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Abstract
This paper presents two alternative NLP architectures to analyze massive amounts of documents, using parallel processing.
The two architectures focus on different processing scenarios, namely batch-processing and streaming processing. The
batch-processing scenario aims at optimizing the overall throughput of the system, i.e., minimizing the overall time spent on
processing all documents. The streaming architecture aims to minimize the time to process real-time incoming documents
and is therefore especially suitable for live feeds. The paper presents experiments with both architectures, and reports the
overall gain when they are used for batch as well as for streaming processing. All the software described in the paper is

publicly available under free licenses.
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1. Introduction

The amount of textual information available to us to-
day is enormous and is increasing by the day. Current
technologies can analyze these texts at a very detailed
level, but NLP analyses are time-consuming. We dis-
tinguish two issues that need to be dealt with when
monitoring textual data that is both abundant and con-
stantly updated. First, the problem of dealing with
large amounts of data. Second, the problem of being
able to respond immediately when new information
comes in.

This paper introduces two architectures that make use
of parallel processing to address these issues. Depend-
ing on the requirements and quantity of the data this
can be done in different ways. Extremely large quan-
tities of data that do not require instant analysis can be
processed following a batch paradigm, where an en-
tire batch of documents is processed in one go. How-
ever, if immediate updates of new information is re-
quired, focus lies on a quick turn-out per document.
Streaming computing (Cherniack et al., 2003) expects
documents to arrive at any moment, and aims at re-
ducing the elapsed time needed to process one sin-
gle document. The two architectures we present each
tackle one of these scenarios. The batch processing ar-
chitecture provides a general setup for NLP pipelines
that can be used for processing large quantities of
documents distributing jobs over various nodes. The
streaming architecture can deal with live feeds using
parallellization to optimize processing time per docu-
ment.

We illustrate the idea behind the architectures through

the NewsReadelﬂ use case, where linguistic analyses
are used to form a “history recorder” of the news pub-
lished around a certain topic. This paper is structured
as follows. In Section[2] we describe the background
of this work. This is followed by a presentation of
the NLP modules we use in Section 3] Sections
and [5] introduce the Hadoop architecture for batch
processing and the Storm architecture for live stream-
ing, respectively. This is followed by the conclusion
in Section[6

2. Background and related work

Everyday, around 2 million news articles from thou-
sands of sources are published and this number is in-
creasingE] Keeping track of all this information, or
even a subset of information about a specific domain,
is unfeasible without technological support.

NewsReader (Vossen et al., 2014) aims to provide
such support by performing detailed linguistic anal-
yses identifying what happened to whom, when and
where in large amounts of data in four languages,
namely, English, Spanish, Italian and Dutch. The ex-
tracted information is stored as structured data in RDF
(to be specific, as Event-Centric Knowledge Graphs
(Rospocher et al., 2016)) so that information special-
ists can carry out precise search over the data. [Vossen
et al. (2014) explain how NewsReader functions as
a history recorder: keeping track and storing every-

nttp://www.newsreader-project.eu

>These numbers are based on an estimate by Lexis-
Nexis, previously published in (among others) [Vossen et
al. (2014).
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thing that has happened and relating new publications
to what is already known from this track record.
Keeping information specialists informed with the lat-
est news, while also allowing them to find connections
with events from the past requires efficient process-
ing of already available and incoming information. As
such, we distinguish two scenarios. The first scenario
is the batch processing scenario, where we need to
optimize the processing of large amounts of data. This
is necessary when initiating the history recorder with
news from the past decade or even updating it with all
news that was published on a specific day. The second
scenario focuses on keeping users up to date with the
most recent relevant changes. In this scenario, a new
relevant article is published and this incoming article
should be analyzed as quickly as possible. This live
streaming scenario focuses on optimizing processing
time for a single document.

The batch processing approach makes use of the
Apache Hadoop software libraryE] for implementing
scalable processing of large collections of data. The
Apache Hadoop framework and cluster architecture
simplify many issues in parallel computing and al-
low for scalable and efficient data storage. Apache
Hadoop offers a distributed file system and simple pro-
gramming model that, when used correctly, leads to
applications that scale almost linearly with data size,
are resilient to machine failures and require little hu-
man administration and configuration.

