
SACR: A Drag-and-Drop Based Tool for Coreference Annotation

Bruno Oberle
LiLPa (EA 1339), Université de Strasbourg

14 rue Descartes, F-67084 Strasbourg Cedex, France
oberleb@unistra.fr

Abstract
This paper introduces SACR, an easy-to-use coreference chain annotation tool, which is used to annotate large corpora for Natural
Language Processing (NLP) applications. Coreference annotation is usually considered as costly both in terms of time and human
resources. So, in order to find the easiest annotation strategy, we will first of all compare several annotation schemes implemented
in existing tools. Since interface ergonomics is also an important part of our research, we then focus on identifying the most helpful
features to reduce the strain for annotators. In the next section of the paper, we present SACR in details. This tool has been developped
specifically for coreference annotation, and its intuitive user interface has been designed to facilitate and speed up the annotation
process, making SACR equally suited for students, occasional and non-technical users. In order to create coreference chains, elements
are selected by clicking on the corresponding tokens. Coreference relations are then created by drag-and-dropping expressions one over
the other. Finally, color frames around marked expressions help the user to visualize both marked expressions and their relations. SACR
is open source, distributed under the terms of the Mozilla Public License, version 2.0, and freely available online.

Keywords: coreference annotation, annotation tool, coreference chain, interface ergonomics

1. Introduction and Context
The development of statistical methods in automatic lan-
guage processing leads to an increased need for annotated
resources. In particular, training algorithms that aim to de-
tect coreference1 requires manually annotated texts. Be-
cause such a task is costly in terms of time and human re-
sources, there are few annotated corpora with coreference
relations. In French, there is only one such a corpus large
enough to be used with supervised methods: the ANCOR
corpus (Muzerelle et al., 2014), with 488,000 lexical units,
116,000 referring expressions (only nouns and pronouns)
and 51,300 relations. But it contains only spoken French.
The “Democrat” project2 aims, among others, at providing
a large corpus annotated with coreference chains. It is ex-
pected to have one million words and 100,000 elements of
coreference chains. Several annotation strategies have been
discussed (Landragin et al., 2017) in order to balance sci-
entific needs with annotation speed.
The main purpose of this paper is to introduce SACR3, a
tool specifically designed to facilitate and speed up anno-
tation of coreference chains. We first compare coreference
annotation strategies used by different tools, both in terms
of annotation scheme (section 2) and interface usability

1There is coreference when two linguistic expressions refer to
the same referent, that is, the same entity. For example, in My cat
is drinking milk. It is really thirsty, both my cat and it refer to the
same entity (the cat I own) and thus are coreferential. All expres-
sions that refer to the same entity are said to be in a coreference
chain.

2DEscription et MOdélisation des Chaînes de Référence: out-
ils pour l’Annotation de corpus (en diachronie et en langues com-
parées) et le Traitement automatique “Description and modelling
of reference chains: tools for corpus annotation (with diachronic
and cross-linguistic approaches) and automatic processing”.

3SACR is an acronym for Script d’Annotation des Chaînes de
Référence “Script for Coreference Chain Annotation”. It is freely
available at http://boberle.com/projects/sacr.

(section 3), before turning to a presentation of SACR (sec-
tion 4), and how it is used by annotators in the Democrat
project.

2. Coreference chain annotation
According to (Habert, 2005), any annotation task may be
divided into three steps; for coreference annotation, these
steps are:

1. delimiting and marking referring expressions (that is,
a chunk of text that refers to some entity, the referent,
in the extralinguistic world),

2. annotating a set of features for each referring expres-
sion (e.g. the part of speech of the syntactic head or its
grammatical function),

3. linking coreferential expressions to build coreference
chains (that is, the set of all the linguistic expressions
that refer to the same referent).

