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Abstract
Neural word embedding models trained on sizable corpora have proved to be a very efficient means of representing meaning. However,
the abstract vectors representing words and phrases in these models are not interpretable for humans by themselves. In this paper we
present the Thing Recognizer, a method that assigns explicit symbolic semantic features from a finite list of terms to words present in an
embedding model, making the model interpretable for humans and covering the semantic space by a controlled vocabulary of semantic
features. We do this in a cross-lingual manner, applying semantic tags taken form lexical resources in one language (English) to the
embedding space of another (Hungarian).

Keywords: semantic lexicon induction, word embedding models, cross-lingual resource generation

1. Introduction
A recently very popular and efficient method for the dis-
tributional representation of words is using word embed-
ding (WE) models (Mikolov et al., 2013c). In this paper we
present a method that creates the WE model of a large text
corpus and inserts the corresponding embedding vectors of
a limited set of abstract semantic features into the same
space. The embedding vectors for semantic features are
built from automatically reorganized lexical resources (that
may be in a language different from our target language)
and are transformed to the target WE space. Then, a near-
est neighbor approach is applied to find the most relevant
features for a query word. The assigned features can also
be used as a searchable semantic annotation of the original
corpus the WE model was created from, because our model
assigns semantic features to any (even non-standard/slang
or misspelled) word in a text in a language-independent
manner, regardless of whether these are present in a lexical
resource or not, and whether any such resource is available
for the target language. The organization of categories and
the way they are actually assigned to words by the algo-
rithm is in accordance with the actual usage of these words
as manifested by their distribution in a large corpus.
The method is demonstrated for English and Hungarian, but
it can easily be applied to other languages as well.

2. Related Work
WE models have frequently been used to represent word
meaning efficiently (Mikolov et al., 2013b; Pennington et
al., 2014). There are also approaches that replace WE with
sense embedding(Bordes et al., 2012; Neelakantan et al.,
2014; Tian et al., 2014; Li and Jurafsky, 2015; Bartunov
et al., 2015). Huang et al. (2012) applied clustering algo-
rithms to create single prototype embedding.
Some have tried to match WE’s to entities in existing lexi-
cal resources, for example to BabelNet entries (Panchenko,
2016) or WordNet synsets (Chen et al., 2014; Agirre et
al., 2006). Rothe and Schütze (2015) combines WE vec-

tors to obtain Wordnet synset representations in the origi-
nal WE space. Labutov and Lipson (2013) also try to take
existing WE’s and use labeled data to produce WE’s in the
same space in order to tune or adapt the original represen-
tation. Other approaches try to exploit knowledge bases to
improve WE’s. Yu and Dredze (2014) aim at predicting re-
lated words in a knowledge base to WE’s. Others compute
vector representations of word senses directly from knowl-
edge bases (Bordes et al., 2011; Camacho-Collados et al.,
2015).

3. Word Embedding Models for
Morphologically Rich Languages

We built WE models for Hungarian, an agglutinative lan-
guage with complex morphology. In order to incorporate
the information encoded in the morphological structure of
word forms, full morphological disambiguation was ap-
plied to the input words, and the tag sequence following the
main PoS tag of each word was detached and included as a
separate token following the token consisting of the lemma
and the PoS tag in the text. The following example shows
the representation of the sentence Szeretlek, kedvesem. ‘I
love you, dear.’:

szeret#V #1Sg.>2Sg ,#, kedves#N #Poss1Sg
love [I, you] , dear [my]

