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Abstract
Our ability to understand language often relies on common-sense knowledge – background information the speaker can assume is known
by the reader. Similarly, our comprehension of the language used in complex domains relies on access to domain-specific knowledge.
Capturing common-sense and domain-specific knowledge can be achieved by taking advantage of recent advances in open information
extraction (IE) techniques and, more importantly, of knowledge embeddings, which are multi-dimensional representations of concepts and
relations. Building a knowledge graph for representing common-sense knowledge in which concepts discerned from noun phrases are cast
as vertices and lexicalized relations are cast as edges leads to learning the embeddings of common-sense knowledge accounting for
semantic compositionality as well as implied knowledge. Common-sense knowledge is acquired from a vast collection of blogs and books
as well as from WordNet. Similarly, medical knowledge is learned from two large sets of electronic health records. The evaluation results
of these two forms of knowledge are promising: the same knowledge acquisition methodology based on learning knowledge embeddings
works well both for common-sense knowledge and for medical knowledge Interestingly, the common-sense knowledge that we have
acquired was evaluated as being less neutral than than the medical knowledge, as it often reflected the opinion of the knowledge utterer. In
addition, the acquired medical knowledge was evaluated as more plausible than the common-sense knowledge, reflecting the complexity
of acquiring common-sense knowledge due to the pragmatics and economicity of language.
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1. Introduction

Our ability to understand language often relies on common-
sense knowledge – background information the speaker can
assume is known by the reader. When language is used to
communicate, common-sense knowledge is not articulated
in most of the cases. Hence, the availability of resources
capturing or approximating common-sense knowledge is
crucial. Multiple attempts have been made to capture gen-
eral common-sense knowledge, such as the CYC project
(Lenat and Guha, 1989) and ConceptNet (Speer and Havasi,
2013). Moreover, WordNet (Miller, 1995) captures lexico-
semantic knowledge in English, while DBPedia (Auer et
al., 2007) provides knowledge that was used for common-
sense reasoning. These resources encode a large number of
concepts without representing all their possible attributes.
Moreover, another important limitation of these existing
resources for common-sense knowledge stems from the lim-
ited number of relation types spanning concepts. Some of
the existing relations are taxonomic, e.g. IS-A, PART-OF,
while others capture causality, e.g. ENABLE, CAUSE-OF,
but they hardly represent all relation types we use when
accessing common-sense knowledge. To address these two
limitations, we took advantage of recent advances in open
information extraction (IE) techniques and, more impor-
tantly, of the advent of knowledge embeddings, which are
multi-dimensional representations of concepts and relations.
The use of knowledge embedding enabled us to consider
lexicalized relations between concepts, allowing relational
similarity to be easily identified, even if not grouped in the
same type of relations. Although this is an approximation
of the relation types available from existing common-sense
knowledge resources, it captures a much larger set of pos-
sible relations spanning concepts. Because concepts are

largely expressed as noun phrases, in our formulation based
on knowledge embeddings, we make use of semantic compo-
sitionality to represent complex concepts that comprise their
attributes and their nominal interpretation (e.g. “plantain
slices” are interpreted as slices of plantain, while “plan-
tain dish” can be interpreted as a dish made with plantains).
When capturing common-sense knowledge from a variety
of sources, including books and weblogs, we rely on open-
domain information extraction (IE) to identify concepts as
noun phrases and the lexicalized relations they share. For
example, consider the following sentence obtained from a
personal weblog post:

c1︷ ︸︸ ︷
plantain slices are cooked in︸ ︷︷ ︸

r

c2︷ ︸︸ ︷
hot oil

This sentence encodes the lexical relation r = are cooked in,
indicating the relationship between two concepts c1 =
plantain slices, and c2 = hot oil. Representing the knowl-
edge encoded in this sentence requires a level of granularity
not supported by existing knowledge sources: we must re-
strict ourselves to slices of plantains (not, for example, slices
of pie) and to hot oil (not cold oil, and certainly not crude
oil). Additionally, the lexical relation r between these two
concepts is not present in the fixed set of relation types used
by any of these knowledge sources, and cannot be approx-
imated by the fixed set of relation types without adjusting
the semantics of the original sentence. Capturing common-
sense knowledge is enabled by organizing the extracted
concepts and their lexical relations into a knowledge graph
which we embed in a multi-dimensional vector space.
Because our approach for capturing knowledge is able to
identify relational knowledge which is not currently avail-
able in existing resources, we explored the possibility of
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using the same knowledge acquisition methodology for cap-
turing domain-specific knowledge that is not current avail-
able despite domain-specific texts being abundant. For this
purpose, we considered the domain of medicine.
In the medical domain, multiple efforts have been made
to capture knowledge, including the Unified Medical Lan-
guage System (UMLS) (Bodenreider, 2004) and the System-
ized Nomenclature for MEdicine (SNOMED) (Stearns et
al., 2001). These medical knowledge resources have simi-
lar limitations as the common-sense knowledge resources,
namely (1) too few types of relations between concepts and
(2) description of concepts without capturing their semantic
concepts. However, when processing medical language, a
large variety of relations need to be considered. For example,
given a sentence stating:

c1︷ ︸︸ ︷
abnormal EEG due to︸ ︷︷ ︸

r

c2︷ ︸︸ ︷
rhythmic background slowing

the causality between the “abnormal” attribute of the elec-
troencephalogram (EEG) and the rhythmic slowing of the
background signal needs to be recognized. Using knowledge
embeddings to encode medical knowledge provides access
to medical information not available in current ontologies
but expressed in medical texts.
An important aspect of the common-sense and domain-
specific knowledge acquisition framework described in
this paper is provided by our probabilistic treatment of
relations between concepts. By encoding the plausibility
of a lexicalized relation between a pair of concepts, e.g.
P (q) = 〈c1, r, c2〉, the knowledge encoding framework that
we describe is able to capture salient information as knowl-
edge embeddings without discarding the long-tail aspects
of this knowledge. Moreover these knowledge embeddings
are able to generalize the knowledge discerned from indi-
vidual sentences by incorporating two notions of semantic
smoothness: (1) functional similarity (Turney, 2012), the
idea that two phrases are similar if they engage in similar
lexical relations, and (2) behavioral similarity (Nakov and
Hearst, 2008), the idea that two lexical relationships are
similar if they operate on similar concepts.
In this paper, we present a novel knowledge embed-
ding framework that generates promising results both on
common-sense knowledge and domain-specific knowledge
by learning an optimal embedding for each concept and
lexical relation according to (1) the functional similarity
between pairs of concepts, (2) the behavioral similarity
between pairs of lexical relations, and (3) the role of the
semantic composition for each word occurring in each con-
cept and lexical relation. The remainder of this paper is
organized as follows. Section 2 reviews related work and
Section 3 describes the datasets we considered as well as
the natural language processing techniques performed on
these datasets. Section 4 details our knowledge embedding
framework, while Section 5 discusses our experiments, and
Section 6 summarizes the conclusions.

2. Related Work
One of the most popular sources of lexico-semantic knowl-
edge and an approximation of common-sense knowledge is