While Apache Hadoop offers great libraries for devel-
oping parallel applications, it is less trivial to run an
existing regular binary let alone a workflow or pipeline
of several related modules. For this use case appli-
cations are often run via Hadoop Streamingﬂ The
Hadoop streaming approach requires applications to
communicate via standard input and output streams
and this makes it difficult to signal failures and de-
velop robust pipelines. We avoid this short-coming
of Hadoop Streaming by implementing an application
using the Cascadini] software library. This allows us
to leverage the benefits of parallel computing using
Hadoop but still support a flexible modular pipeline.
The details of this approach will be discussed in Sec-
tion 4]

The live streaming computing approach presented in
Section relies on the Apache Storm frameworklﬂ
for implementing scalable processing of data streams.

3https://hadoop.apache.org/
4http://hadoop.apache.org/
docs/current/hadoop-streaming/
HadoopStreaming.html
°http://www.cascading.org
Shttps://storm.apache.org/
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Figure 1: Overview of NLP modules

Storm is a framework for streaming computing whose
aim is to implement highly-scalable and parallel pro-
cessing of data streams. The system presented in |Ar-
tola et al. (2014)) uses Storm to integrate and orches-
trate an NLP pipeline comprised by many modules,
but it does so following a batch processing paradigm.
The streaming approach presented here is an extension
of |Artola et al. (2014) to deal with streaming scenar-
ios.

3. A pipeline for event recognition

The frameworks we present here are independent of
the exact NLP modules that are used in the pipeline.
The only requirement posed to the modules is that
of using the NLP Annotation Format (Fokkens et al.,
2014, NAF) for representing linguistic annotations
when using the Storm architecture. The Hadoop setup
can in principle work with any setup that uses a com-
patible representation to communicate between mod-
ules.

Table (1| shows the NLP modules used in our experi-
ments, including the type of information they produce
and consume. The input and output columns of the ta-
ble indicate the information the module requires and
the information the module provides, respectively[]
This information can be used to group the modules
on the basis of compatible settings and sequential de-
pendencies for processing texts.

One of the main benefits of grouping the modules
based on requirements is that modules that are placed
in the same group can be executed in parallel, a fact

"These requirements are specified by means of NAF
layers. See [Fokkens et al. (2014} for more information
about NAF.
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Acronym | Description module input output
Tok Tokenizer ixa-pipe-tok raw text sentences, tokens
Topic Text classification ixa-pipe-topic raw text topics
PoS PoS tagging ixa-pipe-pos tokens lemmas, PoS-tags
Parse Parsing ixa-pipe.parse lemmas, PoS, tokens parse trees
Dep Dependency parsing ixa-pipe-srl lemmas, PoS dependency trees
WSD-ukb | Word Sense Disambiguation wsd-ukb lemmas, PoS lemmas, external refs.
WSD-ims Word Sense Disambiguation vua-ims lemmas, PoS lemmas, external refs.
NERC Named Entity Recognition ixa-pipe-nerc lemmas, PoS entities
NED Named Entity Disamiguation | ixa-pipe-ned lemmas, PoS, entities entities
Wikify Wikification ixa-pipe-wikify lemmas, PoS markables
Time Time expressions fbk-timepro lemmas, PoS, entities, | Timex3
parse trees
Coref Coreference Resolution corefgraph lemmas, PoS, parse trees coreferences
SRL Semantic Role Labeling ixa-pipe-srl lemmas, PoS semantic roles
eCoref Event coreference vua-eventcoreference | srl coreferences
TempRel Temporal relations fbk-temprel lemmas, PoS, entities, | tlink
parse trees, coref, timex3
CausalRel | Causal relations fbk-causrel lemmas, PoS, entities, | tlink
parse trees, coref, timex3,
tlink
Factuality | Factuality vua-factuality lemmas, PoS, entities, de- | factuality
pendencies, coref
Opinion Opinions opinion-miner lemmas, PoS, entities, de- | opinions
pendencies, parse trees

Table 1: NewsReader modules for English and their properties

that we exploit in our experiments on streaming pro-
cessing (see Section [5)). For instance, once the PoS
module has identified the Lemmas and PoS-tags, all
modules consuming lemmas and PoS annotations can
be run in parallel. In our pipeline, this includes the
Parse, NERC, Dep, and WSD modules. The NERC is
a requisite for some modules, such as the NED, Time
and Coref. The Time and Coref modules both also use
the output of the Parse module. These modules can
thus be placed in the same group and run in parallel as
well.