Thus, while no information was lost, we managed to im-
prove the quality of the WE model compared to that cre-
ated from surface word forms in two ways: by assigning a
separate representation to lexical items of different part of
speech; and by effectively reducing data sparseness prob-
lems following from the great variety of rare inflected word
forms (Siklósi, 2016).
Although morphological annotation has a less pronounced
impact on the quality of the model in English (the language
of the lexical resources we used to extract semantic fea-
tures – see Section 4.), we applied the same method to the
English text as well to make the two models compatible
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by introducing PoS-based sense distinctions and thus im-
proving the quality of mapping between the models (see
Section 5.2.).
For building the WE models, we used the word2vec1 tool.
The Hungarian model was trained on a web-crawled cor-
pus of 3.18 billion tokens (27.49 M token types) that was
annotated using the PurePos (Orosz and Novák, 2013) tag-
ger, augmented with the Humor Hungarian morphological
analyzer (Novák, 2014; Novák et al., 2016).2 We trained
the English WE model on the English Wikipedia dump of
2.25 billion tokens (8.24 M token types) that was analyzed
using Stanford tagger (Toutanova et al., 2003). We created
a CBOW model for both languages with the radius of the
context window set to 5 and the number of dimensions to
300 and using a token frequency limit of 5. The vocab-
ulary size of the English model was 2,057,592 items and
that of the Hungarian one was 2,266,389 items. While only
6 items in the English vocabulary are detached inflectional
tags (like [PL] for plural), the Hungarian model contains
2340 such items. These abstract entries representing gram-
matical morpheme combinations play an important role as
context while building the models. The rest are lemmas
annotated by their corresponding PoS tag.

4. Lexical Resources
In order to assign semantic labels to the words in the em-
bedding models, we needed some lexical resource to induce
the tags from.
A widely used, although quite dated, system of concepts is
Roget’s Thesaurus (Chapman, 1977). Its digitally avail-
able third edition contains 990 semantic categories, each
further partitioned along five parts-of-speech (noun, verb,
adjective, adverb, phrase/interjection). The thesaurus lists
a set of related words for each applicable part-of-speech
within each category. The original thesaurus includes
91,608 words and multiword expressions. After intersect-
ing it with the vocabulary of the English WE model built
from Wikipedia , 51,108 words remained – we lost all
MWE’s, dated words, and ones with incorrectly marked
PoS (see Section 5.1.).
The online version of the digital edition of Longman Dic-
tionary of Contemporary English (LDOCE) (Summers,
2005) includes a resource similar to Roget’s Thesaurus.
However, it contains a much more recent vocabulary and
a modern categorization of words. In the online version,
words are associated with 213 semantic categories. Part-
of-speech is also indicated for each headword. Thus, it
could easily be converted to the same format as Roget’s
Thesaurus, i.e. headwords listed for each part-of-speech in
each category. The size of this resource before intersect-
ing with the English WE model was 213 categories and
28,257 example words and multiword entries, which was
reduced to 21,546 words after the intersection with the En-
glish Wikipedia vocabulary.

1https://code.google.com/archive/p/
word2vec/

2The annotation generated by this combination of tools con-
tains inflectional features and participles only. The internal struc-
ture of compounds and derived words is not explicit in the anno-
tation.

The third resource we used, 4lang, is also based on
LDOCE. The definitions of LDOCE’s defining vocabulary
were transformed into a formal description (Kornai et al.,
2015) illustrated by the following examples:
bread: food, FROM/2742 flour, bake MAKE
show: =AGT CAUSE[=DAT LOOK =PAT], communicate

We further transformed this format so that we have a similar
one to the previous ones. This was achieved by segmenting
the formal descriptions into single tokens (by splitting at
spaces and brackets) and treating each token as a category
label. Then, all words that had the particular token in their
definition were listed for that label. This resulted in 1489
category labels and 12,507 words listed for them. 4lang
includes some affixes and inflected forms, which are not
present in the Wikipedia model, so the intersection resulted
in 11,039 words.
We also created another model from 4lang, in which we did
not segment predicates with more than one argument into
further parts, so e.g. HAS[four.(legs)] remained an atomic
feature. Further processing of this model, to which we refer
as 4lang2 in the paper, was identical to that of the 4lang
model. The first four columns of Table 1 summarize the
main characteristics of the resources, while Table 2 shows
some examples from each resource.