WordNet (Miller, 1995) which encodes 117,000 concepts or-
ganized as synonym sets or synsets spanned by a small num-
ber of relation types. The relations between concepts capture
hypernymy, meronymy (for nouns), entailment, causality
(between verbs), as well as antonomy. In addition, each
WordNet concept is associated with a gloss defining the
concept.
While the WordNet semantic graph was carefully generated
by expert lexicographers, the JeuxDeMots project (Lafour-
cade, 2007) provides a crowd-sourced lexico-semantic graph
which captures some of the relation types encoded in Word-
Net (e.g. synonym, antonymy) for French. These relations
were populated by allowing people to play word association
games.
ConceptNet (Speer and Havasi, 2013) was also obtained
through crowd-sourcing. It encodes 21 relation types
which attempt to capture common-sense knowledge. How-
ever, these relations are sometimes under-specified, e.g.
for the CAPABLE-OF relation, the sentence provided
by ConceptNet, ”Mary broke a vase” was encoded as
〈Mary,CAPABLEOF, vase〉. When interpreting this relation,
what does it mean to be capable of a “vase”? Can Mary eat a
vase? Can she buy a vase? Can she cook a vase? What if we
consider, instead, the relation 〈Mary,CAPABLEOF, break〉.
Although perhaps closer to the original semantics of the
sentence, it is still too general: What is Mary capable of
breaking? Can she break a brick wall? Can she break a
table? It would be preferable to encode only the fact that
Mary broke a vase. However, because the relation CAPABLE-
OF cannot account for the semantics of the verb “break”, it
generates an underspecified relation between Mary and the
vase.
DBPedia (Auer et al., 2007) curates a variety of knowledge
mined from Wikipedia. It considers article titles as concepts
and relies on the relations between them discerned from
meta-data in Wikipedia. However, the number of concepts
and relation types is limited and dependent on the availability
of metadata.
Medical knowledge acquisition was targeted in multiple
projects. Perhaps the most popular of them is the Unified
Medical Language System (UMLS) (Bodenreider, 2004)
which designed by the National Library of Medicine in
order to provide a standard set of concepts allowing for
commonalities amongst various medical terminologies to
be interlinked, for example, by mapping ICD-9 diagnostic
codes (Cimino et al., 1993) to Medical Subject Headings
(MeSH) (Lowe and Barnett, 1994).
A component of UMLS, the Systemized NOmenclature of
MEDicine (SNOMED) (Stearns et al., 2001) provides a
small number of relationship types between a subset of
UMLS concepts, such as hypernymy, synonym as well as
medical relations (e.g. treatment targets disease).
In addition, the Open Biomedical Ontologies (OBO)
Foundry facilitates a collaborative experiment involving sci-
entific (e.g. medical) ontologies (Smith et al., 2007).
Both the UMLS and the ontologies linked in the OBO
Foundary do not represent medical knowledge probabilis-
tically, nor do they capture many of the relations between
medical concepts. Attempts to address these limitations
was tackled in our previous work (Goodwin and Harabagiu,
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2013) where a qualified medical knowledge graph (QMKG)
was presented. However, the QMKG does not capture com-
positional semantics of medical concepts, nor the lexical
relations between them. Both of these aspects are accounted
for in the knowledge framework presented in this paper.

3. The Textual Data
To acquire common-sense knowledge as well as medical
knowledge, we have relied on several sources of textual
data.

3.1. Textual Data expressing Common-sense
Knowledge

We considered two collections of narrative texts which we
believed would be useful for common-sense reasoning: (1)
narrative personal stories from weblog articles, and (2)
Google’s syntactic n-gram dataset obtained from stories
sourced from Google Books. Narratives of personal stories
have held interest within the artificial intelligence commu-
nity for decades due to the rich semantic information they
contain. For example, as conjectured by Schank in (Schank,
1983), personal stories can be used to pin-point gaps in
a knowledge base. Moreover, as argued in (Schank and
Abelson, 1995), the most common source of common-sense
knowledge for humans is that of narrative communication,
or stories. To provide additional common-sense knowledge,
we also considered WordNet glosses.

3.1.1. Narrative Blog Posts
We used the data provided for the 2009 International Con-
ference on Weblogs and Social Media (ICWSM), sponsored
by the Association for the Advancement of Artificial Intelli-
gence (AAAI) (Burton et al., 2009), by Spinn3r, Inc, which
consists of 44 million blog posts authored between August
1st and October 1st in 2008. The dataset covers many major
news events, such as the 2008 Olympics, both United States
presidential nominating conventions, the United States finan-
cial crisis, etc. Gordon and Swanson identified nearly one
million English-language narrative blog posts discussing
personal stories from this dataset, using a supervised neural
network based on lexical features (Gordon and Swanson,
2009). A total of 937,994 blog posts were classified as
containing narrative stories.

3.1.2. Google Books
Inspired by (Akbik and Michael, 2014), we considered a
secondary source of narrative information: the Syntactic
N-Grams dataset (Goldberg and Orwant, 2013) which was
extracted from 3.5 million digitized English Books available
through Google Books (Michel et al., 2011). The dataset
contains over 10 billion syntactic n-grams, which are rooted
syntactic dependency tree fragments (noun phrases and verb
phrases) and is the largest publicly available corpus of its
kind. Each tree fragment is annotated with the dependency
information, its head word, and the frequency with which
it occurred. An example tree fragment is (n0) “when/WRB
the/DT small/JJ boy/NN ate/VBD cookies/NN”. We con-
verted each tree fragment in this dataset into a sentence by
removing the leading relative pronouns, conjunctives, and
prepositions. In this way, for the tree fragment n0 we obtain
the sentence s0, “the small boy ate cookies.”
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Figure 1: The distribution of electronic health record (EHR)
types in the MIMIC-III clinical database.

