has been used in a variety of NLP tasks
and it is curious that it does not help here. Although we
have pointed out one potential problem, further investiga-
tion may help explain why this is the case.
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