Resource Original After ∩ & clustering
cats words w/c cats words w/c

LDOCE 213 28257 132.66 3069 21546 7.02
Roget’s 3077 91608 29.77 7066 51108 7.23
4lang 1489 12507 8.39 2249 11039 4.91
4lang2 4172 12507 2.99 4256 11039 2.59

Table 1: Characteristics of the three lexical resources
(number of different category labels, number of words and
the average number of words per category; before and after
intersection with the English embedding model and cluster-
ing).

One of the most popular semantic resources for English
is WordNet (Fellbaum, 1998; Miller, 1995). However,
WordNet has been criticized for its too high granularity at
the bottom level and its generality at the top level (Brown,
2008). Selecting an appropriate set of concepts from Word-
Net that could be used as semantic features is far from triv-
ial. There is a high level categorization into which Word-
Net synsets are organized (“supersenses”), and these could
be used as features similarly to the ones derived from the
resources mentioned before. However, there are only 45
supersenses, which seems to be an extremely low-grained
categorization to be useful for practical purposes. Due to
these problems, although we consider using WordNet in the
future both as a resource and as a possible benchmark, we
did not use it in the experiments presented in this paper.

5. Method
The goal of this research was to create a tool that is able to
assign semantic features to words, even if the target word
is not included in any semantic lexicon or if such a lexicon
does not even exist in the given language. Thus, two prob-
lems had to be handled: assigning features and, if needed,
bridging the language gap.
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Resource Category Example words in the original resource
ROGET Mean_N medium#NN generality#NN neutrality#NN middle_state#NN median#NN golden_mean#NN middle#NN etc.
ROGET Rotundity_ADJ spherical#JJ cylindric#JJ round_as_an_apple#JJ bell_shaped#JJ spheroidal#JJ conical#JJ globated#JJ etc.
LDOCE Cooking allspice#NN bake#VB barbecue#VB baste#VB blanch#VB boil#VB bottle#VB bouillon_cube#NN etc.
LDOCE Mythology centaur#NN chimera#NN Cyclops#NN deity#NN demigod#NN faun#NN god#NN griffin#NN gryphon#NN etc.
4LANG food sandwich#NN, fat#NN, bread#NN, pepper#NN, meal#NN, fork#NN, egg#NN, bowl#NN, salt#NN etc.
4LANG =DAT say#VB, show#VB, allow#VB, swear#VB, grateful#ADV, let#VB, teach#VB, give#VB, help#VB etc.
4LANG2 PART_OF.body body#NN, tongue#NN, back#NN, neck#NN, shoulder#NN, bone#NN, skin#NN, wrist#NN, buttock#NN etc.
4LANG2 =AGT.HAS.mouth swallow#VB, suck#VB, eat#VB, drink#VB

Table 2: Examples from each resource after transforming them to the same format

Figure 1: The 3 nearest features assigned to the words
pianist, teacher, turner, maid from the LDOCE and Roget’s
models arranged in semantic space

5.1. Semantic Feature Space
As described in Section 4., we used three lexical resources
in this experiment using the category labels in these lexi-
cons as semantic features. However, some categories were
too broad and the set of words listed for them was too
heterogeneous. To handle this problem, a hierarchical ag-
glomerative clustering algorithm was applied to the set of
words in those categories that contained at least five words
(for details of the clustering algorithm, see (Siklósi, 2016)).
Each cluster was then labeled with the original category la-
bel and a numeric index. Since the clustering algorithm
used the distance between the embedding vectors of words
trained from the English Wikipedia corpus, only words
present in the Wikipedia model could be used from the orig-
inal resources. How this intersection and the clustering of
words affected the representations in each lexical resource
is shown in Table 1.
We used a simple but effective method for representing
each semantic feature in the same semantic space as that
of the English PoS-tagged WE model: we assigned the av-
erage of the embedding vectors of clustered example words
to each indexed semantic label. To find the relevant features
for a query word tagged with its appropriate part-of-speech,
its representational vector is retrieved from the WE model
and its nearest neighbors are taken from each feature model.
Figure 1 shows how four words (pianist, teacher, turner,
maid) and the 3 nearest features assigned to them from
the LDOCE and Roget’s models are organized in seman-
tic space.