We could also add a fourth step which would consist in
annotating relations and/or chains (e.g. with the type of the
referent: a person, an organization, a location, an idea, etc.).
Some of these stages may be automated (Landragin, 2011;
Poudat and Landragin, 2017), chiefly the annotation of
parts of speech, for which well performing tools exist.
The other steps require a manual annotation, since no tool
is (yet) effective enough to rely on, at least for French.
Coreference annotation is the most demanding among these
steps, and this is what we will discuss in this section.
Several annotation schemes may be used to annotate coref-
erence relations. First, each relation between two corefer-
ential expressions may be annotated separately (for exam-
ple, between “cat” and “animal” then between “animal” and
“it”). Chains are then built afterwards by transitivity (if “an-
imal” is coreferential with both “cat” and “it”, that means

389

http://boberle.com/projects/sacr


that “cat” and “it” are also coreferential). This scheme of-
fers fine-grained annotation possibilities, since it is possi-
ble to add a set of features for each relation (is the rela-
tion anaphoric? cataphoric? etc.). This method is tedious,
though, and a quicker way is to put all the coreferential ex-
pressions in one set (a coreference chain), without annotat-
ing individual relations. The annotator simply mark “cat”,
“animal” and “it” as belonging to the same set.
Both schemes are possible with most of the tools that al-
low coreference annotation. Glozz (Widlöcher and Mathet,
2012) and Analec (Landragin et al., 2012) define a three-
level model: units are used to mark chunks of texts, that
is, in our case, referring expressions; relations to anno-
tate binary relations; schemata to make coreference chains,
by linking either the relations or the units. The other
tools have similar features, with different names: MMAX2
(Müller and Strube, 2006) calls the Glozz-like relations
“pointer-type relations” and the schemata “set-type rela-
tions” where BRAT (Stenetorp et al., 2012; Bra, 2014) uses
the terms “binary relations” and “equivalence relations”.
GATE (Cunningham et al., 2013; Cunningham et al., 2011)
seems to allow only generic sets, and not binary relations.
Annotation with schemata in Glozz and Analec has been
tested during the MC4 project4 (Landragin, 2011; Mélanie-
Becquet and Landragin, 2014); but this requires to build a
schema for each new coreference chain, which involves an
extra work.
Rather than building a schema for each chain, a better strat-
egy is to build coreference chains from annotations: they
can be easily and automatically deduced if the name of the
referent is recorded as a feature of each referring expres-
sion: a chain is then the set of referring expressions that
have the same referent name. For example, if the expres-
sions “cat”, “animal” and “it” have the same referent name
“John’s cat” recorded as a feature, then it must be that they
are in the same coreference chain.
This is a change of perspective: annotators do not build the
chain themselves, but focus on finding the referent for each
referring expression. This has been found to be quicker
and easier than the building of chains via the schema-like
strategy and is the method currently used in the Democrat
project (Landragin et al., 2017).
Consequently, the tool used to annotate must only al-
low marking referring expressions and recording referent
names. Almost every annotation tool can be used as long as
annotators can mark tokens and add a feature set to them, so
that a tool like UAM CorpusTool (O’Donnell, 2008), which
does not (yet) allow annotation of relations, can be used.
Even a basic XML editor like Oxygen5 may be used.
The Democrat project is currently using TXM (Heiden,
2010), a platform to which Analec has been added as an
extension. Referent names are added as a feature to each
referring expression, and the coreference chains are created
automatically afterwards, as schemata computed from these
names. But adding and managing dozens of referent names

4Modélisation Contrastive et Computationnelle des Chaînes
de Coréférence, project from the French Centre National de la
Recherche Scientifique.

5https://www.oxygenxml.com/

is tedious and the process may be optimized with a dedi-
cated user interface.

3. User interface ergonomics
Usually annotation tools are developed with little attention
for the comfort of annotators (Fort, 2012), even if anno-
tating requires both intellectual and physical efforts, and if
user interface should take both into consideration (Müller
and Strube, 2006).
Physical efforts come first from the fact that annota-
tors must type a referent name for each referring expres-
sion. This can be facilitated by offering a default unique
name when the referring expression is marked, by auto-
completing the name when the referent has been entered
previously or even by copying the name from an expression
to another by a simple drag-and-drop operation. This also
has the advantage to prevent typing errors and name mis-
spellings. Some annotation schemes require all referring
expressions to be annotated, and not only those that are re-
lated to other expressions, because having all the referring
expressions marked allows more refined analysis, like com-
paring isolated expressions in contrast to coreferential ones.
One annotation strategy to ease the work of annotators is to
allow them to type a code (like “SI” for “singleton”6) when
the expression is not related to another: annotations marked
with this code will not be included when building chains.
Delimiting and marking referring expressions can also be at
times irritating with some tools that do not tokenize the text
in “words”. While this can be useful for some languages
such as Chinese, it is most often an issue when trying to
mark an expression around a apostrophe or a comma.
A better visualization of marked expressions helps to re-
duced the cognitive load. Gate and Analec just highlight
marked expressions with only one color, while MMAX of-
fers the possibility to surround them with brackets. BRAT
uses colors, but it is Glozz which is the most helpful tool
here since it draws colored frames around marked expres-
sions. This is especially important when expressions are
nested, and it often happens, when all referring expressions
are to be annotated, and not only those which are part of a
chain. But Glozz shows relations as arrows, which tend to
obstruct the text beneath them.
Keeping track of all the referents encountered so far in a
text is difficult yet necessary to be able either to link coref-
erential expressions or to type exactly the same referent
name entered for previously encountered referents. Glozz
and Analec (when used with schemata) require the creation
of a schema for each chain, so chains are clearly identi-
fied. Referents that do not give rise to a chain (a schema)
are more problematic. Analec, when used as an extension
of TXM (without schemata but with referent names), of-
fers an auto-completing list of referent names. GATE and
MMAX2 have similar features. But sometimes the mere
referent name is not enough for annotators who need a list
of all the expressions associated with a referent, in order to
decide how to annotate a new referring expression. Only
Glozz offers users an easy way to list all the elements in a
given chain.

