
PDF-to-Text Reanalysis for Linguistic Data Mining

Michael Wayne Goodman, Ryan Georgi, Fei Xia
Linguistics Department

University of Washington
goodmami@uw.edu, rgeorgi@uw.edu, fxia@uw.edu

Abstract
Extracting semi-structured text from scientific writing in PDF files is a difficult task that researchers have faced for decades.
In the 1990s, this task was largely a computer vision and OCR problem, as PDF files were often the result of scanning
printed documents. Today, PDFs have standardized digital typesetting without the need for OCR, but extraction of semi-
structured text from these documents remains a nontrivial task. In this paper, we present a system for the reanalysis
of glyph-level PDF-extracted text that performs block detection, respacing, and tabular data analysis for the purposes of
linguistic data mining. We further present our reanalyzed output format, which attempts to eliminate the extreme verbosity
of XML output while leaving important positional information available for downstream processes.

Keywords: Low Resource Languages, Interlinear
Glossed Text (IGT), Corpus Creation

1. Introduction
A great deal of linguistic information exists online
in the form of academic publications. ODIN, the
Online Database of INterlinear text (Lewis and Xia,
2010) was created upon this premise, a resource
which makes available language data for approxi-
mately 1,500 languages, including linguistic glosses
and resource-rich language translations (Lewis et al.,
2015). The data targeted by ODIN is Interlinear
Glossed Text, or IGT, a semi-structured data format
for presentation of linguistic examples, as shown in
Figure 1. This data has been shown to have interest-
ing characteristics, making some NLP analysis possi-
ble for resource-poor languages (Lewis and Xia, 2008;
Georgi et al., 2014; Georgi et al., 2015).

Figure 1: An IGT instance of Kurmanji (kmr) in situ
from (van de Visser, 2006).

All the IGT instances in ODIN, including the one
in Figure 1, were extracted from linguistic articles
that were distributed electronically as Portable Docu-
ment Format (PDF) documents, a format developed by

Initial Page First Cut Second Cut Third Cut

Figure 2: An illustration of the XY-Cut algorithm re-
cursing on a document. The regions created by the
current cut (if any) are represented by a dotted border,
while regions not under consideration at the current
recursion are shaded.

Adobe Systems for the purposes of standardizing doc-
ument display and typesetting across platforms. As
this format was primarily designed to “communicate
visual material between different computer applica-
tions and systems” (Warnock, 1991), re-extracting the
displayed text for automated systems was not an in-
tended aspect of the format design. In the PDF spec-
ification, text is represented as glyphs of a specified
font in a “Character Space” coordinate system, em-
bedded within a “Text Space” renderer (Bienz et al.,
1997). One of the downsides of this document struc-
ture is that the internal structure of a PDF file gives
text as glyph-coordinate pairs, and guarantees only the
positioning of text rendered on the page. It does not
guarantee that the order of the encoded text resembles
the order in which it is intended to be read.
Consequently, extracting text from PDF documents is
not a straightforward task. Whitespace within a PDF
may be purely a function of layout, as in a document
with multiple columns, or it may be meant to provide
a cue to meaningful structural deviations in the text,
such as inline examples or floating tables.

723

https://www.ethnologue.com/language/kmr


We present in this paper a system that consumes the
extracted text-coordinate information from an off-the-
shelf PDF-to-text converter, but reanalyzes this out-
put to perform block detection, respacing, and tabu-
lar data analysis. The output format of this system
is more human-readable than the verbose xml format
produced by the off-the-shelf converters, while mak-
ing the important positional information available to
downstream processes.

2. Previous Work
In the 1980s and 1990s, as access to electronic
resources increased, researchers began investigating
ways to convert previously printed content into elec-
tronic content that could be indexed and searched
more easily. A part of the OCR task of transforming
pixels into electronic characters was detecting what
portions of the page were contiguous blocks. (Nagy
and Seth, 1984) introduced the recursive XY-Cut al-
gorithm, with (Nagy et al., 1992) refining the tech-
nique for the specific domain of technical articles. For
an informative comparison of different algorithms for
layout analysis, please see (Shafait et al., 2006).