5.2. Cross-Lingual Mapping of the Models
It has been shown that WE spaces can effectively be
mapped across languages. One mapping method is to use
a word-aligned bilingual parallel corpus to build an embed-
ding model that contains vector representations of words

in both languages (Luong et al., 2015). We applied an-
other approach instead, where the projection is achieved
by learning a piecewise linear transformation based on a
seed dictionary, through which a monolingual WE space
can be mapped to another monolingual space (Mikolov et
al., 2013a). The transformation maps each word vector in
the source language space to a point in the vicinity of the
vector of its translation in the target language space.
We used a subset of the 4lang dictionary (built from the
defining vocabulary of LDOCE) containing 3477 English-
Hungarian word pairs as the seed dictionary to calculate the
transformation matrix. We used pairs where both the En-
glish and the Hungarian word had a frequency over 10000
in the two corpora. Manual evaluation of the transformation
on an additional 100 words resulted in 0.38 precision for the
first-ranked translation and precision=0.69/0.81 for the first
5/10 top-ranked translations (indicating whether a correct
translation of the target word was found in the set of the
first five/ten most similar words in the transformed space).
We used this transformation matrix to map the English se-
mantic label vectors to the Hungarian WE space. Then, the
same nearest neighbor algorithm could be applied to the
query word as in the case of searching the English semantic
space. This made it possible to input a Hungarian word as
a query to our system and receive semantic features based
on originally English resources without the expensive and
labor-intensive task of translating them. Moreover, since
instead of exact matching, nearest neighbors are searched
for, out-of-vocabulary words (with respect to the original
lexical resources) can also be assigned semantic labels.

6. Experiments and Results

When looking at the output of the models, we found that
even though the LDOCE features seemed to be the most
meaningful, the Roget’s, 4lang and 4lang2 models also
turned out to be useful. E.g. adjectives have a much richer
categorization in Roget’s than what we obtain from the
LDOCE model. Since LDOCE and Roget’s seemed to per-
form well in complementary regions, we decided to unify
these two models (ROLD).
We carried out two kinds of quantitative analysis of the per-
formance of our model. First, we checked the robustness
of the model by performing a sanity check on the original
English resources. In the other scenario, we selected 280
words randomly from a predefined list of Hungarian words
in which each word was assigned to one of 28 semantic do-
mains (e.g. food, vehicles, locations, occupations, etc.) and
manually checked the accuracy of the semantic features as-
signed to these words by each model.
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6.1. Sanity Check
For each word present in the original 4lang dictionary, we
calculated how many of the semantic features present in the
original definition were retrieved among the top N features
returned by the model (feature recall, Rf ) and the percent-
age of words for which all features were retrieved (word
recall, Rw). The results are shown in Table 3 as a func-
tion of N . Recall was also calculated ignoring words hav-
ing more than N features (Rw(poss)) and features over the
N limit (Rf (poss)). As no definition contained more than
10 terms, Rw(poss) is identical to Rw and Rf (poss) is
identical to Rf for N ≥ 10. The last column of the table
shows the mean reciprocal rank of features (terms) present
in the original definitions. Reciprocal rank is calculated as
i/Rank for the ith feature returned by the model that is
also present in the original definition, it is zero if no valid
feature was retrieved. MRR is calculated as the average of
the reciprocal rank of all expected features retrieved for all
words.