6A singleton is a referring expression that is not related to an-
other one.

390

https://www.oxygenxml.com/


Several authors (Poudat and Landragin, 2017; Felt et
al., 2010) have pointed out that some annotations can be
made automatically, for example the annotation of parts of
speech. CCASH (Felt et al., 2010) is entirely built around
this idea, and has integrated modules (called “widgets”)
that automate simple annotation tasks. But it is difficult to
create custom widgets. Tools that have no such integrated
modules may be paradoxically more flexible since they al-
low the use of other programs via a common exchange for-
mat. For example, referring expressions may be manually
marked with one dedicated tool, parts of speech may be au-
tomatically added with some other specialized tool, etc. In
the Democrat project (Poudat and Landragin, 2017), using
a chunker, like SEM (Tellier et al., 2012), has been consid-
ered to pre-annotate the text, so annotators would only have
to create coreference relations.
All these highlights are not found at once in general pur-
pose annotation and analysis tools, but require a dedicated
tool, specifically designed to ease the coreference chain an-
notation process. SACR was designed in the light of this
idea.

4. Presentation of SACR
4.1. Overview
SACR (figure 1) is an open source, ready-to-use annota-
tion tool. Written in HTML, CSS and JavaScript, it is a
single-page application that works with Firefox or Chromi-
um/Google Chrome. It can be used immediately, with no
installation overhead, by virtually anyone on any platform.
It is available online, but can also be downloaded for offline
use.
Referring expressions are marked by clicking on their first
and last words, coreference relations are made by dragging
one expression and dropping it on another. There is almost
no learning time and the tool is thus well suited for students
of literary background or non-technical annotators as well
as more expert users.
It is dedicated to annotation and users are expected to use
some other tools (for example TXM) for the analyses. This
has allowed us to optimize its interface specifically for the
annotation process.

4.2. Creating annotations
Markables may be words (that is, a serie of letters) or char-
acters for languages where characters are words (e.g. Chi-
nese). A click on the first and last markables is enough to
make a referring expression with a default unique name.
Rather than having to type the referent name for each ex-
pression, a simple drag-and-drop operation is used to copy
the name: this create a new coreference relation, which is
symbolized by the coloring of the two linked expressions.
When adding more related expressions, they get the same
color, so each chain is identified with a unique color, while
singletons (referring expressions not related to any other
one) are left gray. Using eye-catching colors for the most
prominent referents allows to easily identify them and to
rely heavily on the drag-and-drop without having to care-
fully read and type referent names (e.g. if a pronoun “he”
refers to “Paul”, and “Paul” is in red, just drag the “he” and
drop it on one of the red elements). Default names may be

changed (chiefly for the most prominent referents), but this
is not necessary, and annotators may want to rely only on
the colors.
When it comes to annotate features like parts of speech or
grammatical functions (or check them if they are the out-
put of an automatic annotating system), a special edition
mode allows annotators to use shortcuts (e.g. “d” for a
noun with a definite article, “p” for a personal pronoun,
etc.): the next expression is automatically selected and pre-
sented in the middle of the screen when annotators have
made their choice. This way, one keystroke is enough for
each annotation so that annotating or checking a feature for
one hundred referring expressions requires only one hun-
dred keystrokes, and nothing more.
SACR does not impose a predefined annotation scheme:
users can use as many features as they want (parts of
speech, grammatical functions, morphological informa-
tions, number and type of modifiers, named entity types,
speakers (for oral transcriptions), etc.) and choose the
tagset and the corresponding shortcuts. The annotation
scheme is saved into a separate file and so may be used
for several texts or corpora.