2.1. The XY-cut algorithm
The XY-cut algorithm works by searching for the
largest rectangle of whitespace (or “valley”) that runs
the length of the current region of the page either ver-
tically or horizontally. This region is then “cut” into
two smaller regions, and the algorithm recurses until
no more cuts can be found. Rather than cutting only on
valleys of complete whitespace, a whitespace thresh-
old can give some tolerance to noise within a valley.
Another threshold on the minimum region size to cut
can prevent the algorithm from cutting too far. Fig-
ure 2 provides an illustration of the first several cuts
that the algorithm might make on a sample document.

2.2. Existing PDF-to-text converters
There are several existing PDF-to-text converters,
which extract text from PDFs and produce output files
with glyph-position information in easily parsable
XML formats, such as the open-source PDFMiner
(Shinyama, 2016) and the commercial product from
PDFLib called Text and Image Extraction Toolkit
(TET) (PDFLib GmbH, 2015). The XML output is
extremely verbose; for instance, the original PDF doc-
ument containing Figure 1 is 3MB in size, but the
converted XML output of TET, TETML1 is 58MB
uncompressed, 5.5MB with gzip compression. Fig-
ure 3 gives an example of the representation of

1https://www.pdflib.com/tet-cookbook/
tetml-and-xslt/tetml/

the PROG-wash-PST-2SG token from Figure 1 in
TETML format.
A third converter we have tested is the pdftotext util-
ity of the Poppler PDF library2. A nice property of
pdftotext is that it can output text with whitespace to
approximate the layout of the page (aka respacing).
However, the respaced text was often corrupted, with
lines of text being split, or with columns becoming
misaligned.
Table 1 compares the three converters with respect
to features that we find useful when extracting text
from scientific documents. All produce markup (XML
or HTML) and plain-text formats, where the markup
formats contain the coordinates of glyphs and fine-
grained blocks (i.e., at word or line-level).

Utility Respace Coords Block Unicode
pdftotext X X X basic
PDFMiner X X basic
TET X X advanced

Table 1: Features of three existing PDF-to-text con-
verters

3. Extraction and Reanalysis
When designing our PDF-to-text system (called
Freki3), we elected not to reimplement PDF-to-text
extraction but instead built on top of off-the-shelf con-
verters that produce the XML format. From the ver-
bose XML format, Freki identifies larger blocks (e.g.,
a paragraph or an IGT) and performs respacing. It also
makes modifications to the XY-cut algorithm.

3.1. Block Detection
The core of our layout analysis is in block detection,
which is a two-stage algorithm. In the first stage, we
create a 2D array where non-zero values represent the
bounding boxes of text tokens in the PDF, then ana-
lyze this array for blocks. We aim to create a block for
every distinct region of a document, e.g., each para-
graph, section header, footnote, figure, etc. The re-
cursive part of the algorithm is similar to the stan-
dard XY-cut implementation, but we use three types
of thresholds: (1) maximum valley noise; (2) mini-
mum valley width; and (3) minimum non-valley size.
Furthermore, all three types of thresholds are defined
for both the x and y axes, resulting in six threshold
values.
For our task, we set the first threshold to 0 for both
axes, as there is little noise to account for in text ex-
tracted from generated PDFs. We explore two ways

2https://poppler.freedesktop.org/
3“Freki” is one the wolves that accompanies the Norse

god Odin, chosen as a reference to the ODIN project.

724

https://www.pdflib.com/tet-cookbook/tetml-and-xslt/tetml/
https://www.pdflib.com/tet-cookbook/tetml-and-xslt/tetml/
https://poppler.freedesktop.org/


<Text>PROG-wash</Text>
<Box llx="238.92" lly="587.60" urx="289.09" ury="597.56">
<Glyph font="F47" size="8.04" x="238.92" y="587.60" width="5.36" fill="C0">P</Glyph>
<Glyph font="F47" size="8.04" x="244.32" y="587.60" width="5.80" fill="C0">R</Glyph>
<Glyph font="F47" size="8.04" x="250.08" y="587.60" width="6.25" fill="C0">O</Glyph>
<Glyph font="F47" size="8.04" x="256.32" y="587.60" width="6.25" fill="C0">G</Glyph>
<Glyph font="F47" size="9.96" x="262.56" y="587.60" width="3.31" fill="C0">-</Glyph>
<Glyph font="F47" size="9.96" x="265.92" y="587.60" width="7.19" fill="C0">w</Glyph>
...

</Box>

Figure 3: The TETML output produced by TET for a portion of the token PROG-wash-PST-2SG in Fig 1.

