
Advances in Pre-Training Distributed Word Representations

Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, Armand Joulin
Facebook AI Research

{tmikolov, egrave, bojanowski, cpuhrsch, ajoulin}@fb.com

Abstract

Many Natural Language Processing applications nowadays rely on pre-trained word representations estimated from large text corpora

such as news collections, Wikipedia and Web Crawl. In this paper, we show how to train high-quality word vector representations

by using a combination of known tricks that are however rarely used together. The main result of our work is the new set of publicly

available pre-trained models that outperform the current state of the art by a large margin on a number of tasks.

Keywords: fastText, word2vec, word vectors, pre-trained

1. Introduction

Pre-trained continuous word representations have become

basic building blocks of many Natural Language Process-

ing (NLP) and Machine Learning applications. These

pre-trained representations provide distributional infor-

mation about words, that typically improve the gen-

eralization of models learned on limited amount of

data (Collobert et al., 2011). This information is typically

derived from statistics gathered from large unlabeled cor-

pus of text data (Deerwester et al., 1990). A critical aspect

of their training is thus to capture efficiently as much statis-

tical information as possible from rich and vast sources of

data.

A standard approach for learning word representations is

to train log-bilinear models based on either the skip-gram

or the continuous bag-of-words (cbow) architectures, as

implemented in word2vec (Mikolov et al., 2013a) and fast-

Text (Bojanowski et al., 2017)1. In the skip-gram model,

nearby words are predicted given a source word, while in

the cbow model, the source word is predicted according to

its context. These architectures and their implementation

have been optimized to produce high quality word repre-

sentations able to transfer to many tasks, while maintaining

a sufficiently high training speed to scale to massive amount

of data.

Recently, word2vec representations have been widely used

in NLP pipelines to improve their performance. Their im-

pressive capability at transfering to new problems suggests

that they are capturing important statistics about the train-

ing corpora (Baroni and Lenci, 2010). As can be expected,

the more data a model is trained on, the better the represen-

tations are at transferring to other NLP problems. Training

such models on massive data sources, like Common Crawl,

can be cumbersome and many NLP practitioners prefer to

use publicly available pre-trained word vectors over train-

ing the models by themselves. In this work, we provide new

pre-trained word vectors that show consistent improvement

over the currently available ones, making them potentially

very useful to a wide community of researchers.

We show that several modifications of the standard

word2vec training pipeline significantly improves the qual-

ity of the resulting word vectors. We focus mainly on

1https://fasttext.cc/

known modifications and data pre-processing strategies that

are rarely used together: the position dependent features in-

troduced by Mnih and Kavukcuoglu (2013), the phrase rep-

resentations used in Mikolov et al. (2013b) and the use of

subword information (Bojanowski et al., 2017).

We measure their quality on standard bench-

marks: syntactic, semantic and phrase-based

analogies (Mikolov et al., 2013b), rare words

dataset (Luong et al., 2013), and as features in a ques-

tion answering pipeline on Squad question answering

dataset (Rajpurkar et al., 2016; Chen et al., 2017).

2. Model Description

In this section, we briefly describe the cbow model as it

was used in word2vec, and then explain several known im-

provements to learn richer word representations.

2.1. Standard cbow model

The cbow model as used in Mikolov et al. (2013a) learns

word representations by predicting a word according to its

context. The context is defined as a symmetric window con-

taining all the surrounding words. More precisely, given a

sequence of T words w1, . . . , wT , the objective of the cbow

model is to maximize the log-likelihood of the probability

of the words given their surrounding, i.e.:

T
∑

t=1

log p (wt | Ct) , (1)

where Ct is the context of the t-th word, e.g., the words

wt−c, . . . wt−1, wt+1, . . . , wt+c for a context window of

size 2c. For now on, we assume that we have access to

a scoring function between a word w and its context C,

denoted by s(w,C). This scoring function will be later

parametrized by the word vectors, or representations. A

natural candidate for the conditional probability in Eq. 1 is

a softmax function over the scores of a context and words

in the vocabulary. This choice is however impractical for

large vocabulary. An alternative is to replace this proba-

bility by independent binary classifiers over words. The

correct word is learned in contrast with a set of sampled

negative candidates. More precisely, the conditional proba-

bility of a word w given its context C in Eq. (1) is replaced

52

https://fasttext.cc/

by the following quantity:

log
(

1 + e−s(w,C)
)

+
∑

n∈NC

log
(

1 + es(n,C)
)

, (2)

where NC is a set of negative examples sampled from the

vocabulary. The objective function maximized by the cbow

model is obtained by replacing the log probability in Eq. (1)

by the quantity defined in Eq. (2), i.e.:

T
∑

t=1



log
(

1 + e−s(wt,Ct)
)

+
∑

n∈NCt

log
(

1 + es(n,Ct)
)



 .

