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Abstract
We present a new corpus of 200 abstracts and 100 full text papers which have been annotated with named entities and relations in the
biomedical domain as part of the OpenMinTeD project. This corpus facilitates the goal in OpenMinTeD of making text and data mining
accessible to the users who need it most. We describe the process we took to annotate the corpus with entities (Metabolite, Chemical,
Protein, Species, Biological Activity and Spectral Data) and relations (Isolated From, Associated With, Binds With and Metabolite
Of ). We report inter-annotator agreement (using F-score) for entities of between 0.796 and 0.892 using a strict matching protocol and
between 0.875 and 0.963 using a relaxed matching protocol. For relations we report inter annotator agreement of between 0.591 and
0.693 using a strict matching protocol and between 0.744 and 0.793 using a relaxed matching protocol. We describe how this corpus can
be used within ChEBI to facilitate text and data mining and how the integration of this work with the OpenMinTeD text and data mining
platform will aid curation of ChEBI and other biomedical databases.
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1. Introduction and Background
The ChEBI (Chemical Entities of Biological Interest)
database (Degtyarenko et al., 2008; Hastings et al., 2016)
is a freely available, electronic dictionary and ontology of
small molecules. ChEBI was created to help researchers
in the field of molecular biology who need to know the
structure, names, and properties of the small molecules that
they encounter in their research. There are a number of
freely-available chemical databases. Most of them are cre-
ated by an automatic ‘pipeline’ process and contain infor-
mation on polymers, industrial chemicals, synthetic inter-
mediates, etc. Their sheer size creates problems for users,
as any search may result in hundreds or even thousands of
answers. For non-expert users it is very difficult to deter-
mine which, if any, is the compound they are really looking
for. By contrast, the focus of the ChEBI database is on high
quality rather than quantity.
ChEBI is manually curated and focuses on the requirements
of the molecular biology community. Manual curation as-
sures the high quality of the database, but it also makes it an
expensive database to produce, particularly so for our focus
of metabolites. Users who would like to add a new metabo-
lite, may only know a research code or a trivial name from
which it is not possible to deduce a structure. The cura-
tor then has to search through scientific literature to find
as much information as possible about the new metabolite.
The information is likely to include:

• In which species is it present?

• Does it have any interesting biological properties, ap-
plications, etc? (E.g., Biological activity)

• Is there any spectral data available that indicates the
structure?

• From which chemical’s metabolism does it derive?

All of this information ideally needs to be supported by
appropriate citations to publications in the scientific liter-
ature. Whilst we cannot automate every step in the cura-
tion process, we can use text mining to facilitate the curator
throughout the process.
This work is part of the OpenMinTeD project1 (Ouden-
hoven and Pontika, 2017), which is developing a text and
data mining framework consisting of an integrated registry,
metadata schema, text mining workflow service and anno-
tation viewer. The OpenMinTeD project works with data
providers to give users access to large databases of open
access publications (Knoth and Pontika, 2016). The Open-
MinTeD project is also promoting a number of community
standards for text and data mining (Przybyła et al., 2016;
Ba and Bossy, 2016; Peters, 2016), such as UIMA (Fer-
rucci and Lally, 2004), maven2 and Docker (Merkel, 2014),
which we have adopted in our work. The OpenMinTeD
project has also made extensive efforts to facilitate the legal
interoperability of text mining software and content. From
which, we have adopted lessons and advice for our work
(Margoni and Dore, 2016; Labropoulou et al., 2016)
To facilitate curation in ChEBI through text mining, we will
deploy this corpus and any tools derived from it via the
OpenMinTeD platform. The platform provides many ad-
vantages to both the data provider and consumer, including
persistent availability, support and training, sustainability
of the platform, reusability of tools and redeployability of
tools to new scenarios. In addition, the tools we make avail-
able will be usable by audiences other than our intended tar-
get (curators of ChEBI), fulfilling the project’s goal of pro-
moting open science throughout communities which stand
to benefit from text and data mining.
The intended purpose of this corpus is to provide training