3.1.3. WordNet Glosses
Because each concept in WordNet is (a) represented by
a synset and (b) defined by a gloss, we generate a set of
sentences expressing these definitions. For example, the
synset y1 = {“male child”, “boy”} is defined as “a youthful
male person.” In addition, the glosses also provide sentence
examples of the concepts represented by the synset. For
example, y1 is exemplified by (s1) “he baby was a boy,” (s2)
“she made the boy brush his teeth every night”, and (s3)
“most soldiers are only boys in uniform.” We also created
sentences based on the glosses by using each member of the
synset as a genus and the gloss as the differentia. In this
way, we obtain from the gloss of y1 the sentences (s4) “a
male child is a youthful male person”, and (s5) “a boy is a
youthful male person.”

3.2. Medical Textual Data
With the advent of electronic health records (EHRs), a grow-
ing set of medical narratives are becoming available. These
narratives reflect domain-specific medical knowledge com-
municated by physicians for the interpretation of other medi-
cal professionals. Thus, they reflect highly-specialized med-
ical knowledge, both in explicit and implicit ways. We were
interested to acquire medical knowledge from type of textual
data: (1) medical narratives from a variety of medical record
types as well as (2) EHRs which belong to a single record
type. Both types of textual data needed to be available from
massive medical archives.

3.2.1. MIMIC-3 Clinical Database
MIMIC-III (Medical Information Mart for Intensive Care
III) is a large, freely-available database comprising de-
identified clinical data for over 40,000 patients who stayed
in critical care units of the Beth Israel Deaconess Medi-
cal Center between 2001 and 2012 (Saeed et al., 2011).
The database includes narratives of a variety of EHR types
such as discharge summaries, nursing notes, and radiology
reports. In this work, we considered all EHRs types, encom-
passing 2,426,930 medical records. The distribution of EHR
types in this dataset is shown in Figure 1

3.2.2. EEG Reports
We considered the Temple University Hospital (TUH) cor-
pus of Electroencephalogram (EEG) reports (Harati et al.,
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2014). Generated by the The Neural Engineering Data Con-
sortium (NEDC) at Temple University, the corpus contains
nearly 20,000 EEG reports conducted from 2002 to 2013.
The reports include the patient’s clinical history and medi-
cations, a description of the EEG setting and configuration,
as well as the physician’s impressions and clinical findings.
The descriptions document any notable epileptic activity
observed by the physician when interpreting the EEG signal
data, such as:

The EEG is diffusely slow but the patient transitions in
and out of a drowsy state with varying amounts of beta.
There is small, shifting asymmetries noted. Stimulation
of the patient produces eye opening.

The neurologist also records her impressions of the pre-
viously described observations and epileptiform activities,
e.g.:

Abnormal EEG due to:
Generalized background slowing.
Shifting slowing.
Shifting beta asymmetries.

The EEG impression is further analyzed for possible clinical
correlations or clinical findings, in which the physician
interprets the findings and describes a diagnosis or general
conclusion, e.g.:

No epileptiform features were observed.
This EEG is more supportive of a bihemispheric pro-
cess.

4. Knowledge Acquisition Framework
To generate knowledge embeddings as representations of (1)
common-sense knowledge as well as (2) medical domain
knowledge, we used the following steps:
STEP 1: Extract concepts and the lexicalized relations be-
tween them from texts;
STEP 2: Generate a knowledge graph representing the con-
cepts as vertices and the lexicalized relations as edges be-
tween them; and
STEP 3: Learn an optimal, semantically-smooth embed-
ding of this knowledge graph. This knowledge acquisition
framework has the advantage of capturing all the lexicalized
relations in which a concept is involved. In addition, it learns
representations which involve compositional semantics both
at concept and relation levels. This representation is further
enhanced through smoothing which resolves the data spar-
sity problem. Finally, the knowledge embedding which is
learned informs the plausibility estimation of both existing
and new relations between concepts.

4.1. Information Extraction of Concepts and
Relations

Stanford’s automatic open-domain information extraction
system (Angeli et al., 2015) enabled us to discover struc-
tured relation triples (SRTs) from natural language sen-
tences. SRTs were discovered without relying on a prede-
fined set of concepts, set of relation types, or vocabulary.
Figure 2 illustrates examples of SRTs discovered from per-
sonal webplogs, Google Books, as well as WordNet glosses.
Figure 3 illustrates examples of SRTs extracted from the
MIMIC-III database as well as the TUH EEG corpus.