A natural parametrization for this model is to represent each

word w by a vector vw. Similarly, a context is represented

by the average of word vectors uw′ of each word w′ in its

window. The scoring function is simply the dot product

between these two quantities, i.e.,

s(w,C) =
1

|C|

∑

w′∈C

uT
w′vw. (3)

Note that different parametrizations are used for the words

in a context and the predicted word.

Word subsampling. The word frequency distribution in

a standard text corpus follows a Zipf distribution, which

implies that most of the words belongs to small subset of

the entire vocabulary (Li, 1992). Considering all the oc-

curences of words equally would lead to overfit the param-

eters of the model on the representation of the most fre-

quent words, while underfitting on the rest. A common

strategy introduced in Mikolov et al. (2013a) is to subsam-

ple frequent words, with the following probability pdisc of

discarding a word:

pdisc(w) = 1−
√

t/fw (4)

where fw is the frequency of the word w, and t > 0 is a

parameter.

2.2. Position-dependent Weighting

The context vector described above is simply the average

of the word vectors contained in it. This representation is

oblivious to the position of each word. Explicitly encod-

ing a representation for both a word and its position would

be impractical and prone to overfitting. A simple yet effec-

tive solution introduced in the context of word representa-

tion by Mnih and Kavukcuoglu (2013) is to learn position

representations and use them to reweight the word vectors.

This position dependent weighting offers a richer context

representation at a minimal computational cost.

Each position p in a context window is associated with

a vector dp. The context vector is then the average of

the context words reweighted by their position vectors.

More precisely, denoting by P the set of relative positions

[−c, . . . ,−1, 1, . . . , c] in the context window, the context

vector vC of the word wt is:

vC =
∑

p∈P

dp ⊙ ut+p, (5)

where ⊙ is the pointwise multiplication of vectors.

2.3. Phrase representations

The original cbow model is only based on unigrams, which

is insensitive to the word order. We enrich this model with

word n-grams to capture richer information. Directly incor-

porating the n-grams in the models is quite challenging as it

clutters the models with uninformative content due to huge

increase of the number of the parameters. Instead, we fol-

low the approach of Mikolov et al. (2013b) where n-grams

are selected by iteratively applying a mutual information

criterion to bigrams. Then, in a data pre-processing step we

merge the words in a selected n-gram into a single token.

For example, words with high mutual information like

”New York” are merged in a bigram token, ”New York”.

This pre-processing step is repeated several times to

form longer n-gram tokens, like ”New York City” or

”New York University”. In practice, we repeat this pro-

cess 5 − 6 times to build tokens representing longer

ngrams. We used the word2phrase tool from the word2vec

project2. Note that unigrams with high mutual information

are merged only with a probability of 50%, thus we still

keep significant number of unigram occurrences. Interst-

ingly, even if the phrase representations are not further used

in an application, they effectively improve the quality of the

word vectors, as is shown in the experimental section.

2.4. Subword information

Standard word vectors ignore word internal structure that

contains rich information. This information could be useful

for computing representations of rare or mispelled words,

as well as for mophologically rich languages like Finnish

or Turkish. A simple yet effective approach is to enrich the

word vectors with a bag of character n-gram vectors that

is either derived from the singular value decomposition of

the co-occurence matrix (Schütze, 1993) or directly learned

from a large corpus of data (Bojanowski et al., 2017). In the

latter, each word is decomposed into its character n-grams

N and each n-gram n is represented by a vector xn. The

word vector is then simply the sum of both representations,

i.e.:

vw +
1

|N |

∑

n∈N

xn. (6)

In practice, the set of n-grams N is restricted to the n-grams

with 3 to 6 characters. Storing all of these additional vec-

tors is memory demanding. We use the hashing trick to

circumvent this issue (Weinberger et al., 2009).

3. Training Data

We used several sources of text data that are publicly avail-

able and the Gigaword dataset, as described in Table 1.

In particular, we used English Wikipedia from June 2017,

from which we used the meta pages archive which resulted

in a text corpus with more than 9 billion words 3. Further,

we used all news datasets from statmt.org from years

2007 - 2016, the UMBC corpus (Han et al., 2013), the En-

glish Gigaword, and Common Crawl from May 20174.

2https://github.com/tmikolov/word2vec
3https://dumps.wikimedia.org/enwiki/latest/
4https://commoncrawl.org/2017/06

53

statmt.org
https://github.com/tmikolov/word2vec
https://dumps.wikimedia.org/enwiki/latest/
https://commoncrawl.org/2017/06

In case of the Common Crawl, we wrote a simple data ex-

tractor based on a unigram language model that retrieves

the documents written in English and discards low quality

data. The same approach can be in fact used to extract text

data for many other languages from Common Crawl.

