Question-Answering with Logic Specific to Video Games

Corentin Dumont, Ran Tian, Kentaro Inui
Tohoku University,
6-6-05 Sendai, Miyagi 980-8579, Japan
{corentin-d, tianran, inui} @ecei.tohoku.ac.jp

Abstract
We present a corpus and a knowledge database aiming at developing Question-Answering in a new context, the open world of a video
game. We chose a popular game called ‘Minecraft’, and created a QA corpus with a knowledge database related to this game and the
ontology of a meaning representation that will be used to structure this database. We are interested in the logic rules specific to the
game, which may not exist in the real world. The ultimate goal of this research is to build a QA system that can answer natural language
questions from players by using inference on these game-specific logic rules. The QA corpus is partially composed of online quiz
questions and partially composed of manually written variations of the most relevant ones. The knowledge database is extracted from
several wiki-like websites about Minecraft. It is composed of unstructured data, such as text, that will be structured using the meaning
representation we defined, and already structured data such as infoboxes. A preliminary examination of the data shows that players are
asking creative questions about the game, and that the QA corpus can be used for clustering verbs and linking them to predefined actions

in the game.

Keywords: question-answering, knowledge acquisition, meaning representation

1. Introduction

This paper presents a corpus and a knowledge database
aiming at creating a Question-Answering system specific
to a new context, the open world of a video game. Un-
like many QA systems that are designed to answer real
world questions (Berant and Liang, 2014; [Yao, 2015)), the
goal of this research is to build a system that can answer
questions using the logic specific to the game, which may
not be identical to the logic in the real world. We choose
a popular game called Minecraft, whose openness pro-
vides a great liberty for players, which guarantees a large
number of possible questions to ask about the game, and
yet the presence of a specific logic that limits the actions
of players (Section 2]). We are interested in this prob-
lem setting because it could provide a testbed for com-
bining Natural Language Processing with advanced logi-
cal inference techniques. The QA corpus is partially col-
lected from quiz websites and partially written by human
annotators (Section [3)). The knowledge database is ex-
tracted from several wiki-like websites about Minecraft,
which contain both unstructured text data and structured
tables and infoboxes (Section). A preliminary exam-
ination of the data suggests that the knowledge database
can be used for answering most of the relevant questions,
but it may not be as simple as a keyword search (Section
[5)), and may require to structure the unstructured part of
the knowledge database, so that inference can be done by
the QA system on several pieces of information in order
to answer complex questions (Section [6)). We also show
that the QA corpus can be used for clustering words and
for linking them to the entities and actions of the game,
in order to face the language variations that are encoun-
tered in the QA tasks (Section [8]). We conclude the pa-
per in Section 0] Our resource is publicly released at:
github.com/CorentinDumont /QA_Minecraft

House
(Structure)

Pickaxe
(Item)

Figure 1: A snapshot of Minecraft

2. Minecraft

Minecraft (Figurem) is a sandbox video game, which means
that the player is free to choose the actions he wants to
execute, and the order of these actions. However, as all
video games, the number of possible actions is limited. The
main occupation of the player in Minecraft is to survive in
a world populated by monsters, by finding resources (e.g.
mining minerals, growing plants, etc.), to create structures,
items and weapons (i.e. crafting them with the collected
resources by following recipes) and beating monsters using
crafted weapons and items to protect the created structures
and earn experience and new items, in order to continue to
develop. The different entities and objects of the game can
be divided in 2 groups interacting with the player: Mobs
(monsters), and Objects, which are divided in Items (for ex-
ample used to fight) and Blocks (used to build Structures).
The player can interact with these entities, or make inde-
pendent actions. These actions and interactions are sum-
marized in the Table [T} The liberty of the player guaran-
tees a large number of possible questions to ask about the
game, but the game follows nonetheless a logic that can be
learned by a QA system to increase its ability to understand
the meaning of the questions. In other words, our goal is
to build a QA system that can translate a question asked by

4637

github.com/CorentinDumont/QA_Minecraft

Mobs (monsters) Items (objects) Blocks/ Structures (world elements)
Subcategories Subcategories ; Subcategories
Hostile mobs Attack the player. Materials Used to craft other items. |Minerals Found in/under the ground.
MNeutral mabs Do not attack first. Teols Used te collest, built.. Plants Found ever the ground.

Passive mobs Do not attack the player. |Weapons

Used to fight mobs.

Mechanisms,/Utility blocks |Blecks that can be used.