General Knowledge
Personal Story Weblogs

〈white phosphorus smoke,may cause, burns〉
〈smoke, is,mist〉

〈plantain slices, are cooked in, hot oil〉
〈plantains, are immediately placed in, salt water〉

〈scattered showers, caused, flooding in parts of the state〉
〈urban areas,were hit by, the deluge〉

Google N-Grams
〈bananas, hung above, assortment of fruit〉

〈smoke, rose above, the trees〉
WordNet

〈plantains, are, starchy banana-like fruit〉
〈the fire, produced, tower of black smoke〉
〈the plains, are fertilized by, annual floods〉

Figure 2: Examples of structured relation triples expressing
common-sense knowledge.

Medical Knowledge
MIMIC III Notes

〈large hematoma, caused, outlet obstruction〉
〈aneurysm,was coiled with, 4-mm 360 coils〉
〈aneurysm, obliterated by, successive GDC coils〉

EEG Reports
〈drowsiness, is characterized by, increase in background beta〉
〈abnormal EEG, due to, left anterior temporal sharp wave〉

〈excess theta,may be due to,PRES syndrome〉
〈generalized spike & wave, consistent with, generalized epilepsy〉
〈mildly abnormal EEG, due to,mild background slowing〉
〈abnormal EEG, due to, rhythmic background slowing〉

Figure 3: Examples of structured relation triples expressing
medical domain knowledge.

4.2. Generating the Knowledge Graph
In order to compactly represent the semantic information
obtained from each SRT extracted from each sentence in
our dataset, we generated a knowledge graph in which each
concept was represented by a vertex, and each lexical re-
lation between two concepts by a directed edge. Because
we considered lexical relations between concepts, rather
than individual words, the resulting knowledge graph was
quite large, containing 32,522,807 vertices and 52,209,411
edges. Thus, we relied on the Apache Spark (Zaharia et
al., 2010) web-scale data processing engine to generate a
distributed knowledge graph. This allowed us to leverage
Spark’s GraphX library (Xin et al., 2013) for graph-parallel
computations. However, processing such a large knowl-
edge graph is challenging, even in a distributed architecture.
Hence, we decided to reduce the number of edges without
information loss. This was achieved by replacing all edges
corresponding to each extraction of the same SRT with a
single edge which also encodes the frequency of the ST in
the dataset. We implemented this by a map-reduce counting
operation. However, this did not account for another prob-
lem which arose during knowledge acquisition: knowledge
sparsity. Because concepts are represented along with their
attributes and lexicalized relations do not provide means of
capturing the similarity of meaning, we do not recognize
in data, no matter how large, important relational informa-
tion that accounts for common-sense knowledge or domain
specific knowledge. For example, in the knowledge graph,
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it is difficult to recognize that the concept hot oil, cooking
oil, and olive oil may be similar despite each corresponding
to separate nodes. Likewise, each lexical relation is repre-
sented as a separate edge, such that it is difficult to identify
similar lexical relations, e.g. are cooked in, are cooked
with, or were cooked in each constitute different edges in the
knowledge graph. In order to address these problems, we
learned an optimal embedding of our knowledge graph into
a semantically-smooth continuous vector space. Moreover,
this embedding allowed us to infer non-explicit relational
knowledge.

4.3. Learning the Knowledge Embedding
Recently, new methods for knowledge graph completion
have produced a promising paradigm for embedding which
is able to infer new knowledge from a knowledge graph
(Bordes et al., 2013). In this paradigm, each concept is
represented as a N -dimensional vector and each relation is
represented by an operation in the RN space such that new
knowledge can be asserted by simple vector operations. The
embeddings are learned by minimizing a global loss function
over all the concepts and their relations in the knowledge
graph. However, new knowledge often contains concepts
which are not present in the knowledge graph, a problem
which we address through the semantic compositionality
of concept and relation embeddings. Moreover, smoothing
these enhanced embeddings produces additional new knowl-
edge. Given these observations, learning the knowledge
embedding is performed in five steps:
LEARNING STEP 1: Multi-dimensional representation of concepts
and relations;
LEARNING STEP 2: Accounting for semantic composition;
LEARNING STEP 3: Evaluating the plausibility of knowledge;
LEARNING STEP 4: Optimizing knowledge plausibility; and
LEARNING STEP 5: Smoothing the knowledge embeddings.