We decided to perform no complex data normalization or

pre-processing, as we want the resulting word vectors to be

very easily used by a wide community (the text normaliza-

tion can be done on top of the published word vectors as

a post-processing step). We only used a publicly available

tokenizer.perl script from the Moses MT project5. We

observed that de-duplicating large text training corpora, es-

pecially Common Crawl, significantly improves the quality

of the resulting word vectors.

Corpus Size [billion]

Wikipedia meta-pages 9.2

Statmt.org News 4.2

UMBC News 3.2

Gigaword 3.3

Common Crawl 630

Table 1: Training corpora and their size in billions of words

after tokenization and sentence de-duplication.

4. Results

Further we report results for models trained on either the

Common Crawl, or on a combination of the Wikipedia,

Statmt News, UMBC and Gigaword. This is compara-

ble to corpora that other models that attempted to improve

upon word2vec were trained on, notably the GloVe model

from the Stanford NLP group (Pennington et al., 2014). Al-

though a careful analysis performed in Levy et al. (2015)

shows that the original word2vec is faster to train, produces

more accurate models and takes significantly less mem-

ory than the GloVe algorithm, the availability of large pre-

trained GloVe models proved to be a useful resource for

many researchers who do not have time to train their own

model on very large dataset like the Common Crawl.

We used the cbow architecture described in Section 2.1.

with window size 5 for the baseline models and win-

dow size 15 for the models that learn position-dependent

weights (described in Section 2.2.). We used 10 nega-

tive examples for training with the negative sampling and

threshold for subsampling frequent words set to t = 10−5.

In Table 2 we report results on the word analogies

from Mikolov et al. (2013a) using baseline cbow model

trained on Common Crawl with de-duplicated sentences,

with phrases (we used 6 iterations of building the

phrases by merging bigrams with high mutual informa-

tion), and with the position-dependent weighting as used

in Mnih and Kavukcuoglu (2013). The training itself took

three days on a single multi-core machine.

In Table 3, we can see comparison between cbow as im-

plemented in the fastText library (Bojanowski et al., 2017)

and the GloVe models trained on comparable corpora. The

5https://github.com/moses-smt

Model Sem Syn Tot

cbow + uniq 79 73 76

cbow + uniq + phrases 82 78 80

cbow + uniq + phrases + weighting 87 82 85

Table 2: Accuracies on semantic and syntactic analogy

datasets for models trained on Common Crawl (630B

words). By performing sentence-level de-duplication,

adding position-dependent weighting and phrases, the

model quality improves significantly.

87% accuracy in the word analogy tasks is to our knowl-

edge the best published result so far by a large margin. We

improved this result further to 88.5% accuracy by adding

the sub-word features. We also report state of the art per-

formance on the Rare Words dataset (Luong et al., 2013).

Finally, we show that the new fastText vectors can be very

useful in some popular Question Anwering tasks such as

Squad (Rajpurkar et al., 2016). In a setup that is further

described in Chen et al. (2017), we did observe significant

improvement of the accuracy by using the new pre-trained

models.

Model Analogy RW Squad

GloVe Wiki + news 72 0.38 77.7%

fastText Wiki + news 87 0.50 78.8%

GloVe Crawl 75 0.52 78.9%

fastText Crawl 85 0.58 79.8%

Table 3: Results on Word Analogy, Rare Words and Squad

datasets with fastText models trained on various corpora

(see Table 1) or Common Crawl (see Table 2), and com-

parison to GloVe models trained on comparable datasets.

The models trained on the Wikipedia and News cor-

pora, and on the Common Crawl, were published at the

fasttext.cc website and are available to the NLP re-

searchers. Further, we did experiment with the phrase-

based analogy dataset introduced in Mikolov et al. (2013b),

and achieved 88% accuracy using the model trained on

Crawl, which again is to our knowledge the new state of

the art result. We plan to release the model containing all

the phrases in the near future.

Finally in Table 4, we use a script provided by

Conneau et al. (2017) to measure the influence of differ-

ent pre-trained word vector models on several text classi-

fication tasks (MRPC, MR CR, SUBJ, MPQA, SST and

TREC). This is equivalent to running the fastText library in

a supervised mode without finetuning the word representa-

tions (Joulin et al., 2016). Overall, the new fastText word

vectors result in superior text classification performance.

