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Abstract
This paper presents a two-step methodology to annotate temporally-anchored spatial knowledge on top of OntoNotes. We first generate
potential knowledge using syntactic dependencies, and then crowdsource annotations to validate the potential knowledge. The resulting
annotations indicate how long entities are or are not located somewhere, and temporally anchor this information. Crowdsourcing
experiments show that spatial inferences are ubiquitous and intuitive, and experimental results show that they can be done automatically.
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1. Introduction
Extracting spatial meaning from text is of utmost impor-
tance in natural language understanding. Efforts focused
on spatial meaning—both corpora development and auto-
matic tools—have become popular. Existing approaches to
extract spatial knowledge usually focus on extracting loca-
tions of events, someone or something. For example, se-
mantic role labeling (Palmer et al., 2005) determines who
did what to whom, when and where, e.g., Thelma Gutier-
rez [went]verb [inside the forensic laboratory where scien-
tist are trying to solve this mystery]ARG4 , where ARG4 indi-
cates the END POINT of event went. Efforts targetting loca-
tions of entities include geo-locating Twitter users (Liu and
Inkpen, 2015), and pairing companies with the location of
their headquarters (Mintz et al., 2009) e.g., [IBM’s]company

headquarters in [New York]location.
Determining the temporal span where the spatial knowl-
edge holds is not extensively researched. From the sen-
tence John parked Jamie’s car at the Highland Garage, we
can infer that John and the car are certainly located at the
Highland Garage minutes before and during parking, and
that John will leave shortly after parking whereas the car
will be at the garage for a few days but not months. We
can also infer that Jamie will probably be at the Highland
Garage at some point after parking to pick up his car.
This paper presents (1) a two-step methodology to ex-
tract temporally-anchored spatial knowledge by manipulat-
ing syntactic dependencies, and a (2) crowdsourced corpus
annotated with temporally-anchored spatial knowledge.
The work presented here extends our previous work (Vem-
pala and Blanco, 2016), which only manipulated semantic
roles. We show that additional temporally-anchored spatial
knowledge can be extracted by leveraging syntactic depen-
dencies. We release a new corpus that annotates how long
entities are and are not located somewhere, and temporally
anchor this spatial information.1

2. Background
We work on top of OntoNotes (Hovy et al., 2006) as it
is a well known corpus with text from various domains.

1Available at https://alakanandav.bitbucket.io/

Ontonotes contains over 64,000 sentences. It annotates,
among other linguistic information, part-of-speech tags,
parse trees, named entities and co-reference chains. We
use the CoNLL- 2011 Shared Task distribution (Pradhan
et al., 2011), and transform the gold parse trees into syn-
tactic dependencies using Stanford CoreNLP (Manning et
al., 2014). De Marneffe and Manning (2008) present and
exemplify the Stanford dependencies, and Weischedel and
Brunstein (2005) the named entity types used in OntoNotes.
We use the term temporally-anchored spatial knowledge to
refer to information regarding whether a given x is or is not
located at some location y, and for how long with respect
to an event. We use the notation LOCATION(x, y) to indi-
cate the spatial relation between x and y. We use the term
potential spatial knowledge to refer to spatial relations LO-
CATION(x, y) that are yet to be validated.
There are 2 types of relations LOCATION(x, y): (1) those
whose arguments x and y are semantic roles of some verb,
and (2) those whose arguments x and y are not semantic
roles of any verb. Type (1) can be further divided into type
(1a) if x and y are roles of the same verb, and type (1b) if
x and y are roles of different verbs. In the sentence John
called Google’s office for Bill’s appointment, the relation
LOCATION(John, Google’s office) is of type (1) and LO-
CATION(Bill, Google’s office) is of type (2). Also, in the
example Officer Jack found the missing diamond at a ware-
house owned by Mr. Walker, LOCATION(Jack, warehouse)
is of type (1a) and LOCATION(Mr. Walker, warehouse) is
of the type (1b). Our previous work (Vempala and Blanco,
2016) extracts spatial knowledge of type (1). In Section 3,
we detail the approach that leverages syntactic dependen-
cies to extract spatial knowledge of type (1) and (2).

3. Corpus Creation

We follow a two-step methodology to annotate temporally-
anchored spatial knowledge on top of OntoNotes. First,
we manipulate syntactic dependencies and named entities
to generate potential spatial knowledge. Second, we gather
crowdsourced annotations to either discard or validate the
potential knowledge.
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The Bay Bridge , the main artery into San Francisco from the east , will be closed .
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The Bay Bridge San Francisco closed

Figure 1: Sample sentence and potential spatial knowledge generated using syntactic dependencies.