4.3.1. Multi-dimensional Representation of Concepts
and Relations

As in TransE (Bordes et al., 2013), each vertex representing
a concept in the knowledge graph was cast as a point in the
continuous space of RN , where N is a parameter indicating
the cardinality of our vector representation (in our case,N =
200). Likewise, each edge representing a lexical relation
is interpreted as the translation vector which connects the
points representing its arguments. Unlike TransE, however,
we also learned a vector for each word used to express every
concept as well as each word used to express the lexical
relation. This allowed our embedding space to account for
the role of semantic composition on (1) the types of lexical
relations shared by concepts, and (2) the types of concepts
spanned by each lexical relation.
Because concepts and relations are often expressed by more
than one word, the embedding needs to represent the se-
mantics of the entire expression. Single words are cast as
points in RN . It happens that noun phrases (which account
for concepts) and verb phrases (which account for relations)
havbe a syntactic head which corresponds to a single word.
Thus, the entire concept or lexical relation is viewed as a
modification of the head words provided by the role of the
modifiers in the noun phrase or verb phrase, respectively.

plantains hot oil

are cooked in

abnormal
EEG

mildly
abnormal
EEG

background
slowing

mild
background
slowing

due to

due to

plantains
food

hot oil

oil
hot

EEG abnormal 
EEG

mildly abnormal 
EEG

background
slowing

background mild background
slowing

Figure 4: Examples of lexical relations encoded in the
knowledge graphs and their representations in the embed-
ding space for common-sense knowledge (top) and medical
domain knowledge (bottom).

Figure 4 illustrates an example of common-sense knowl-
edge and an example of medical domain knowledge in the
knowledge graph (on the left) as well as in the embedded
space (on the right). Each word is represented as a point
in the embedded space, shown as a square. We capture the
role of semantic composition and lexical relations as linear
transformations in the embedded space, which are repre-
sented as arrows showing the point obtained after applying
the transformation. For example, the top of Figure 4, shows
how the relation 〈plantains, are cooked in, hot oil〉 is repre-
sented in the embedding space: a blue square for the word
“plantains”, a green square for the word “oil”, and a yellow
square for the phrase “hot oil”. Figure 4 shows that applying
the lexical relation “are cooked in” to the point “plantains”
produces the same point as the phrase “hot oil.” Likewise, it
shows that the point for the phrase ”hot oil” is obtained by
applying the ”hot” semantic composition vector to the word
”oil”. This example highlights the ability of the knowledge
embeddings to infer new generalized relationships because
the vector generated for the word “oil” in the phrase ”hot
oil” is generated such that it can be obtained by applying the
”are cooked in” relationship to the word ”plantains”. Fig-
ure 4 also illustrates semantic composition for the domain of
medicine: applying the transformation associated with the
word “mild” (or “mildly”) adjusts the “due to” relationship
from “abnormal EEG” to “background slowing” such that
when “due to” is applied to ”mild background slowing”, the
phrase “mildly abnormal EEG” is produced instead of the
more general concept “abnormal EEG”. This demonstrates
that the embedding procedure is able to account for the af-
fects of individual words on the semantics of the discovered
lexical relationships.

4.3.2. Accounting for Semantic Composition
Each vertex and each edge in our knowledge graph corre-
sponds to a concept or relation which may be expressed
with a multi-word sequence w1 . . . wL. To account for the
contribution of each word on the semantics of the entire ex-
pression of concept or relation, we represented each word by
a bag-of-words vector on which two composition functions
are applied. The first composition function, denoted as g(•)
defines uses the bag-of-words vector representations of each
word expressing the concept to produce a new vector repre-
senting the entire concept. The second composition function,
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1/1

     

plantain
w1

     

slices
w2

     

are
w3

     

cooked
w4

     

in
w5

     

hot
w6

     

oil
w7

     

     

     

           

     

c1 := w1
TG + bg + c1

r = w4
TH + bh

r := w5
TH + bh + r

c2 = w7
TG + bg

c2 := w6
TG + bg + c2

c2 := w5
TG + bg + c2

c1 = w2
TG + bgg(●)

g(●)

h(●)

h(●) g(●)

g(●)

f(●)

      ∥ + r − ∥c1 c2 ℓ2

g(●)