N Rw Rw(poss) Rf Rf (poss) MRR

4l
an

g

1 0.1508 0.8504 0.2694 0.9455 0.9455
5 0.5472 0.6574 0.7614 0.8445 0.9586

10 0.7049 0.7080 0.8756 0.8785 0.9237
20 0.8187 0.8187 0.9316 0.9316 0.8922

4l
an

g2

1 0.4411 0.8818 0.5079 0.9266 0.9266
5 0.8688 0.8775 0.9138 0.9226 0.9456

10 0.9339 0.9339 0.9597 0.9597 0.9276
20 0.9648 0.9648 0.9793 0.9793 0.9163

R
O

L
D

1 0.3354 0.3590 0.7421 0.8426 0.8426
5 0.6557 0.7482 0.7017 0.8079 0.9080

10 0.7433 0.8349 0.7481 0.8419 0.8877
20 0.8117 0.8896 0.8118 0.8897 0.8645

Table 3: Performance (recall) of the three models for En-
glish tested on the original resources.

6.2. Standard Language Use
After the sanity check, we tested our system on standard
Hungarian. In order to do this, we collected groups of
words belonging to different semantic categories. These
categories were defined manually and the test words were
collected by a semi-automatic algorithm as described in
(Siklósi, 2016). Finally, each group was manually checked
resulting in 28 groups containing 39,050 words altogether.
We randomly selected 10 words from each group, and the
top 10 semantic features were generated using the mod-
els 4lang, 4lang2 and ROLD. The list of randomly selected
words also included misspelled and very rare words. Fea-
tures that were partitioned and indexed when building the
models (see Section 5.1.) were joined after lookup. Two
annotators checked the generated semantic feature sets, and
marked each feature that was inappropriate for the given
lexical item (e.g. HAS.horn for vízimadár ‘water fowl’).
Cases when the given lexical group is in the domain of the
given feature (e.g. the domain of HAS.horn is animals)
and completely inappropriate features (e.g feature dig for
csűr ‘barn’ in the buildings group) were not differentiated:
they were all simply marked wrong. Inter-annotator agree-
ment was found to be substantial (Cohen’s kappa=0.734).
Results of the evaluation are shown in Table 43. The ta-

3Due to length limits, we included only selected categories in

ble shows semantic feature accuracy (acc: the ratio of cor-
rectly assigned features) in each category for each model.
We also automatically computed feature “domain accu-
racy” (d-acc): here we ignored feature assignment errors
where the same feature was marked adequate for another
test word in the same domain. The table also shows the
number of different features (#F) each model assigned to
the test words in each domain, and the number of fea-
tures that were marked wrong for any of the test words in
the given domain (#B). The overall feature accuracy of the
4lang-derived models was nearly 75%, while the combined
ROLD model achieved over 80% feature accuracy. The fea-
ture space of the ROLD model is less fine-grained in some
domains (e.g.food or clothing) than that derived from 4lang
definitions (this is indicated by the lower number of differ-
ent features assigned by the ROLD model) and this results
in higher accuracy. Note that the domain accuracy of 4lang
features is much higher than feature accuracy, it is about
90%. The worst average accuracy was obtained on col-
ors: lists of things having specific colors or patterns and
the high number of color terms themselves generated too
much noise.

Figure 2: The distribution of feature precision for the three
models ROLD, 4lang and 4lang2.
Figure 2 shows the distribution of the precision of features
per word. The ROLD model assigned only appropriate fea-
tures to 42% of the 290 test words, and precision was over
70% for over 75% of the words. 4lang and 4lang2 had
100% precision for 20% and 13.4% of the test words, re-
spectively. All models had over 50% precision for about
90% of the words. The precision of 4lang2 was over 20%
for all test words.