Possible action of mobs :

Possible actions of items :

Possible actions of blocks

Spawn, Appear
Fight, Attack
Use an item

Be dropped by a mob

Be used

Be modified, Be enchanted
Be sold

Be thrown, Be put

Die, Disappear, Be killed
Drop items/ressources/experience
Be tamed, Be ridden, Be fed

Be cbtained, Be craft. Be made, Be bought

Be obtained. Be harvested
Be placed

Be used

Be modified

Be thrown

Be destroyed, Be mined

Possible actions of the player on mobs :

Possible actions of the player on items :

Possible actions of the player on blocks

Spawn, Make appear Obtain, Craft. Make
Fight, Attack Use

Use an item on Madify, Enchant
Beat, Kill Sell

Tame, Ride, Feed Throw, Put

Obtain. Harvest
Place

Use

Throw

Deastroy, Mine

Other possible actions of the player (not related to an other entity) :

Restore Health, Sleep
Lose health

Walk, Run, Swim, Travel
Earn experience

Eat Spawn
Get hungry Die

Table 1: Entity types and actions in Minecraft

Factoid questions:
What Item should I use to tame a Wolf?
Are Spiders Hostile?

Non-factoid questions:

What is the best way to spawn the two
different types of Golem?

Is it interesting to kill the Ender Dragon?

Table 2: Examples of questions

players to a series of queries about the entities and actions
in the game, and find a relevant answer in the knowledge
database among all the information about these entities and
actions. Since Minecraft is a popular game, we expect that
we can find abundant data from the Web.

3. Constitution of the QA corpus

The corpus of questions and answers is based on posts ex-
tracted from quiz websites. 754 questions have been col-
lected from different websitesﬂ Then, we manually se-
lected 100 relevant questions. For our purpose, it is im-
portant that the questions deal with facts inside the game
(see Table [2)), or at least closely related to the game (e.g.
questions about the creator of the game, the programming
language used, etc.).

We selected both factoid and non-factoid questions, and
tried to include as much language variety (vocabulary and
grammar) as possible in the reference to the concepts of
the game. For each selected question, we wrote about nine
questions with the same meaning but asked differently, or
with a close or related meaning (Table[3).

!lwww.quizlet.com
www.allthetests.com
www.gamefags.com

Where do you find a Mushroom?
How do you obtain a Mushroom?
How do I get a Mushroom?

Where can I get a Mushroom?
Where can I obtain a Mushroom?
What is a way to get a Mushroom?
How to get Mushrooms?

Where do 1 find Mushrooms?
Where are Mushrooms located?
Where can Mushrooms be found?

O 0| I N[N B|WIN|—|O

Table 3: Examples of questions

This way, we obtained a corpus that can be used for han-
dling language variations in the QA task. We also anno-
tated the words designating entities specific to the game, so
this corpus can be used for training a Named Entity Recog-
nition system adapted to our context. We obtained a corpus
of 1684 questions, among which 928 has been written on
the basis of 100 relevant questions.

4. Constitution of the knowledge database

The knowledge database is extracted from three different
websitesﬂ These websites are constituted of pages describ-
ing an entity or a concept of the game. Similar to those from
Wikipedia, the webpages can be divided into two parts,
namely the structured data such as infoboxes and tables,
and unstructured data such as natural language texts. We
preserve the structures of infoboxes and tables in our ex-
traction. As a result, we obtain a database composed of
1222 text files, organized in 51 folders and sub-folders to
regroup related objects (see Table [] for details).

% 'www.minecraft.gamepedia.com

www.minecraft.wikia.com
www.minecraftguides.org

4638

http://www.quizlet.com/
http://www.allthetests.com/
http://www.gamefaqs.com/
http://www.minecraft.gamepedia.com/
http://www.minecraft.wikia.com/
http://www.minecraftguides.org/

Folders Number of Files Description
Blocks 154 Environment’s blocks
DB-Gamepedia Entity 72 Mobs (Monsters)
(from minecraft.gamepedia.com) Items 161 Objects used by the player
Others 183 Gameplay, History, etc.
Total: 530 files
Blocks 200
DB-Wikia Items 167
(from minecraft.wikia.com) Main 23 Important objects/entities
Mobs 56
Total: 392 files
Blocks 101 Minerals, Plants, etc.
Brewing 34 Recipes of potions
Building 7
Farming 7
DB-Guides Items 77 Food, Tools, Weapons, etc.
(from minecraftguides.org) Main 10 Summaries of sub-folders
Mini-Games 25
Mobs 27
Tutorials 30
Total: 300 files
Total: 1222 files

Table 4: A summary of the knowledge database

Breaking timelnote 1]
25
12.5

Wooden

Stone 6.25
Iron 1.25
Diamond 0.95

Golden 2.1

{Breaking time:
{Breaking time:
{Breaking time:
{Breaking time:
{Breaking time:
{Breaking time:

Hand; 25}
Wooden; 12.5}
Stone; 6.25}
Iron; 1.25}
Diamond; 0.95}
Golden; 2.1}

Figure 2: Table contents (Upper) are converted to tu-
ples (Lower), with information such as headers(“Breaking
time”) added to the tuples.