1https://openminted.eu
2https://maven.apache.org/
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data for both named entity recognition and relation extrac-
tion tools. We briefly describe approaches to each of these
areas below.
Named entity recognition (Nadeau and Sekine, 2007) is a
common text mining task in which an algorithm is used
to identify parts of an unstructured text that can be cate-
gorised according to a given schema. Named entity recog-
nition has been applied across diverse corpora including
but not limited to Twitter (Derczynski et al., 2015; Bald-
win et al., 2015), biomedical papers (Munkhdalai et al.,
2015; Wang et al., 2015) and other areas. Approaches
for named entity recognition range from using dictionaries
(Cohen and Sarawagi, 2004) to using regular expressions
and other rules (Kluegl et al., 2016; Chiticariu et al., 2010),
using machine learning approaches such as the conditional
random field (Lu et al., 2015), or more recently leveraging
advances in the field of deep learning (Chiu and Nichols,
2015; Lample et al., 2016).
Relation extraction (Aggarwal and Zhai, 2012) is a task in
information extraction that requires an algorithm to link
together two named entities according to a given schema
which defines the meaning of the link. Relation extrac-
tion requires named entity recognition to be performed as
a prerequisite. Relation extraction may be performed us-
ing supervised (Nguyen and Grishman, 2015; Pons et al.,
2015) or unsupervised methods (Quan et al., 2014). Simple
heuristics such as two entities in close proximity may serve
as a baseline, but are less powerful than measures which
take structural and context features of the named entities
into account.

2. Corpus Construction
We annotated a set of 200 abstracts and 100 full papers
with the entities that were of interest to us, as well as re-
lations between these entities. Although we could have
leveraged existing corpora for some of the entity types that
we were interested in, we found that there were very few
corpora dealing with metabolites in the fine-grained anno-
tations that we were interested in. In addition, whereas cor-
pora may have contained the entity types of interest to us,
no suitable corpora existed containing the relation types we
wished to annotate.
We first defined the entity types that were of interest to us.
These were determined as follows. The definitions of these
entities were driven by the curators of ChEBI, who also
participated in the annotation process.

Metabolite: A chemical which has been produced by, de-
tected in, or isolated from a living organism, where
this is clear from the context of the paper (e.g. Ni-
trosobenzene, 11-Deoxycorticosterone, sclerotiorin).

Chemical: Any name that is used to define ‘small’ chem-
icals (those that are not proteins, nucleic acids, etc.).
Includes molecules, salts, class names (e.g. benzoate
esters; indole alkaloids; etc.) and groups (parts of
molecules) - e.g. methyl group; benzyl substituent;
alanine residue. . . )

Protein: Any protein or large polypeptide (usually one
that is too big to be drawn by normal chemical

drawing software). All enzymes and receptors are
considered to be proteins in our scheme (e.g. 4-
Dihydroxyphenylalanine decarboxylase, Dopa decar-
boxylase).

Species: Any entity referring to a formal name for a living
organism or from which the name can be inferred (e.g.
‘volunteer’, ‘patient’ implies ‘human’).

Biological Activity: An effect/consequence that a chem-
ical entity has on a biological system. Examples
may include affecting the activity (e.g. by inhibi-
tion or activation) of a particular enzyme; growth reg-
ulator; antimicrobial agent; apoptosis inducer; anti-
inflammatory; flavour enhancer; etc.

Spectral Data: data arising from spectrometry. e.g., 1H-
NMR, 13C-NMR, MS, X-ray, IR, etc. Where two
or more spectroscopic techniques are present, each
should be tagged separately.

We also defined the following types of relation between the
entities. The relations help us to answer the questions about
a new metabolite that a curator may have, as outlined in
Section 1..

Isolated from(Metabolite, Species): A metabolite was
isolated from or detected in a specific species.