4.3. Helping the annotator
Annotation visualization is an important part of SACR.
Marked expressions are surrounded by colored frames, al-
lowing an easy view of several levels of nested expressions
(for instance, a genitive in a relative clause). This is espe-
cially critical when all the referring expressions of a text
must be marked.
A popup window (figure 2) lists all the referents and all
the expressions associated with each referent. So anno-
tators can look for already annotated expressions and de-
cide whether they must attach, or not, the expression they
are currently working on to a previously defined referent.
Drag-and-dropping is also possible to link two somewhat
distant expressions. This list may also be used to check if
an expression has not been related to the wrong coreference
chain.
Referring expressions may be filtered in several ways. It
is possible to show only expressions from a given chain.
Users can also search expressions with specific features, for
example all expressions with a certain part of speech (all
pronouns, etc.) or grammatical function (all subjects, etc.),
if these features are annotated. The search can be made
with a literal or with a regular expression, so it is possible
to combine criteria (e.g. searching all nouns and pronouns).
Such searches are useful to check annotations at the end of
the annotation process, for example by looking for expres-
sions lacking any value for a feature (which means that an
annotator has forgotten to annotate it).
SACR does not perform any automatic annotation, but its
simple import/export text format allows converting to and
from other tools that can perform such annotations. A nom-
inal chunker may be used as a pre-treatment so that anno-
tators do not need to mark referring expressions, but only
to link them. Several tools have been tested, including
TreeTagger (Schmid, 1994; Schmid, 1995) and SEM (Tel-
lier et al., 2012), but they are limited and add more work
(too many wrong results) than they solve, since correcting

391



Figure 1: Annotating coreference and parts of speech with SACR.

Figure 2: List of all referring expressions grouped by
chains. Elements of a chain can be collapsed or expanded,
and it is possible to drag-and-drop any element of the list
from or to the main window, or vice-versa, to add a coref-
erence relation.

wrong annotations requires an additional cognitive work-
load; furthermore, referring expressions that are not de-
tected by the tool may be missed by annotators if they rely
too much on the tool output. Features like parts of speech
may also be annotated with other tools, and checked within
SACR.

4.4. Output format
Annotations made in SACR are stored inline, that is, within
the text. The aim is to offer an easy-to-parse format that
can be converted to other formats with the help of simple

scripts. Such scripts exist for example to convert to and
from the Glozz format (Widlöcher and Mathet, 2012) (a
format in which annotations are deported and that can be
imported in tools such as Analec or TXM) or the CONLL-
2011 format. Inline annotations also allow the modification
of the text itself, for example for spelling correction. Stand-
off annotations, on the other hand, offer other advantages
like the possibility to easily add annotation layers (e.g. out-
put from a part-of-speech tagger and a parser). Since Glozz
offers such a stand-off format and there are converters from
and to the Glozz format, it is easy to combine the advan-
tages of both type of annotations storage.
The format includes any metadata that are needed for the
program (colors), the organization of the corpus (identi-
fier, title, author, source, etc.), and even the text structure
(headings of different levels; sections like “introduction”
or “conclusion”; etc.).
The ouput file itself contains the text with the marked ex-
pressions enclosed between curly brackets. Features are
stored near the opening bracket. Here is a short example:

#title: Le laboureur et l’Aigle

{laboureur:categorie="i

nom indéfini",fonction="s

sujet",head="1",expansion="" Un

laboureur}, {laboureur:categorie="z

pronom zéro",fonction="s

sujet",head="0",expansion="" Ø}

ayant trouvé {aigle:categorie="i

nom indéfini",fonction="v compl

(verbe)",head="1",expansion="v"

un aigle pris {filet:categorie="d

nom défini",fonction="c

circonstant",head="1",expansion="" au

filet}}...

The file describing the features to be annotated is also a
simple text file listing all the values allowed for a property,

392



or offering a text box for annotators to complete:

PROP:name=categorie
n nom propre
t nom sans déterminant
d nom défini
...

PROP:name=fonction
s sujet
v compl (verbe)
n compl (nom)
...