The content of tables has been saved in the form of tuples
(see Figure 2).

One technical issue here is that the way of arranging infor-
mation differs among tables. We use hand-written rules to
recognize headers, categories and values in the tables, and
rearrange the information in the extracted tuples.

5. Can the questions be answered by the
database?

From the questions that have been extracted from quizzes
websites, we can distinguish 3 types of questions. Some

questions are not relevant, because they deal with some
facts external to the game itself, or because they contain a
mistake:

What is the name of the famous yellow duck who
plays Minecraft on YouTube? (YouTube is external to the
game.)

What are the 5 types of wood?
types of wood.)

(There are actually 6

Some questions can be ‘easily’ answered with the
knowledge database. This is the case when the answer
is clearly written in the database (for example a numeric
value in a table). The questions that can be ‘easily’
answered are often factoid questions:

How many hearts does a Giant have? (The answer,
50 hearts, is written in the infobox of the Giant.)

This kind of question can be answered simply by lo-
cating the place where the answer is written in the
database. However, some questions can be answered
only by computing the answer using crossed information.
This is the case of non-factoid questions, which can be
considered as ‘difficult’ to answer:

What is the best strategy for finding diamonds? (To
answer this question, the system has to find all the different
ways to find diamonds and evaluate the efficiency of each
method. This evaluation is challenging because the criteria
for a good strategy are not stated in the question.)

In our data, the non-relevant questions are rare (about

4639

Event oy
Description
classes
One of the value (health, defense,...)
change_value .
of one entity changes
become An entity becomes an other entity
mine The player or a mob destroys a block
craft The player crafts an object
use The player or a mob uses an object
spawn A mob appears
encounter The player encounters an entity
kill The player or a mob kills a mob
move An entity moves
The player or a mob looks at
face ;
something
get The player gets an object
mix Several objects become one
collide Several entities collide
. The player or a mob fights an other
fight play '
mob
place The player puts a block
despawn An entity disappears
drop A mob drops an item
. The player or a mob rides an other
ride
mob

Figure 4: Events with associated predicates

2%), whereas the non-factoid questions are quite common
(about 20%), which provides a good motivation for a QA
system to handle complicated questions.

However, answering non-factoid questions implies reason-
ing, i.e. logic inference on different pieces of information
contained in the knowledge database, which can only be
done on a structured database. This is why we defined
the ontology of a meaning representation which is used
to structure the natural sentences of the database to their
logical form. The challenge is to balance the complexity
of the meaning representation, as it must be simple to take
advantage of the simple logic of the game, but must be
expressive enough so that it can be used to structure all the
useful information.

6. Ontology of a meaning representation

Our ontology uses two types of classes to represent the con-
cepts in Minecraft. These are Minecraft Entities (Figure [3)
and Events (Figure [4).

Minecraft Entities include all Objects (e.g. Blocks,
Structures, Items, etc.) and Mobs that the player can
interact with. We manually listed a total of 444 Minecraft
Entities arranged in a class hierarchy (e.g. the Minecraft
Entity “Stone” is a subclass of “Natural Block™), as shown
in Figure The list is constructed by checking named

Gold is a type of ore.
gold(xy), ore(xs)

type_of (f1), subject(f1,x1), type_of(f1,r2)
Holds(f1)

Figure 5: A fact (the first type) representing a subsumption
between classes.

entities appeared in our QA corpus and document set, and
is supposed to have high coverage. We have regrouped
some concepts that are usually used by players as different
ones but are actually the same objects in the game. For
example, both “chicken” and “chick” are represented by the
same Minecraft Entity class Chicken, but with variations
in the attribute size set as adult and baby respectively.
The regrouping is done because these entities have similar
interactions with the player and other entities.

Each Event is represented by linking an action (Event
class) with some participant entities in the event. There
are only 18 possible actions, each one associated with
a set of particular predicates indicating the participants.
Figure [4 shows a complete list of the actions that are used
in our meaning representation. We use a Davidsonian
style representation for events; for example, an entity x;
dropping an item x» is represented as

drop(e), dropper(e, x1), dropped(e, x2).

We make the list of Event classes by considering possible
operations by the player and checking questions asked in
our QA corpus. We tried to minimized the number of Event
classes by regrouping some events that can be expressed as
the same actions linked to different Minecraft Entities. For
example, both the actions sleep and eat are regrouped into
the event use, because “sleeping” and “eating” are equiva-
lent to “using” the Minecraft Entities bed and food, respec-
tively.