3.1. Generating Potential Additional Spatial
Knowledge

We enforce the restrictions below to generate potential spa-
tial relations LOCATION(x, y):

1. y is a GPE or LOC named entity;

2. x is a PERSON, FAC, PRODUCT or
WORK OF ART named entity from the same
sentence than y;

3. y is reachable from yverb, where yverb is the closest
verb going up the dependency tree from y; and

4. yverb is not the verb to be or to have.

We defined Restrictions 1–2 because we are interested in
locations of named entities and assigning spatial informa-
tion to other entities (e.g., DATE) is nonsensical. Restric-
tion 3 reduces the annotation effort. Restriction 4, how-
ever, was designed after pilot annotations revealed that no
temporally-anchored spatial knowledge could be inferred
from them.
OntoNotes annotates 19,478 GPEs and 1,858 LOCs (poten-
tial ys); and 18,823 PERSONs, 1,080 FACs, 734 PROD-
UCTs, and 1,253 WORK OF ARTs (potential xs). Pairing
all potential xs and ys within a sentence results in 10,136
pairs (Restrictions 1–2). Enforcing Restriction 3 reduces
the number of pairs to 9,351, and enforcing Restriction 4
further reduces the number to 8,775. Out of these 8,775
pairs, 7,029 have a PERSON as x, 951 a FAC, 411 a PROD-
UCT, and 384 a WORK OF ART.
Figure 1 presents sample sentence and potential spatial re-
lations generated using dependencies.

3.2. Crowdsourcing Annotations
After generating potential spatial knowledge, it must be val-
idated manually. To do so, we crowdsourced annotations
using CrowdFlower and asking questions in plain English.
More specifically, for each potential pair (x, y), annotators
were asked “After reading the sentence above, is x located
at y before / during / after yverb?” The annotation interface
showed the original sentence with x and y highlighted, and
no further information. Annotators were instructed to an-
swer questions based on the sentence provided, and to not
use prior knowledge about x or y.
After pilot annotations, it became clear that answering the
above question with yes or no is suboptimal. First, the
question is sometimes nonsensical because (a) x cannot be
literally located anywhere, or (b) yverb is a state, thus the
meaning of before / during / after yverb is unclear.
Second, sometimes there is not enough information in the
sentence to unambiguously determine whether x is or is not

located at y with respect to yverb. Recall that potential pairs
are generated automatically, so some will inevitably be spu-
rious. The final interface forces annotators to choose from
one of the following coarse-grained labels for each tempo-
ral anchor (before / during / after yverb):

• yes or no if x is (or is not) located at y before / during
/ after yverb;

• inv if asking the question for x is nonsensical; and
• unk if the question is intelligible but the answer is

unknown, i.e., neither yes nor no.
Additionally, if the coarse-grained label is yes, annotators
had to choose a fine-grained label:

• Before and after: secs, mins, days, weeks,
months, years, or inf for infinite. They were
instructed to choose the longest unit of time possi-
ble (e.g., days means for a few days but less than
a week).

• During: entire if x is located at y for the entire
duration of yverb, some otherwise.

Out of the 8,775 (x, y) pairs automatically generated, we
collected three annotations for 25% of pairs per yverb (to-
tal: 1,689). Among these relations, 478 belong to type (1)
(a: 227, b: 251) and 1,211 belong to type (2) i.e., x and y
belong to the same semantic role or are not the heads of any
semantic role.

4. Corpus Analysis
Figure 2 shows percentages of coarse-grained labels per
temporal anchor (before, during, after and all). Overall
(bottom right sub figure), only 3.20% questions are invalid,
and annotators answered with yes or no 74.28% of ques-
tions (yes: 51.77%, no: 22.51%), i.e., almost 75% of
potential spatial knowledge is deemed correct by annota-
tors. Percentages per named entity type of x follow similar
trends overall, but WORK OF ART has more inv labels
(18.05%) than the rest (0.85%–2.87%), and PRODUCT
has more yes labels than the rest (62.65% vs. 45.83%–
53.23%). The percentages per temporal anchor indicate
that more temporally-anchored spatial knowledge can be
extracted for before than after (52.87% + 28.89% = 81.76%
vs. 52.34 + 22.68% = 75.02%). Also, more potential spa-
tial knowledge can be extracted for during than before and
after (63.47% + 21.79% = 85.26%).
Percentages for fine-grained labels are shown in Table
1. For during, the vast majority of labels (91.22%) are
entire, and only 8.77% are some. For before and af-
ter, most labels are either years (49.28% and 36.72%) or
inf (34.42% and 45.19%). Other labels (secs, mins,
. . . , months) are uncommon (1.10%–10.55%). Because
of the unbalanced distribution, we experiment with clus-
tered fine-grained labels <years and �years.
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Figure 2: Percentages of coarse-grained labels per temporal anchor (top left: before, top right: during, bottom left: after,
and bottom right: all). Percentages are divided by the named entity type of x.