PROP:name=head,type=head

PROP:name=expansion,type=text

A special type of property, called head, is set to let anno-
tators choose the syntactic head of the referring expression
(which is, in some annotation schemes, required to be a
syntactic phrase).
Annotators may define the feature set they want, with the
features and values adapted for specific tasks and/or lan-
guages. SACR may also be used without any feature set
defined: in this case, annotators just have to mark referring
expressions and create coreference relations.

4.5. Using SACR: User feedback and experiment

This tool has been easily used by several annotators, both
students and linguists, even when they were not at ease with
computers. The preferred way of annotating is to mark all
the referring expressions of a paragraph: this first reading
allows annotators to get the meaning of the passage. Then
coreference relations are marked by drag-and-dropping ex-
pressions one over the other. Finally, when the whole text
has been annotated with coreference, users may annotate
features for each expression (this process may be automated
by an external tool).
We conducted a small-scale experiment to compare SACR
to Analec (Landragin et al., 2012) as integrated in TXM
(Heiden, 2010). Three master’s students in linguistics and
computational linguistics have been trained to use both
SACR and TXM, and have been asked to mark referring ex-
pressions and coreference relations in a 18,900 token long
corpus of fables (easy to understand and annotate) and legal
European texts (more challenging to understand and anno-
tate, with referring expressions sometimes spanning several
lines and nested several levels deep).
When using SACR, annotators have taken 55 % less time on
average to complete the task, which means that annotation
with SACR is about twice as fast as with Analec-TXM. We
had expected difficult legal texts to be annotated even faster
with SACR than simpler texts like fables, but this was not
the case: the reduction in time is similar for both types of
texts.
Beyond coreference, SACR has been used for other anno-
tation tasks that necessitated a quick and user-friendly in-
terface. It can handle any annotation scheme that requires
to mark chunks of text and to annotate a feature set.

4.6. Limitations
SACR is dedicated to referring expression and coreference
chain annotation, with or without a set of features for each
expression. While it may be used to annotate other type
of linguistic phenomena (named entities, specific vocabu-
laries, etc.), its focus on coreference chains implies some
limitations. Most notably, there is no possibility of dis-
continuous annotations because each referring expression
is assumed to be a syntactic phrase. This is also the rea-
son why there cannot be any overlapping marked expres-
sion, but only nested ones. This limitation fits the technical
choice of using HTML as a way of representation. Further-
more, we have made the choice of considering coreference
chain as a set of referring expressions, without the possibil-
ity of annotating each relation in particular. For example,
while it is possible to annotate features for expressions A
and B, is not possible to annotate specific features for the
relation from A to B.

5. Conclusion
In this paper, we presented SACR, a new easy-to-use,
annotator-friendly tool designed and optimized for coref-
erence chain annotation. It requires no installation and is
ready-to-use even by non-technical users. Marking refer-
ring expressions is done by clicking on the first and last
words of an expression, and coreference chains by drag-
and-dropping expressions one over the other.

6. Acknowledgements
This work was supported by the Democrat project (DE-
scription et MOdélisation des Chaînes de Référence: outils
pour l’Annotation de corpus (en diachronie et en langues
comparées) et le Traitement automatique), from the French
National Research Agency (ANR) (ANR-15-CE38-0008).

7. Bibliographical References
(2014). BRAT: Brat Rapid Annotation Tool. http://
brat.nlplab.org.

Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.,
Aswani, N., Roberts, I., Gorrell, G., Funk, A., Roberts,
A., Damljanovic, D., Heitz, T., Greenwood, M. A., Sag-
gion, H., Petrak, J., Li, Y., and Peters, W. (2011). Text
Processing with GATE (Version 6).

Cunningham, H., Tablan, V., Roberts, A., and Bontcheva,
K. (2013). Getting more out of biomedical documents
with gate’s full lifecycle open source text analytics.
PLOS Computational Biology, 9(2):1–16.

Felt, P., Merkling, O., Carmen, M., Ringger, E., Lemmon,
W., Seppi, K., and Haertel, R. (2010). CCASH: A web
application framework for efficient, distributed language
resource development. In Nicoletta Calzolari (Confer-
ence Chair), et al., editors, Proceedings of the Seventh
International Conference on Language Resources and
Evaluation (LREC’10), Valletta, Malta. European Lan-
guage Resources Association (ELRA).