(24) Kurmanji: passive construction (present)
a. ez te di--m
1SG 2SG.ACC PROG-wash.PRS-1SG
I am washing you.
b. tu t-ł(-y) t-in
2SG PROG-come-2SG wash-INF
You are being washed (by me).

Figure 4: The TET plain-text output for the IGT in-
stance in Figure 1.

of choosing the second type of threshold: the first
simply uses the average character height in the page
for both the x and y axes; the second method ana-
lyzes a histogram of valley sizes to select one greater
than the median size, which is intended to cut section
boundaries but not individual lines. Our experiments
show that the first method worked better in general,
although the second does better for documents with
double-spaced lines. The third type of threshold pre-
vents a cut from resulting in too small a block. We
limited vertical cuts so the resulting blocks must be
at least 1/6 of the original page width and 1/32 of the
original page height, and horizontal cuts so the result-
ing blocks must be at least 1/6 of the original page
width and 1/128 of the original page height.
The second stage of block-detection is line detection.
Each block is reanalyzed individually with no mini-
mum valley width for horizontal cuts, which allows
each line to be cut. Some PDFs have lines whose
bounding boxes are completely abutted, resulting in
zero valleys between them. In response, when Freki
constructs the 2D array of bounding boxes, it shrinks
the boxes vertically by removing 1/5 of its height from
the top and bottom.

3.2. Other changes to the XY-cut algorithm
XY-cut, and layout analysis algorithms in general, are
often described for analyzing scanned documents. In
contrast, we are analyzing the layout of PDFs gener-
ated by a typesetting system or word processor, and
we ignore non-text elements, so we are not affected by
the noise and scanning artifacts that can hinder layout
analysis algorithms. Instead, we transform the bound-
ing boxes of encoded glyphs into a 2D array for image
analysis. This approach shares some similarities with
(Ha et al., 1995), although that work computed bound-

ing boxes for characters from scanned documents, not
from PDFs.
XY-cut is a recursive algorithm, so a naı̈ve traversal of
the tree of cuts can give an order through the blocks
that may correspond well with the intended reading
order4, but block ordering has also been a separate
object of research (Meunier, 2005; Sutheebanjard and
Premchaiswadi, 2010). We only use the implicit order
from the tree traversal, but we record the path to each
block, as well as source block coordinates, so that later
analysis on block order can be performed. There are
also known complex layouts that are not handled by
the XY-cut algorithm, but as our focus is on academic
articles that do not commonly use such layouts, we
choose to ignore these cases for now.
Other work in layout analysis focused on accurately
detecting and extracting tabular data (Perez-Arriaga et
al., 2016; Oro and Ruffolo, 2009). We also aim to re-
cover data presented tabularly, but rather than being
able to accurately predict rows and cells for a table,
we aim to maintain visual alignment in tabularly ar-
ranged text when converted to a monospaced font, as
explained below.

3.3. Respacing and Tabular Data Analysis
Our use case is primarily to enable the automatic pro-
cessing of text extracted from PDFs, with emphasis
on text presented tabularly, such as IGT. Therefore, it
is important to maintain the visual alignment of text
elements when projecting coordinate-positioned text
in a variable-width font to columns in a monospaced
plain-text file. If we projected a token’s x coordi-
nate to a column by multiplying the coordinate by,
e.g., the average character width, words with many
narrow characters would occupy proportionally more
projected space than words with many wide charac-
ters. The effect of this mismatch is that some words
would get overwritten by the following words. We
could instead multiply the coordinate by the widest
character width, or something larger, to prevent the
overlap, but this would amplify misalignments across

4E.g., for languages that write from left-to-right and
top-down, traversing the left/top side of each cut before the
the right/bottom cuts is often adequate.

725



doc_id=3667 page=226 block_id=226-6 bbox=... label=tbbtt 6836 6842
line=6836 fonts=F47-10.0,F48-10.0 bbox=... : (24) Kurmanji: passive construction (present)
line=6837 fonts=F47-10.0,F49-10.0 tabscore=0.25 bbox=...: a. ez te di-şû-m
line=6838 fonts=F47-10.0,F47-8.0 tabscore=1.00 bbox=... : 1SG 2SG.ACC PROG-wash.PRS-1SG
line=6839 fonts=F47-10.0 bbox=... : ‘I am washing you.’