some entire secs mins hours days weeks months years inf
Before n/a n/a 2.48 1.83 6.39 2.09 2.09 1.43 49.28 34.42
During 8.77 91.22 n/a n/a n/a n/a n/a n/a n/a n/a
After n/a n/a 1.30 2.34 10.55 2.73 1.69 2.47 36.72 42.19
All 3.65 37.94 1.10 1.22 4.95 1.41 1.10 1.13 25.11 22.37

Table 1: Percentage of fine-grained labels for instances annotated with coarse-grained label yes.

r
% instances such that
3/3 2/3 0/3

Before 0.62 31.20 56.42 12.37
During 0.63 36.64 51.56 11.78
After 0.59 26.34 60.86 12.78
All 0.59 31.39 56.28 12.31

Table 2: Annotation quality for coarse-grained labels. We
show weighted Pearson correlations(r) between annotators
and the majority label, and percentage of pairs (x, y) for
which 3, 2 and none of the annotators agree (out of 3).

4.1. Annotation Quality
A majority coarse-grained label exists in over 87% of pairs
(Table 2, 3/3 or 2/3 agreed). We calculated weighted Pear-
son correlation between annotators and the majority label
following this mapping: yes:1, no:-1, unk and inv:0;
correlations range between 0.59 and 0.62. Fleiss Kappa
agreements (not shown in Table 2) range between 0.51 and
0.55, which are considered moderate (Landis and Koch,
1977). We believe Pearson is better suited than Kappa, as
not all disagreement are equally bad (e.g., yes vs. no and
unk vs. inv).

r
% instances such that

3/3 2/3 0/3 2/2 0/2
Before 0.62 39.43 46.69 13.88 88.53 11.47
During 0.60 38.57 48.62 12.81 84.94 15.06
After 0.58 29.67 54.64 15.68 87.78 12.22
All 0.62 36.19 49.8 14.01 87.04 12.96

Table 3: Annotation quality for fine-grained labels. We
show weighted Pearson correlations(r) between annotators
and the majority label and percentages of pairs (x, y) for
which annotators agree. We divide the percentages into
pairs in which 3 or 2 annotators agreed on the coarse-
grained label yes (3/3, 2/3 or 0/3; and 2/2 or 0/2).

Table 3 presents a similar analysis for fine-grained labels.
A majority label exists in 86% of pairs when 3/3 annota-
tors agreed on the coarse-grained label yes, and 87.04%
when 2/3 annotators agreed. Pearson correlations range
from 0.58 to 0.60, and overall Kappa is 0.56 (not shown).

4.2. Annotation Examples
In table 4, we present real examples from the annotated cor-
pus. In Sentence 1, the annotators chose the label years
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Sentence Before During After
C F C F C F

Sentence 1: [A {US}GPE poll]ARG0 [shows]verb [President {Clinton}PERSON and his wife, {First}ORDINAL Lady
{Hillary Rodham Clinton}PERSON are the man and woman most admired by {Americans}NORP]ARG1 .
x: Hillary Rodham Clinton, y: US, yverb: shows yes years yes entire yes years

x: President Clinton, y: US, yverb: shows yes years yes entire yes years

Sentence 2: [{Venezuela}GPE’s leftist President]ARG0 has [awarded]verb [{Fidel Castro}PERSON]ARG2 [the key to
the city of {Caracas}GPE]ARG1 .
x: Fidel Castro, y: Caracas, yverb: awarded yes days yes entire yes days

x: Fidel Castro, y: Venezuela, yverb: awarded no n/a no n/a no n/a

Sentence 3: On {Capitol Hill}LOC {today}DATE, senators were asking [the general who]ARG0 [sent]verb [{the
“USS Cole”}WORK OF ART]ARG1 [into the port of {Aden}GPE in {Yemen}GPE]ARG2 , why he made that decision.
x: “USS Cole”, y: Yemen, yverb: sent no n/a no n/a yes weeks

x: “USS Cole”, y: Aden, yverb: sent no n/a no n/a yes weeks

x: “USS Cole”, y: Capitol Hill, yverb: asking no n/a no n/a no n/a

Sentence 4: [{Yesterday}DATE]ARGM-TMP, [{Afghanistan}GPE’s ruling {Taliban}ORG]ARG0 [denied]verb [{Bin
Laden’s}PERSON involvement in the {Yemeni}NORP attack]ARG1 .
x: Bin Laden, y: Afghanistan, yverb: denied unk n/a unk n/a unk n/a