6.3. Proper Names and Non-standard Language
The WE models our method is based on also reflect world
knowledge as represented in the corpus from which they
are generated from. This enables our model to assign fea-
tures to proper names of various types, such as names of
people, institutions, fictional creatures, or even abbrevia-
tions as shown in Table 5. In the names section of the table,
some famous people are shown, one of them is Hungar-
ian (Béla Bartók, a Hungarian composer). It can be seen

the extended abstract.
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4lang 4lang2 ROLD
Group name acc d-acc #F #B most frq. features acc d-acc #F #B most frq. features acc d-acc #F #B most frq. features
Units of measure 62.22 74.44 55 26 unit measure 63.64 74.75 59 27 unit measure 70.00 81.67 34 13 Measurement Computers
Electronics 86.36 90.91 38 7 machine device 82.00 88.00 43 13 equipment machine 78.26 85.51 35 13 Technology Recording
Diseases 88.71 94.62 37 13 bad body 87.88 95.45 46 10 bad bad(situation) 94.23 98.08 24 2 Illness Disease_N
Animals 69.23 94.87 35 20 wild animal 67.19 94.79 35 18 animal HAS.wings 84.21 93.86 24 9 Animal_N Animals
Kitchen utensils 79.49 91.03 31 14 instrument contain 76.00 89.00 39 18 food.IN metal 92.31 92.31 24 3 Receptacle_N Daily_life
Food 57.14 95.24 26 14 food COOK 64.52 96.77 23 10 food material 97.44 97.44 7 1 Food Food_N
Vehicles 84.71 95.29 34 10 vehicle engine 74.55 92.73 45 15 vehicle ‹HAS.engine› 75.00 88.16 27 7 Journey_N Vehicle_N
Clothes 68.35 96.20 16 6 WEAR garment 71.00 87.00 34 14 garment cloth 100.00 100.00 12 0 Clothing_N Clothes
Disciplines 77.91 86.05 51 14 science educate 76.00 87.00 52 15 science knowledge 88.24 92.94 48 10 Education Knowledge_N
Water 87.64 98.88 24 7 water valley 84.00 99.00 29 8 land ON.earth 98.25 100.00 18 1 Geography Geology
Geographic areas 83.91 96.55 31 8 land valley 76.53 96.94 29 10 land natural 87.14 94.29 27 7 Geography Geology
Natural events 85.37 91.46 50 11 wind atmosphere 85.86 91.92 57 13 weather water 72.29 80.72 45 19 Meteorology Nature
Mountains, hills 79.89 89.66 32 11 hill land 80.30 92.42 27 13 hill mountain 93.86 98.25 17 4 Geography Nature
Cities 85.29 94.12 27 6 city place 82.61 92.75 25 8 city place 87.84 90.54 40 8 Abode_N Geography
Locations 85.94 93.75 31 7 country land 87.93 93.10 22 5 country land 81.54 86.15 41 10 Geography Government_N
Buildings 76.47 85.29 30 12 building place 86.00 92.00 39 11 place building 87.50 94.44 30 9 Abode_N Buildings
Groups of humans 90.00 96.47 55 9 group purpose 85.57 90.21 52 15 institution structure 85.71 92.86 55 14 Organizations Receptacle_N
Human relationship 74.73 95.60 43 14 =POSS KNOW 78.00 98.00 39 13 HAS.parent companion 82.35 88.24 48 12 Auxiliary_N Friend_N
Athletes 59.09 81.82 34 19 PLAY game 59.00 74.00 44 19 sport person 71.95 84.15 27 14 Strength_N Other_sports
Occupations 71.76 76.47 52 21 profession science 75.00 80.00 51 20 profession person 84.38 90.63 39 10 Occupations Scholar_N
Time 79.41 86.76 42 13 sunset monday 57.50 71.25 50 29 period ON.earth 46.43 69.64 31 21 Chronology Celebration_N
Events 60.53 76.32 39 20 invite holiday 76.53 92.86 35 16 FOR.pleasure period 81.40 94.19 35 14 Amusement_N Leisure
Colors 45.98 89.66 20 11 colour shade 40.86 84.95 18 14 colour light 53.33 68.33 28 16 Colours Color_Adj
Attributes of humans 67.76 95.39 48 18 stupid good 75.26 93.16 60 22 strange heavy 85.47 88.83 100 24 Love_Adj Badness_Adj
Attributes of food 71.43 86.81 53 16 taste COOK 82.65 89.80 46 10 material sweet 100.00 100.00 23 0 Food Food_dish
Verbs of movement 71.25 88.75 24 10 rush long 52.00 61.00 29 19 go rush 46.39 61.86 49 30 Velocity_Vb Journey_Vb
Verbs of free-time 50.59 75.29 29 21 relax <person> 60.00 77.00 46 24 relax lack(work) 59.79 75.26 61 31 Outdoor Endearment_Vb
Verbs of decay 69.88 84.34 43 16 after CAUSE 55.67 74.23 54 26 slip die 68.48 75.00 69 25 Death_Vb Chemistry
All 74.74 90.07 564 266 73.86 88.34 584 295 80.36 87.93 561 252