Associated with(Chemical / Metabolite, Biological
Activity / Spectral Data): A chemical or metabolite
is linked to a particular biological activity or spectral
data.

Binds With(Chemical / Metabolite, Protein): A chemi-
cal or metabolite interacts with (e.g.binds) and affects
the behaviour of a biological target.

Metabolite of(Metabolite, Chemical): A metabolite is
derived from the metabolism of a related compound.

We developed guidelines containing these definitions. The
guidelines provided examples of the annotations, as well as
specific information for each category that helped the an-
notators to agree in ambiguous cases. The guidelines were
updated after each round of annotation in accordance with
feedback from the annotators.
We selected 200 abstracts for annotation from PubMed, ac-
cording to the criteria that each abstract should contain at
least one of the relation types that we were looking for. We
performed double annotation for all 200 abstracts to en-
sure the consistency and validity of our annotations. We
engaged two annotators, both of whom were actively in-
volved in the curation of the ChEBI database. We initially
annotated 20 abstracts and evaluated inter-annotator agree-
ment. We found some discrepancies between the annota-
tors’ interpretations of the categories and so we discussed
these with the annotators and updated our definitions and
the guidelines accordingly. We proceeded to annotate a fur-
ther 20 abstracts, after which we obtained a higher agree-
ment on all categories. We performed further resolution be-
tween the annotators and updated the guidelines, with fur-
ther rounds of 60 and then 100 abstracts to bring the total
number of doubly annotated abstracts up to 200.
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Following on from this large round of double annotation,
we proceeded to singly annotate the full text of 100 papers.
It has been shown elsewhere in the literature that the an-
notation of full texts is preferential over the annotation of
abstracts (Westergaard et al., 2017). We extracted full texts
using the API provided by the Elsevier developer portal.3

We chose 100 papers for annotation, again according to the
criteria that they should contain at least one relation type of
interest to us. Both annotators contributed to these annota-
tions, although each full paper was only annotated by one
annotator.
Both the corpus and guidelines associated with this paper
will be made available via the OpenMinTeD platform, as
well as in the supplementary material to this work, upon
final submission.

3. Corpus Statistics
We calculated inter annotator agreement using the F-score
statistic, as is the norm for text mining tasks. We could
not use the more common Kappa statistic, as this takes
the true negative rate into account, which is not appropri-
ate for named entity recognition where all tokens or spans
that have not been annotated will be considered true nega-
tives. We calculate the F-score using both a strict and re-
laxed matching protocol as described below. The matching
protocols are further explained in Table 1.
In the strict matching protocol, the annotators are consid-
ered to agree on a named entity only if they have annotated
the exact same span and assigned the same entity type. In
this case, the annotation will be considered a true positive.
To obtain the false positive and false negative rate, we con-
sider one annotator to be the ‘gold standard’. A false neg-
ative is assigned if the gold annotator has created an anno-
tation that is not present in the other annotations. A false
positive is assigned if the gold annotator has not created an
annotation that is present in the other annotations. We fol-
low the same protocol for relations, where a true positive is
assigned if both terms match exactly, as well as the type of
the relation.
In the relaxed matching protocol, the annotators are con-
sidered to agree on a named entity only if the spans of two
entities overlap by at least one character and the category is
the same. False positives and false negatives are assigned
as above when a matching term cannot be found for either
the gold standard or the other annotator. Relations are as-
signed as a true positive if the terms match using the relaxed
matching criteria and the category is the same.
The strict matching protocol may be overly punitive in
cases where the annotators clearly agree on an annotation,
but disagree about exactly which part of a term should be
covered by the annotation. For example, consider the an-
notation ‘poly aromatic hydrocarbons’. One annotator may
annotate the whole span as a chemical, whereas the other
annotates the span ‘aromatic hydrocarbons’. In this case,
the annotators both agree that there is a chemical at this
point, the disagreement is around whether to include the
term ‘poly’ in the annotation or not. According to the strict