Table 4: Annotation examples for the generated pairs. We show coarse- and fine-grained annotations (C and F respectively);
yverb denotes the first verb going up the dependency tree from y, curly brackets and superindices indicate named entities,
and square brackets and subindices indicate semantic roles of yverb

for before, after and entire for during because Hillary

Rodham Clinton (x in pair 1) and President Clinton (x in
pair 2) will be located in US (y) with respect to the yverb
shows for all the three temporal anchors. The label years
can also be justified because the sentence states that Hillary

Rodham Clinton is the wife of US President Clinton. Also,
this is a type 2 spatial relation since x and y are not seman-
tic roles of any verb.
From Sentence 2, we can say that Fidel Castro (x) is located
in the Caracas city at least for a few days before, after
and for the entire time during yverb awarded took place.
Also, the annotators correctly interpreted that Fidel Castro

is not located in Venezuela before, during and after awarded

took place.
From Sentence 3, the annotators could infer that the USS

Cole (x) is not located in Yemen (y in pair 1) or Aden (y
in pair 2) before and during yverb sent took place. They
also inferred that it will be located in Yemen and Aden at
least for a few weeks after sent took place. Also, it can be
justified that USS Cole is not present in Capitol Hill before,
during and after yverb asking took place.
In Sentence 4, we cannot say anything about the location of
Bin Laden (x) from the sentence, so the annotators choose
the label unk for all the three temporal anchors.

5. Experiments
In this section, we present learning experiments with the
corpus. Each LOCATION(x, y) relation has three labels cor-
responding to temporal anchors before, during and after,
thus we generate 3 instances per relation. We perform two
classification tasks: (1) coarse-grained classification to pre-
dict yes, no or unk, and (2) clustered fine-grained classi-
fication to predict � years, <years, no or unk. This
classification is inspired by the previous work by Pan et al.
(2006) who predict event durations.

We discard all the instances with inv label. We found it
advantageous to train one classifier per temporal tag. We
divide the instances into 80% train and 20% test by ensur-
ing all the LOCATION(x, y) relations generated from a par-
ticular sentence belong to either the train or test sets. We
use scikit-learn (Pedregosa et al., 2011) to train one SVM
per temporal anchor and tune the C and � parameters using
10-fold cross-validation and grid search over the train set.
Results are reported on the corresponding test set.
Table 5 lists the feature set we experiment with. Basic fea-
tures encode basic information regarding argument x, loca-
tion y, x verb and y verb. NE features categorize the ar-
gument x and location y based on their named entity types.
Syntax features capture dependency structure of x and y.
Semantic features add information regarding spatial and
temporal roles.

6. Results
We performed experiments using gold-standard linguistic
annotations as well as predicted linguistic annotations. The
gold POS tags, parse-trees, semantic roles, dependencies
and named entities are taken from the CoNLL release and
the predicted linguistic information is obtained using Syn-
taxNet (Andor et al., 2016). The baseline systems predict
the most frequent label per temporal anchor and obtain an
overall F-score of 0.46 (0.29 for before, 0.49 for during and
0.29 for after).
Results with coarse-grained and clustered fine-grained la-
bels obtained with all features per temporal anchor using
gold standard linguistic information are presented in Table
6. Models trained with all features perform best with re-
spect to all temporal anchors. In general, results with be-
fore and during are better than results with after.
Results with coarse-grained and clustered fine-grained la-
bels obtained with all features per temporal anchor using
predicted linguistic information is presented in Table 7. The
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Type Feature Description

Basic

1 whether x occurs before or after y

2 number of tokens between x and y

3–4 number of tokens in x and y

5–8 words and POS tags of the heads of x and y

9–16 words and POS tags of the first and last tokens in x and y

17–24 words and POS tags of the previous and next tokens to x and y

25–26 word and POS tag of the closest verb to y going up the dependency tree
NE 27–28 named entity types of x and y

Syntax
29–30 outgoing dependencies from heads of x and y
31–34 outgoing dependencies from first and last tokens of x and y
35–38 outgoing dependencies from previous and next tokens to x and

Semantic 39–40 counts of ARGM-LOC and ARGM-TMP roles in the sentence

Table 5: Feature set to determine whether x is (or is not) located at y, and for how long.