Table 4: Performance of the models 4lang, 4lang2 and ROLD on test words from different semantic groups. acc: feature
accuracy, d-acc: domain accuracy of features, #F: different features, #B: features marked wrong at least once.

Bartók
4L: music art *poem *poet *poetry WRITE sound *text musician
4L2: art *poem *poet music HAS.rhythm entertainment sound sequence
*text MAKE.beautiful
RL: Music Music_N Performing

Obama
4L: country government politician @United_States state LEAD *place
president republic
4L2: country politician @United_States country.HAS place MAKE.law
state *@Soviet_Union politics
RL: Officials Government_N Government Politics_N Authority_N Di-
rector_N Council_N

MTA
4L: institution group society *president *republic educate science pur-
pose *person people
4L2: institution society group educate science HAS.purpose study struc-
ture people
RL: Occupations Education *Receptacle_N College *Geology Skill_N
Organizations

ELTE
4L: educate institution study student degree science numbers atom
*GIVE
4L2: educate institution study science *name *part knowledge public
*system
RL: College Education Knowledge_N School_Adj Language_N

PPKE
4L: educate institution science group study student degree society
*sleeve @Catholic_Church
4L2: educate study institution science knowledge group religion *sys-
tem job HAS.purpose
RL: College School_Adj Education Occupations School

Table 5: Examples of features returned for proper names
and abbreviations of names of institutions from the models

that each person is assigned features that provide informa-
tion about them. Thus, the model can be queried even for
names one is not familiar with, and relevant features will be
provided. This also holds for names with lower frequency
in the corpus, as long as the name itself is unique.

Table 5 also contains the abbreviated name of some orga-
nizations. ELTE is for Eötvös Loránd University, while
PPKE is for Pázmány Péter Catholic University. While
both of them are educational institutions, ELTE is a state
university, but PPKE is catholic, and this difference is re-

flected by the set of features assigned to them in addition to
their relation to science and education.
The same applies to slang terms, including many short
diminutive forms. These are abundant in the web-crawled
corpus, mainly coming from often heated discussions in
user comments and fora, and many of them have strong
emotional connotations. These are neatly reflected by the
semantic tags assigned to them in addition to the ones re-
flecting the basic meaning of the term, e.g. ‘Deceiver’,
‘Obstinacy’, ‘Ignorance’, ‘Thief’, ‘Crime’, ‘Politics’ ‘Race
relations’ ‘Psychology, Psychiatry’, ‘stupid’, ‘criminal’ in
addition to ‘person’ for derogative terms like nyugger
‘pensioner’, proli ‘proletarian’, bolsi ‘bolshevik’ or cigó
‘Gypsy’.

7. Conclusions
We have shown that the meaning implicitly represented in
word embedding models can be transformed into a set of
symbolic features that can be used as semantic annotation.
This can also be done across languages, thus relevant se-
mantic tags can be assigned to words in a language that
lacks appropriate semantic resources. Despite its simplic-
ity, our system, the Thing Recognizer, performs this sur-
prisingly efficiently also for names and words that cannot
be expected to be included in manually created lexical se-
mantic resources.
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