3https://dev.elsevier.com/

matching protocol this would be regarded as a false nega-
tive for the first annotator and a false positive for the sec-
ond. According to the relaxed matching criteria, this would
be considered a true positive. The relaxed matching crite-
ria may be overly lenient, as even one character in common
could signify a true positive. However, we hope that by pro-
viding both measures the reader will have the best tools to
interpret our results. We have provided our results for inter
annotator agreement in Table 2.
We can see from the results in Table 2 that we were able
to attain a high level of agreement for entities between the
annotators on the set of 200 abstracts in our corpus. It is
clear to see that using the relaxed matching protocol yields
an increase in agreement over the strict matching protocol.
For the entities, the largest increase is for Spectral Data,
where using relaxed matching gives an increase of 0.122,
indicating that the annotators often disagree about the exact
boundaries of Spectral Data. The Species category was the
named entity with the smallest increase when using relaxed
matching of only 0.05, indicating that the annotators rarely
disagreed on the exact boundaries of each Species annota-
tion. Overall, the highest agreement was attained for the
Species annotation when using the strict matching proto-
col and for Spectral Data when using the relaxed matching
protocol.
The agreement for relations is lower than for entities. Each
relation covers two entities, so there is greater scope for the
annotators to disagree on how these entities should be re-
lated. Furthermore, if the annotators have not agreed on
the scope of one or both entities in the relation then it will
not be considered a match according to the strict protocol.
Accordingly, we can see that using the relaxed protocol for
relations generally gives a larger performance boost than
for entities alone. The largest increase is for the Associated
With category, where relaxed matching yields an increase
of 0.197. The Associated With category covers the Spectral
Data entity which had the largest increase of all entities
when using relaxed matching vs. strict, which may explain
the increase for Associated With. The smallest increase
within the relations is for Binds With where an increase of
only 0.051 is recorded. This covers the Metabolite, Chem-
ical and Protein entities, all of which had similarly small
increases. Overall, the agreement for relations under re-
laxed matching gives scores between 0.744 for Binds With
and 0.793 for Associated With. These figures indicate that
agreement is high, if not perfect, and that annotators may
not always agree on the exact boundaries of each annota-
tion.
The final corpus contains 200 doubly annotated abstracts
and 100 singly annotated full papers. The full papers por-
tion of the corpus is much longer than that of the abstracts
portion as each full paper is much longer than a single ab-
stract. We present statistics on the full corpus in Table 3.
We can see from Table 3 that the full papers are indeed
much richer than the abstracts. For entities, the average full
paper contain between 12.08 (Species) and 28.57 (Spectral
Data) times more entities than the average abstract. The
increase in data is lower for relations, where the average
full paper contains between 2.32 (Metabolite Of ) and 8.09
(Associated With) times more relations than the average ab-
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annotator 1︷ ︷
benzoate esters︸ ︸

annotator 2
are

annotator 1︷ ︷
benzoate esters︸ ︸

annotator 2
are

annotator 1︷ ︷
benzoate esters are

Strict Match No Match No Match
Relaxed Match Match No Match

Table 1: Three possible annotation scenarios and the results of the strict and relaxed matching protocol. The first column
shows an ‘exact match’ where both annotators have highlighted the same term. This is considered a match by both protocols.
The second column shows a partial match, where the annotators have agreed on the annotation, but disagreed on the scope.
The strict matching protocol does not consider this a match, whereas the relaxed matching protocol does consider this a
match. The final column shows that annotator 1 made an annotation, where annotator 2 did not. Neither protocol would
consider this case to be a match.

Category Strict Relaxed

Metabolite 0.821 0.875
Chemical 0.865 0.950

Protein 0.866 0.944
Species 0.892 0.942

Biological Activity 0.796 0.904
Spectral Data 0.841 0.963

Isolated From 0.591 0.766
Associated with 0.596 0.793

Binds With 0.693 0.744
Metabolite Of 0.623 0.789

Table 2: The agreement between annotators on entities
(top) and relations (bottom) using strict and relaxed match-
ing protocols. All reported values are F-score.