Before During After Overall
P R F P R F P R F P R F

Coarse-grained

Yes 0.62 0.71 0.66 0.66 0.84 0.74 0.58 0.63 0.61 0.62 0.73 0.67
No 0.55 0.52 0.54 0.33 0.21 0.26 0.46 0.47 0.47 0.45 0.40 0.42
Unk 0.32 0.23 0.27 0.35 0.12 0.18 0.38 0.32 0.35 0.35 0.22 0.27
Avg 0.54 0.56 0.55 0.54 0.60 0.56 0.50 0.51 0.50 0.53 0.56 0.54

Clustered fine-grained

�years 0.56 0.64 0.60 n/a n/a n/a 0.60 0.57 0.58 0.58 0.61 0.59
<years 0.44 0.15 0.22 n/a n/a n/a 0.33 0.12 0.18 0.39 0.14 0.20
entire n/a n/a n/a 0.67 0.82 0.74 n/a n/a n/a 0.67 0.82 0.74
some n/a n/a n/a 0.00 0.00 0.00 n/a n/a n/a 0.00 0.00 0.00
No 0.55 0.60 0.58 0.30 0.28 0.29 0.48 0.66 0.55 0.44 0.51 0.47
Unk 0.33 0.28 0.31 0.31 0.10 0.16 0.44 0.40 0.42 0.36 0.26 0.30
Avg. 0.51 0.52 0.51 0.51 0.57 0.52 0.50 0.51 0.50 0.51 0.53 0.51

Table 6: Precision recall and F1-score with coarse-grained labels and clustered fine-grained labels using features extracted
from gold standard linguistic annotations for the best system per temporal anchor

Before During After Overall
P R F P R F P R F P R F

Coarse-grained

Yes 0.57 0.83 0.67 0.67 0.88 0.76 0.56 0.56 0.56 0.60 0.76 0.66
No 0.52 0.44 0.47 0.32 0.17 0.22 0.41 0.45 0.43 0.42 0.35 0.37
Unk 0.00 0.00 0.00 0.67 0.08 0.14 0.24 0.21 0.23 0.30 0.10 0.12
Avg. 0.45 0.55 0.49 0.58 0.62 0.56 0.44 0.44 0.44 0.49 0.54 0.50

Clustered fine-grained

�years 0.57 0.57 0.57 n/a n/a n/a 0.60 0.39 0.47 0.59 0.48 0.52
<years 0.43 0.18 0.25 n/a n/a n/a 0.25 0.17 0.20 0.34 0.18 0.23
entire n/a n/a n/a 0.64 0.88 0.74 n/a n/a n/a 0.67 0.82 0.74
some n/a n/a n/a 0.00 0.00 0.00 n/a n/a n/a 0.00 0.00 0.00
No 0.52 0.61 0.56 0.33 0.17 0.22 0.40 0.62 0.49 0.42 0.47 0.42
Unk 0.24 0.22 0.23 0.38 0.12 0.18 0.32 0.36 0.34 0.31 0.23 0.25
Avg. 0.49 0.50 0.49 0.51 0.59 0.52 0.50 0.51 0.50 0.50 0.53 0.50

Table 7: Precision recall and F1-score values for best systems with coarse-grained labels and clustered fine-grained labels
using features extracted from predicted linguistic annotations.

coarse-grained and clustered fine-grained results with mod-
els trained using predicted linguistic information obtained
an overall F1-score of 0.50 (vs. 0.54 and 0.51) with a test
set of 655 (vs. 1076, 60% overlap with gold test set). When
semantic roles are used extract potential spatial knowledge
(Vempala and Blanco, 2016) the overlap between predicted
and gold test set is only 30%.

7. Conclusions
We have presented an approach to determine whether se-
lected named entities are located or not located somewhere,
and specify when with respect to an event. Crowdsourcing
experiments show that annotating this kind of temporally-

anchored spatial knowledge can be done by non-experts.
Most of the pairs (74.28%, Figure 2) automatically gen-
erated are validated by annotators (coarse-grained labels
yes and no). Importantly, working with named entities
and syntactic dependencies instead of semantic roles allows
us to generate more potential spatial knowledge and obtain
better results in a realistic scenario, i.e., with predicted lin-
guistic annotations.
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