5. Discussion

In this work, we have focused on providing very high qual-

ity set of pre-trained word and phrase vector representa-

tions. Our findings indicate that improvements can be

54

https://github.com/moses-smt
fasttext.cc

Corpora MRPC MR CR SUBJ MPQA SST TREC Average

GloVe Wiki+news 71.9/81.0 75.7 78.1 91.5 86.9 78.1 66.6 79.7
GloVe Crawl 72.0/80.7 78.0 79.6 91.8 88.0 80.0 84.2 82.0

fastText Wiki+news 72.9/81.6 77.8 80.3 92.2 88.3 81.1 85.0 82.5
fastText Crawl 73.4/81.6 78.2 81.1 92.5 87.8 82.0 84.0 82.7

Table 4: Comparison of different pre-trained models on supervised text classification tasks.

achieved by training well-known algorithms on very large

text datasets, and that using certain tricks can provide fur-

ther gains in quality. Notably, we have found it very im-

portant to de-duplicate sentences in large corpora such as

the Common Crawl before training the models. Next, we

have used an algorithm for building the phrases in a pre-

processing step. Finally, adding the position-dependent

weights and subword features to the cbow model architec-

ture gave us the final boost of accuracy. The models de-

scribed in this paper are freely available to researchers and

engineers at the fastText webpage, and we hope that these

will be useful in various projects that use textual data.

6. Acknowledgements

We thank Marco Baroni and German Kruszewski for useful

discussions and suggestions, Adam Fisch for help with the

experiments on Squad dataset, and Qun Luo for suggesting

to use the position-dependent weighting at the word2vec

discussion forum.

7. Bibliographical References

Baroni, M. and Lenci, A. (2010). Distributional memory:

A general framework for corpus-based semantics. Com-

putational Linguistics, 36(4):673–721.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T.

(2017). Enriching word vectors with subword informa-

tion. Transactions of the Association for Computational

Linguistics, 5:135–146.

Chen, D., Fisch, A., Weston, J., and Bordes, A. (2017).

Reading wikipedia to answer open-domain questions.

arXiv preprint arXiv:1704.00051.

Collobert, R., Weston, J., Bottou, L., Karlen, M.,

Kavukcuoglu, K., and Kuksa, P. (2011). Natural lan-

guage processing (almost) from scratch. Journal of Ma-

chine Learning Research, 12(Aug):2493–2537.

Conneau, A., Kiela, D., Schwenk, H., Barrault, L., and

Bordes, A. (2017). Supervised learning of universal

sentence representations from natural language inference

data. arXiv preprint arXiv:1705.02364.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer,

T. K., and Harshman, R. (1990). Indexing by latent se-

mantic analysis. Journal of the American society for in-

formation science, 41(6):391.

Han, L., Kashyap, A. L., Finin, T., Mayfield, J., and Weese,

J. (2013). UMBC EBIQUITY-CORE: Semantic Tex-

tual Similarity Systems. In Proceedings of the Second

Joint Conference on Lexical and Computational Seman-

tics. Association for Computational Linguistics, June.

Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T.

(2016). Bag of tricks for efficient text classification.

arXiv preprint arXiv:1607.01759.

Levy, O., Goldberg, Y., and Dagan, I. (2015). Improving

distributional similarity with lessons learned from word

embeddings. Transactions of the Association for Com-

putational Linguistics, 3:211–225.

Li, W. (1992). Random texts exhibit zipf’s-law-like word

frequency distribution. IEEE Transactions on informa-

tion theory, 38(6):1842–1845.

Luong, T., Socher, R., and Manning, C. D. (2013). Better

word representations with recursive neural networks for

morphology. In CoNLL, pages 104–113.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a).

Efficient estimation of word representations in vector

space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and

Dean, J. (2013b). Distributed representations of words

and phrases and their compositionality. In Advances

in neural information processing systems, pages 3111–

3119.

Mnih, A. and Kavukcuoglu, K. (2013). Learning word em-

beddings efficiently with noise-contrastive estimation.

In Advances in neural information processing systems,

pages 2265–2273.

Pennington, J., Socher, R., and Manning, C. (2014).

Glove: Global vectors for word representation. In Pro-

ceedings of the 2014 conference on empirical methods

in natural language processing (EMNLP), pages 1532–

1543.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016).

Squad: 100,000+ questions for machine comprehension

of text. arXiv preprint arXiv:1606.05250.

Schütze, H. (1993). Word space. In Advances in neural

information processing systems, pages 895–902.

Weinberger, K., Dasgupta, A., Langford, J., Smola, A., and

Attenberg, J. (2009). Feature hashing for large scale

multitask learning. In ICML.

55

	Introduction
	Model Description
	Standard cbow model
	Position-dependent Weighting
	Phrase representations
	Subword information

	Training Data
	Results
	Discussion
	Acknowledgements
	Bibliographical References