Category Abstracts Full Papers Scale

Documents 200 100 —
Words 160.34 3722.80 23.22

Sentences 10.37 112.15 10.81

Metabolite 3.30 48.45 14.68
Chemical 14.49 213.29 14.72

Protein 4.14 63.01 15.22
Species 2.72 32.87 12.08

Biological Activity 2.98 47.51 15.94
Spectral Data 0.28 8.00 28.57

Isolated From 1.29 8.00 6.20
Associated With 4.45 36.01 8.09

Binds With 1.32 6.18 4.68
Metabolite Of 0.75 1.74 2.32

Table 3: The averaged statistics per document for both ab-
stracts and full papers in our corpus. The first line of data
shows the total number of each document type. It is clear
that the full papers contain much more data than the ab-
stracts alone. We present general stats (top), entities (mid-
dle) and relations (bottom). The third column shows the
magnitude of the increase in number of available entities
when using full texts as opposed to abstracts.

stract. The lower increase in relations, may be because they
are more difficult for the annotator to spot in full papers,
where a relation may span several paragraphs.
It is interesting to note that whilst the number of words

in a full paper is on average 23.22 times greater than in
abstracts, most of the increases for entities and relations
are below this number (all except for Spectral Data). This
demonstrates that whilst full papers are richer in availabil-
ity of entities and relations, they are less densely packed
with entities and relations than abstracts. This implies that
a larger volume of entities and relations could be found by
processing the same number of words from abstracts than
from full papers. However, full papers (where available)
provide much more information about the entities they con-
tain and so are important for information extraction tasks
where important information may not be reported in the ab-
stract.
The Chemical entity is the most frequently reported entity
in both the abstracts and full papers in our corpus, whereas
Spectral Data is the the least frequent. The documents we
have chosen are from biomedical journals and so it is un-
surprising that they mention chemicals with such high fre-
quency. Spectral Data is surprisingly low in abstracts, in-
dicating that authors do not commonly report this entity in
the abstract, but instead report it in the full text of the paper.
The Associated With relation is the most frequent relation
in both the abstracts and full papers, whereas the Metabo-
lite Of relation is the least frequent. Associated With is a
broad category that covers several entity types, which may
explain why it is more frequent than the other more nar-
rowly scoped relations.

4. Conclusion
We have described our new corpus containing 200 abstracts
and 100 full papers annotated with entities and relations
that are useful for automating the curation process of the
ChEBI database. This corpus will be made available as part
of the OpenMinTeD project for use in text mining applica-
tions. We will use the corpus to train text mining tools capa-
ble of detecting the entities and relations contained within
the corpus. These text mining tools will be made available
via the OpenMinTeD platform for use in the curation of
ChEBI, as well as for use by other teams of curators who
face similar problems in automating their curation work-
flows.
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European Language Resources Association (ELRA).

Lample, G., Ballesteros, M., Subramanian, S., Kawakami,
K., and Dyer, C. (2016). Neural architectures for named
entity recognition. In Proceedings of the 2016 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, pages 260–270. Association for Computational
Linguistics.

Lu, Y., Ji, D., Yao, X., Wei, X., and Liang, X. (2015).
CHEMDNER system with mixed conditional random
fields and multi-scale word clustering. Journal of Chem-
informatics, 7(1):S4, Jan.

Margoni, T. and Dore, G. (2016). Why we need a text and
data mining exception (but it is not enough). In Richard
Eckart de Castilho, et al., editors, Proceedings of the
Workshop on Cross-Platform Text Mining and Natural
Language Processing Interoperability (INTEROP 2016)
at LREC 2016, pages 57–59, Portorož, Slovenia, May.
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