Figure 5: The Freki output (see Section 4.) for the first IGT instance from Figure 1. The bounding box (bbox)
information has been truncated to save space.

lines when the original tokens did not have exactly the
same x coordinate.5 We could project to a column,
then adjust it to the next available column in cases of
overlap, but then tables quickly become misaligned.
Instead, we compute the intended column position and
compare it to other lines within a block. The propor-
tion of tokens sharing a projected column6 is a metric
we call tab-score. Successive lines meeting a thresh-
old for tab-score (which we set to 60%) are marked
as belonging to a tabular group. We then apply the
project-and-adjust strategy described above, but all to-
kens within a tabular group sharing a projected col-
umn are adjusted to the next available column across
all lines in the group. It’s possible for non-tabular (i.e.,
prose) lines to surpass the tab-score threshold, but be-
cause we are not explicitly marking the groups as ta-
bles and merely adjusting the spacing, the only conse-
quence is extra whitespace between words.

4. Output Format
While XML files produced by TET and PDFMiner of-
fer a great deal of information, as shown in Fig 3, they
are both verbose and far less human readable. While
disk space may be cheap, reviewability of the output
by a human domain expert is necessary to ensure that
the resulting content is sensible and useful for con-
sumption by downstream processes.
Compromising between exposing the rich positional
information provided by these XML output formats
and maintaining human readability, our output format
preserves block information and the lines that com-
prise them, with both block-level and line-level meta-
data before the text content. Figure 5 shows an exam-
ple block from the document in which Figure 1 was
extracted. The Freki output is more informative than
the plain-text output of TET in Fig 4 and more human
readable than the XMT output of TET in Fig 3. The
information contained in the block and line preambles
is explained below.

5We’ve observed a number of documents with ad-hoc
tables created, presumably, by the author inserting spaces
until the content is visually in the intended spot, but the
coordinates will not be exactly the same across rows.

6Sometimes things like example numbers inflate the
number of unaligned tokens, so we begin counting from
the rightmost first token between the two lines.

4.1. Block-Level Information
The first line of the block contains primarily identi-
fying and positional information, including doc_id
(Source document identifier), page (Page number),
block_id (Unique block identifier), bbox (Bound-
ing box of entire block), and label (XY-Cut tree
path to this block). While the source document and
block identifier information is largely for reference,
the bounding box, XY-Cut path, and page number are
all interesting positional features for downstream pro-
cessing tasks.

4.2. Line-Level Information
Freki breaks each block into lines of text, which
serve as the atomic unit of the output format. Each
line is provided with a preamble that contains line
(line number), fonts (list of font-size pairs found
in the line), bbox (bounding box for the line), and
tabscore (tab-score, see Section 3.3.).
While the line number is not much more than an
identifier, the other data exposed are valuable fea-
tures for the downstream task of identifying the semi-
structured, semi-tabular data. For instance, from the
bounding box information, one might create a feature
for whether a line is offset significantly from the sur-
rounding text, as is common with examples such as
the one in Figure 1. The tab-score described in Sec-
tion 3.3. may help in identifying the word-by-word
alignment shown in the first two lines of each exam-
ple of the IGT instances in Figure 1, as they line up
neatly in columns. Finally, the line content following
the preamble is additionally respaced to be natural for
human readability.

5. Conclusion
Extracting semi-structured text from PDF files is not
trivial. While there are existing open-source and com-
mercial PDF-to-text converters, the output is either
verbose and not human-readable or lacking important
information (such as indention) that can be useful for
downstream processes. Our software builds on top of
existing converters and focuses on identifying blocks
and respacing, useful for targeting IGT. The package,
including a web interface, is freely available to the
public at github.com/xigt/freki.

726

https://github.com/xigt/freki


6. Bibliographical References

Bienz, T., Cohn, R., and Meehan, J. R., (1997).
Portable Document Format Reference Manual, Au-
gust. http://www.adobe.com/content/
dam/Adobe/en/devnet/acrobat/pdfs/
pdf_reference_1-7.pdf.

Georgi, R., Lewis, W. D., and Xia, F. (2014). Captur-
ing divergence in dependency trees to improve syn-
tactic projection. Language Resources and Eval-
uation, 48(4):709–739, October. http://doi.
org/10.1007/s10579-014-9273-4.