Fort, K. (2012). Les ressources annotées, un enjeu
pour l’analyse de contenu: vers une méthodologie de
l’annotation manuelle de corpus. Ph.D. thesis, Paris 13.

393

http://brat.nlplab.org
http://brat.nlplab.org


Habert, B. (2005). Portrait de linguiste(s) à l’instrument.
Texto!, 10(4).

Heiden, S. (2010). The TXM Platform: Building Open-
Source Textual Analysis Software Compatible with the
TEI Encoding Scheme. In Ryo Otoguro, et al., editors,
24th Pacific Asia Conference on Language, Information
and Computation, pages 389–398, Sendai, Japan. Insti-
tute for Digital Enhancement of Cognitive Development,
Waseda University.

Landragin, F., Poibeau, T., and Victorri, B. (2012). Analec:
a new tool for the dynamic annotation of textual data.
In Nicoletta Calzolari (Conference Chair), et al., editors,
Proceedings of the Eight International Conference on
Language Resources and Evaluation (LREC’12), Istan-
bul, Turkey. European Language Resources Association
(ELRA).

Landragin, F., Potier, J., and Bothua, M. (2017). Annota-
tion manuelle d’expressions référentielles: expérimenta-
tions pour simplifier les prises de décisions et optimiser
le processus. In 9èmes Journées Internationales de la
Linguistique de Corpus (JLC 2017), Grenoble, France.

Landragin, F. (2011). Une procédure d’analyse et
d’annotation des chaînes de coréférence dans des textes
écrits. Corpus, 10:61–80.

Mélanie-Becquet, F. and Landragin, F. (2014). Linguis-
tique outillée pour l’étude des chaînes de référence:
questions méthodologiques et solutions techniques. Lan-
gages, 195.

Müller, C. and Strube, M. (2006). Multi-level annota-
tion of linguistic data with MMAX2. In Sabine Braun,
et al., editors, Corpus Technology and Language Peda-
gogy: New Resources, New Tools, New Methods, pages
197–214. Peter Lang, Frankfurt a. M., Germany.

Muzerelle, J., Lefeuvre, A., Schang, E., Antoine, J.-Y.,
Pelletier, A., Maurel, D., Eshkol, I., and Villaneau, J.
(2014). ANCOR Centre, a large free spoken french
coreference corpus: Description of the resource and re-
liability measures. In Nicoletta Calzolari (Conference
Chair), et al., editors, Proceedings of the Ninth Interna-
tional Conference on Language Resources and Evalua-
tion (LREC’14), Reykjavik, Iceland. European Language
Resources Association (ELRA).

O’Donnell, M. (2008). Demonstration of the UAM Cor-
pusTool for text and image annotation. In Proceedings
of the 46th annual meeting of the Association for Com-
putational Linguistics on human language technologies:
Demo session, pages 13–16. Association for Computa-
tional Linguistics.

Poudat, C. and Landragin, F. (2017). Explorer un corpus
textuel. Champs linguistiques. De Boeck.

Schmid, H. (1994). Probabilistic part-of-speech tagging
using decision trees. In Proceedings of International
Conference on New Methods in Language Processing.

Schmid, H. (1995). Improvements in part-of-speech tag-
ging with an application to german. In Proceedings of
the ACL SIGDAT-Workshop.

Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Anani-
adou, S., and Tsujii, J. (2012). BRAT: a web-based tool
for NLP-assisted text annotation. In Proceedings of the

Demonstrations at the 13th Conference of the European
Chapter of the Association for Computational Linguis-
tics, pages 102–107. Association for Computational Lin-
guistics.

Tellier, I., Duchier, D., Eshkol, I., Courmet, A., and Mar-
tinet, M. (2012). Apprentissage automatique d’un chun-
ker pour le français. In Gilles Sérasset Georges Anto-
niadis, Hervé Blanchon, editor, TALN2012, volume 2 of
Actes de la conférence conjointe JEP-TALN-RECITAL
2012, pages 431–438, Grenoble, France.

Widlöcher, A. and Mathet, Y. (2012). The glozz platform:
A corpus annotation and mining tool. In Proceedings
of the 2012 ACM symposium on Document engineering,
pages 171–180. ACM.

394


	Introduction and Context
	Coreference chain annotation
	User interface ergonomics
	Presentation of SACR
	Overview
	Creating annotations
	Helping the annotator
	Output format
	Using SACR: User feedback and experiment
	Limitations

	Conclusion
	Acknowledgements
	Bibliographical References