A piece of information is represented by a Fact in our
ontology. There are three types of Facts. The first type
describes Minecraft Entities in the game but does not
involve actions (Figure E]), such as the existence of an
entity or subsumptions between classes. We defined 10
such facts.

The second type regards properties of a single event, such
as possibility and frequency (Figure[6). We defined 3 such
facts.

The third type represents relations between multiple events,
such as condition and effect (Figure[7). We defined 3 such
facts.

As an example of possible logical inference, the following
piece of information is written in our document set:

If a chicken dies while on fire, it drops cooked
chicken instead of raw chicken.

Then, assuming the system has the following common
sense knowledge (axiom):

If something is dropped, the player gets it.

4640

minecraft_entity

natural_block

neutral_maob

type: normal, polished J

variations

type: wild, tamed/dog, aggravated]

size: adult, baby

variations

Figure 3: Examples of Minecraft Entities (stone, granite and wolf)

Stone can be mined with a pickaxe.
stone(x1), mine(eq), pickaxe(xs)
mined(e1, 1), instrument(ey, x2)
event_property(f1)
has_property(f1,el, possible)
Holds(f1)

Bats usually spawn in caves.
bat(x1), spawn(ey), cavern(zs),
spawned(e1, x1), in_place(er, x2),
event_property(f1)
has_property(f1,el, frequent)
Holds(f1)

Figure 6: Facts (the second type) on properties of single
events.

If a chicken dies while on fire, it drops cooked
chiken instead of raw chicken.
chicken(xz1), kill(ey), fire(zs), drop(es),
chicken_food|cooked|(x3),
chicken_food[raw)(xy),

killed(ey, 1), instrument(ey, x2),
dropper(eq, x1), dropped(es, x3),
ldropped(ea, x4)

has_ef fect(f1)
effect(f1,el,e2)
Holds(f1)

Figure 7: A fact (the third type) about conditions between
events.

we can deduce the following:

If a chicken is killed by fire, the player gets
cooked chicken.

A system equipped with logical inference ability can thus

answer a question such as
How to obtain cooked chicken?
by the inference process described above and responds:

You should kill a chicken with fire.

7. Can our meaning representation express
enough information?

A question will be answerable if the answer is present
in the knowledge database (the question is theoretically
answerable), and if all the pieces of information that are
needed to answer can be represented with our meaning
representation. We expect the contents extracted from the
3 complete websites to have a high coverage, so most of
the relevant questions are theoretically answerable. The
quality of our QA system will then directly depend on the
quantity of relevant pieces of information (that can be used
to answer players’ questions) that can be represented with
the meaning representation that we defined.

We manually answered 10 questions of our training
corpus by locating all the related pieces of information
(35 different pieces of information in the database were
relevant to answer the questions), and by evaluating the
difficulty to answer them using our meaning representation.
The preliminary analysis of the results allows us to draw
some conclusions.

Firstly, not all the pieces of information that are related to
a question are necessary to construct a satisfying answer.
In our annotations, only 40% of the pieces of information
were necessary. The main reason for that is that most
of these pieces of information bring details that are not
compulsory to construct a relevant answer.

Secondly, in its entirety, the knowledge database is not
highly redundant (we have chosen websites with com-
plementary information). In our annotations, more than
60% of the pieces of information were written only once.
However, if we only consider the pieces of information

4641

that were absolutely necessary to construct relevant an-
swers, about 70% of them were redundant and sometimes
appeared in both text and tables (already structured data),
what should be an advantage in the structuring process
of the knowledge database. Nonetheless, we will have to
care about the recall of the translation process not to loose
essential information.

Thirdly, for 30% of the annotated questions, information
contained in natural sentences and information contained
in tables had to be combined in order to construct a relevant
answer. So our QA system will have to be able to combine
different types of information together.

Fourthly, the meaning representation can only represent the
information in a single sentence, and even by solving the
co-reference problem with the Stanford core NLP tool, we
sometimes loose or misunderstand important information
by removing the context of the sentence. In particular there
is a risk to generalize some facts that are only true in a
specific context that is not specified in the sentence. As the
pages of the websites we used for the knowledge database
are divided into sections, we believe that this problem can
be at least partially solved by using the names of these
sections to solve some further co-references and lacks of
context.