Georgi, R., Xia, F., and Lewis, W. D. (2015). En-
riching interlinear text using automatically con-
structed annotators. In Proceedings of the 9th
SIGHUM Workshop on Language Technology for
Cultural Heritage, Social Sciences, and Humani-
ties (LaTeCH-2015), in conjunction with ACL 2015,
Beijing, China, July. http://www.aclweb.
org/anthology/W15-3709.

Ha, J., Haralick, R. M., and Phillips, I. T. (1995). Re-
cursive xy cut using bounding boxes of connected
components. In Document Analysis and Recogni-
tion, 1995., Proceedings of the Third International
Conference on, volume 2, pages 952–955. IEEE.

Lewis, W. D. and Xia, F. (2008). Automatically
identifying computationally relevant typo-
logical features. In Proceedings of the Third
International Joint Conference on Natural Lan-
guage Processing, Hyderabad, India, January.
http://www.aclweb.org/anthology/I/
I08/I08-2093.pdf.

Lewis, W. D. and Xia, F. (2010). Developing ODIN:
A multilingual repository of annotated language
data for hundreds of the world’s languages. Liter-
ary and Linguistic Computing, 25(3):303–319.

Lewis, W. D., Xia, F., Georgi, R., and Good-
man, M. (2015). ODIN corpus download.
xigt.org/odin.

Meunier, J.-L. (2005). Optimized XY-cut for de-
termining a page reading order. In Eighth Inter-
national Conference on Document Analysis and
Recognition (ICDAR’05), pages 347–351 Vol. 1.
IEEE, September.

Nagy, G. and Seth, S. (1984). Hierarchical represen-
tation of optically scanned documents. In Proceed-
ings of the 7th International Conference on Pattern
Recognition (ICPR), pages 347–349, January.

Nagy, G., Seth, S., and Viswanathan, M. (1992).
A Prototype Document Image Analysis System for
Technical Journals . Computer, 25(7):10–22, July.

Oro, E. and Ruffolo, M. (2009). PDF-TREX: An ap-

proach for recognizing and extracting tables from
PDF documents. In ICDAR.

PDFLib GmbH. (2015). PDFLib TET
5 – text and image extraction toolkit.
pdflib.com/products/tet/.

Perez-Arriaga, M. O., Estrada, T., and Abad-Mota, S.
(2016). TAO: System for table detection and extrac-
tion from PDF documents. In FLAIRS Conference.

Shafait, F., Keysers, D., and Breuel, T. M. (2006).
Performance comparison of six algorithms for page
segmentation. In Document Analysis Systems.

Shinyama, Y. (2016). pdfminer, December.
github.com/euske/pdfminer.

Sutheebanjard, P. and Premchaiswadi, W. (2010). A
modified recursive X-Y cut algorithm for solving
block ordering problems. 2010 2nd International
Conference on Computer Engineering and Technol-
ogy, pages V3–307 – V3–311, May.

van de Visser, M. (2006). The Marked Status of Erga-
tivity. Landelijke Onderzoekschool Taalweten-
schap. http://www.lotpublications.
nl/Documents/141_fulltext.pdf.

Warnock, J. (1991). The Camelot Project .
blogs.adobe.com/acrobat/files/2013
/09/Camelot.pdf.

727

http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf
http://doi.org/10.1007/s10579-014-9273-4
http://doi.org/10.1007/s10579-014-9273-4
http://www.aclweb.org/anthology/W15-3709
http://www.aclweb.org/anthology/W15-3709
http://www.aclweb.org/anthology/I/I08/I08-2093.pdf
http://www.aclweb.org/anthology/I/I08/I08-2093.pdf
http://xigt.org/odin/
https://www.pdflib.com/products/tet/
https://github.com/euske/pdfminer
http://www.lotpublications.nl/Documents/141_fulltext.pdf
http://www.lotpublications.nl/Documents/141_fulltext.pdf
https://blogs.adobe.com/acrobat/files/2013/09/Camelot.pdf
https://blogs.adobe.com/acrobat/files/2013/09/Camelot.pdf

	Introduction
	Previous Work
	The XY-cut algorithm
	Existing PDF-to-text converters

	Extraction and Reanalysis
	Block Detection
	Other changes to the XY-cut algorithm
	Respacing and Tabular Data Analysis

	Output Format
	Block-Level Information
	Line-Level Information

	Conclusion
	Bibliographical References