     

Figure 5: Neural architecture for computing the plausibility of a lexical reltion.

h(•), uses the bag-of-words vector representations express-
ing the lexicalized relation to generate a vector representa-
tion of the relation. Each of these composition functions
was defined as a linear recurrence relation, which first maps
the head word to a vector, and then recursively modifies that
vector for each remaining word in the sequence. Formally,
for each composition function we learned a composition ma-
trix (G or H) and a bias vector (bg or bh) which captures
the effect of each additional word on the vector for the word
sequence. Formally, we define two semantic composition
functions:

g(w1 . . . wL) =

{
wL

TG+ bg, if L = 1

wL
TG+ bg + g(w1 . . . wL−1), otherwise.

(1)
and

h(w1 . . . wL) =

{
wL

TH + bh, if L = 1

wL
TH + bh + h(w1 . . . wL−1), otherwise.

(2)
where g(•) recursively learns a vector for the each concept
by repeated applying a linear transformation for each word
in the concept using the learned semantic composition ma-
trix G, and the concept bias vector bg; and h(•) recursively
learns a vector for each open-domain relation by repeatedly
applying a linear transformation for each word in the rela-
tion using the learned semantic relation composition matrix
H , and the relation bias vector bh.

4.3.3. Evaluating the Plausibility of Knowledge
By representing the concepts and a lexical relations as vec-
tors, we can measure the plausibility of any arbitrary lexical
relation r between any possible pair of concepts, c1 and c2.
Recall that we have represented each lexical relation as a ge-
ometric translation vector. This means, that for each concept
c1, the most likely concept to be related to it by lexical rela-
tion r should be embedded at the point c1+r. This allows us
to measure the plausibility of any triple 〈c1, r, c2〉 triple as
the distance between the point in the embedded space most
likely to be related to c1 by r and the point corresponding

by c2, defined by:

f (〈s1, r, s2〉) = ‖g(s1) + h(r)− g(s2)‖`2 (3)

Thus, equation 3 ensures the geometric property that the
point associated with concept c2 is obtained by applying the
translation vector associated with r to the point for concept
c1, i.e., g(c2) ≈ g(c1) + h(r). Figure 5 illustrates the
relationship between Equations 1, 2, and 3: the plausibility
of a lexical relation depends on the semantic composition of
each concept as well as the lexical relation.

4.3.4. Optimizing Knowledge Plausibility
By defining the plausibility of any structured relation triple
〈c1, r, c2〉, we can learn the optimal values of the latent
composition matrices G and H , as well as the latent bias
vectors bg, and bh. To do this, we try to find the values
of these latent variables which maximize the plausibility of
all positive edges in the knowledge graph and minimize the
plausibility of negative edges which are not consistent with
the knowledge graph. We construct so-called negative edges
by randomly sampling edges from the knowledge graph and
replacing the lexical relation with another, random lexical
relation such that the new edge is not in the network. This
allows optimal latent variables to be learned by comparing
the margin (gap) in the geometric space between edges in the
knowledge graph, and the negative edges which do not occur
in the knowledge graph. Formally, we define the margin loss
(Guo et al., 2015):

L =
∑

t+∈SN

∑
t−∈SN−

max(0, γ + f(t+)− f(t−)) (4)

where t+ = |s1, r, s2| ∈ SN refers to each triple in the
knowledge graph, t− ∈ SN− refers to artificially created
negative triples, and γ, which indicates how much of a
margin (or distance) should exist between positive triples
encoded in the knowledge graph and the negative triples
we randomly generated. As described in (Bordes et al.,
2013; ?), we applied stochastic gradient descent to solve
this minimization problem.
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4.3.5. Smoothing the Knowledge Embeddings
The embedded knowledge graph obtained by Equation 3
relies on distributional information in order to create an op-
timal embedding for each concept and each lexical relation
the data. In order to ensure that the embeddings learned for
the knowledge graphs are able to account for lexical varia-
tion, we introduce two regularization terms based on notions
of lexical semantics. These terms are based on two assump-
tions: (1) vertices in the knowledge graph which have a
high functional similarity (Turney, 2012) – that is, concepts
which participate in many of the same relationships – should
be located close to each other in the embedded space; and (2)
edges in the knowledge graph which have a high relational
similarity (Nakov and Hearst, 2008) – that is, lexical rela-
tions which often describe the same participants – should
also be located close to each other in the embedded space.
These assumptions allow the plausibility computed from our
embedding space to account for lexical variation in concepts
as well as lexical relations by ensuring that semantically
similar concepts occupy geometrically close points (Guo et
al., 2015). To do this, we define the following functional
similarity matrix, SF (i, j) which returns the sum of the
number of lexical relations in which both concepts i and j
were participants. This allows us to measure the smoothness
of similar vertices in the embedding space:

R1 =
1

2

V∑
i=1

V∑
j=1

‖~vi − ~vj‖2`2 SF (i, j) (5)

where V is the number of vertices in the knowledge graph.
Equation 5 ensures that the distance between two concepts
which participate in similar relations is small.
In order to ensure that lexical relations with high relational
similarity have similar translation matrices, we construct a
relational similarity matrix SR(i, j) which returns the total
number of concepts for which lexical relations i and j are
both edges in the knowledge graph. This allows us to ac-
count for the smoothness of similar edges in the embedding
space:

R2 =
1

2

E∑
i=1

E∑
j=1

‖~ei − ~ej‖2`2 SR(i, j) (6)

where E is the number of edges in the knowledge graph.
Equation 6 ensures that similar relations are embedded as
similar transformations in the embedded space.

5. Experimental Results
Evaluating the quality of any common-sense knowledge
base is known to be difficult (Singh et al., 2002). Conse-
quently, we measured two aspects of our knowledge em-
bedding: (1) the quality of the relations in the knowledge
graph, and (2) the quality of any new inferred relations in the
embedded space. When evaluating the quality of common-
sense knowledge, we were inspired by previous efforts made
to evaluate the OpenMind common-sense acquisition dataset
(Singh et al., 2002). For each knowledge graph, we sam-
pled 200 relations, and 200 inferred relations, obtained by
sampling random vertices v and relations r and finding the
vertices closest to the point obtained by v + r. Each of
these common-sense relations were evaluated on a shifted
5 point Likert scale for the following desirable properties:

(1) generality (such that -2 indicates a specific fact and +2
indicates a general statement about the world), (2) plausi-
bility (such that -2 indicates a relationship which does not
make sense in the world, and +2 indicates a relationship
which makes complete sense), and (3) neutrality (such that
-2 indicates highly-biased opinions and +2 indicates neu-
tral sentiment). A total of three annotators were used, and
obtained an inter-annotator agree of 84.3% (according to
Cohen’s kappa co-efficient). We evaluated both domains of
common-sense knowledge: (1) general world knowledge
and (2) medical knowledge. The average for generality was
0.8, and 1.2, indicating that while the knowledge from both
sources was general, the medical knowledge was more-so.
Likewise, the average rating for plausibility was 0.42 and
1.02, reflecting the fact that most medical relations stood
alone as plausible facts while common-sense facts often
rely on more context. This suggests that future work could
benefit by incorporating coreference resolution. Finally, the
average rating for neutrality was 0.05 and 1.85, suggesting
that many of the relations encoded in the general dataset
were biased by the opinions of the author, but that medical
relationships were highly neutral.

6. Conclusions
In this paper, a framework for learning knowledge embed-
dings as representations of commonsense knowledge and
domain-specific knowledge for medicine is presented. The
novelty of the knowledge embeddings stems from the in-
corporation of semantic compositionality and of two reg-
ularization factors that accomplish the smoothing of the
acquired knowledge - representing the new, un-articulated
information discerned from vast text collections. To learn
commonsense knowledge embeddings we have relied on a
large set of blogs and books as well as the defining glosses
from WordNet. To learn the knowledge embeddings for
medicine, we have relied on two large set of electronic health
records. We evaluated the quality of the common-sense
knowledge obtained by the framework presented in this pa-
per through manual review of randomly sampled relations
encoded in the knowledge graph, as well as implicit rela-
tions inferred in the embedding space. The evaluation results
for the two forms of knowledge that we have acquired are
promising: the same knowledge acquisition methodology
based on learning knowledge embeddings works well both
for commonsense knowledge and for medical knowledge.
Interestingly, the commonsense knowledge that we have
acquired was evaluated as being less neutral than than the
medical knowledge, because it often reflected the opinion of
the knowledge writer. In addition, the medical knowledge
that was acquired was evaluated as more plausible that the
commonsense knowledge.
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