Eventually, 30% of the annotated questions were not
answerable with the knowledge database alone because
some pieces of information, necessary for the inference
process that lead to an answer, were not written in the
database. These pieces of information are axioms, that are
obvious for human readers but that have to be taught to the
QA system. For example, the question

How do I obtain an Enchantment Table?

can not be answered with the knowledge database, unless
the QA system is told that

When the player craft an object, the object is ob-
tained by the player.

Indeed, if the crafting recipe of the Enchantment Table
is written in the database, it is not explicitly written that
the player will obtain this object by following this recipe.
These axioms will probably have to be taught manually, but
fortunately, the simple logic of Minecraft should restrict a
lot the number of such axioms. We estimate that about 20
axioms could be sufficient to solve this problem.

8. Using the QA corpus to cluster words

We took advantage of the simple logic of Minecraft to sim-
plify the meaning representation, in particular by using a
very restricted list of possible entities and events. It implies
that our system has to be able to handle the diversity of the
natural language, as many different words can be used in
both the knowledge database and the questions to describe
the same concept in the ontology we defined. This is why
we must cluster words.

We use the Stanford POS-tagger to extract nouns,
verbs, adjectives and adverbs in the questions of the QA
corpus. This results in a list of 465 different words, with

rank verb distance to the verb ‘craft’

1 make 0.0929
2 use 0.0930
3 get 0.0935
4 create 0.0939
5 obtain 0.0964
pay 0.3302

contain 0.3594

Table 5: Cluster of the verb ‘craft’

235 nouns, 126 verbs, 81 adjectives and 23 adverbs. Then,
by the co-occurrence bag of words method, we calculated
the vectors of all the words present in the questions,
and compared the nouns, verbs, adjectives and adverbs
side-by-side with the Euclidean distance to extract clusters.
An example of the results is given in Table 3]

We see that by only using the questions, the system is able
to link the meaning of several verbs into one type of action
in the game. Understanding this kind of link is essential for
the system to be efficient when the player ask a question
with its own words, and not those used by the knowledge
database.

9. Conclusion and discussion

We have described a Question-Answering corpus and a
knowledge database related to the video game Minecraft.
Our goal is to build a system that can answer questions
using the logic specific to the game. A lot of research
has been done on the answering of real world questions
using Freebase (Berant and Liang, 2014} [Yao, 2015) or
Wikipedia (Pasupat and Liang, 2015). Datasets for these
tasks usually favour systems that do simple queries of facts
on the knowledge database (Yao, 2015)). As the complexity
of the questions increases, answering the questions usually
becomes considerably difficult (Pasupat and Liang, 2015)),
due to the vast complexity of the real world. There are
efforts to restrict the domain of the task and pursue some
advanced reasoning. The Todai Robot Project (Fujita et
al., 2014) restricts the domain to university entrance exam
questions. Other research includes solving algebra word
problems (Kushman et al., 2014) and instructing robots
(Misra et al., 2015). As a complement to these previous
works, we believe the using of an open world video game
as the domain has several merits. Firstly, the logic in a
video game is simpler than the real world, which means
that it can be handled readily. Therefore, this domain may
provide a convenient testbed for integrating logical infer-
ence techniques into NLP systems, such as the logical in-
ference using dependency-based compositional semantics
(Tian et al., 2014). Secondly, despite the rather simple
rules, open world video games provide enough liberty for
players, and their popularity attracts people to ask many
questions about them, including creative and fun questions
that can be solved only by completely understanding the
rules and logically combining them. Therefore, we expect
the domain to be interesting and challenging as well.

4642

10. Bibliographical References

Berant, J. and Liang, P. (2014). Semantic parsing via para-
phrasing. In ACL.

Fujita, A., Kameda, A., Kawazoe, A., and Miyao, Y.
(2014). Overview of todai robot project and evaluation
framework of its nlp-based problem solving. In LREC.

Kushman, N., Artzi, Y., Zettlemoyer, L., and Barzilay, R.
(2014). Learning to automatically solve algebra word
problems. In ACL.

Misra, D. K., Tao, K., Liang, P., and Saxena, A. (2015).
Environment-driven lexicon induction for high-level in-
structions. In ACL.

Pasupat, P. and Liang, P. (2015). Compositional semantic
parsing on semi-structured tables. In ACL.

Tian, R., Miyao, Y., and Matsuzaki, T. (2014). Logical in-
ference on dependency-based compositional semantics.
In ACL.

Yao, X. (2015). Lean question answering over freebase
from scratch. In NAACL.

4643

	Introduction
	Minecraft
	Constitution of the QA corpus
	Constitution of the knowledge database
	Can the questions be answered by the database?
	Ontology of a meaning representation
	Can our meaning representation express enough information?
	Using the QA corpus to cluster words
	Conclusion and discussion
	Bibliographical References