Figure[I| provides a full overview of the NLP modules
used in our experiments. The arrows indicate depen-
dencies between modulesﬂ A description and relevant
references of a previous version of the modules can be
found in |Agerri et al. (2015).

4. Batch processing with Hadoop

The first architecture we describe aims at optimiz-
ing processing time for a large set of documents. It
maintains a basic setup where complete documents are
passed through the entire pipeline applying individ-
ual NLP modules in a fixed order. We first describe
Hadoop and the Cascading approach we use. This is
followed by the main results of our latest processing

8This pipeline performs NLP analyses on English. Sim-
ilar pipelines for Dutch, Spanish and Italian have been de-
veloped in NewsReader. We use the English pipeline in our
experiments, because it is the most complex of the four.

task and a discussion about further optimizationsﬂ

4.1. Hadoop

The Hadoop (White, 2009) framework is designed
to distribute processing of very large datasets across
clusters of machines. Hadoop can partition data and
computation allowing users to create simple programs
that can scale from a single server to thousands of
servers. Moreover, it is robust and fault tolerant and
can run on commodity hardware.

The APIs are implemented in Java and there is no ex-
tensive support to run normal binaries. This can make
it challenging to directly support some applications.
An example is the NLP pipeline we use that consists of
modules programmed in various languages. The next
subsection describes how we address this challenge.

4.2. Cascading

The large variety of our NLP modules with differ-
ent requirements made it non-trivial to place into the
MapReduce framework (Dean and Ghemawat, 2008)),
Hadoop’s programming model, without a complete
rewrite of all modules. We address this challenge by
implementing a Hadoop application using the higher-
level Cascading library. Cascading is designed to sup-
port complex workflows on Hadoop without needing
to implement many individual jobs and implement
many low-level map and reduce functions. Using Cas-
cading we define functions on a flow of data (tuples).

9The basic architecture has previously been described
by us in a technical report (Agerri et al., 2015).
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This flow is then translated to one or many MapRe-
duce jobs.

For the Newsreader NLP pipeline we defined a data
flow consisting of tuples with a document identifier,
document NAF XML text and a supporting field indi-
cating whether a NAF document was processed suc-
cessfully. The tuples in this data flow are first stored
on the Hadoop distributed file system (HDFS) using
a custom application. During job execution tuples are
read from HDFS and supplied as input to many func-
tion applications in parallel. The functions take a tuple
as input, run a process calling an NLP module and col-
lect the output of this sub-process. Several functions
applications in sequence form the NLP pipeline. Due
to the nature of the NLP pipeline, both input and out-
put tuples have the same fields: most functions modify
only the NAF content.

Our implementation thus ‘wraps’ NLP modules in
functions that create a local process for each step in the
pipeline. This process receives a path to the NLP mod-
ule code which has been distributed using Hadoop’s
distributed cache. In addition, a path to a local scratch
directory and NAF input are provided (either via stan-
dard in or via a file path). Our application can integrate
any module that can be called from the command-line
taking standard input, a path to the module itself and
a path to a temporal or scratch directory and produces
a NAF document (either via standard out or via a file
path). Error handling of the modules is done by mon-
itoring the output streams of the process running the
module and by making use of time outs.

Our Cascading application runs the Newsreader
pipeline during the map phase of MapReduce. The
many map tasks each execute the pipeline in paral-
lel on input documents read from HDFS. One map
task may apply the pipeline to one or many docu-
ments. This decision is determined by how data is
partitioned on HDFS. This allows parallel execution
of the pipeline on many documents and makes use of
data locality as much as possible.

4.3. Scaling and Evaluation

We used the Cascading architecture to process nearly
2.5 million news articles on the Hadoop cluster of
SURFsaraPEI We obtained news articles spanning 11
years of financial news about the car industry from
LexisNexis. We ran initial tests investigating the cor-
relation between document length and processing time
and observed that processing time increases linearly.
This is not surprising given that most modules in our
pipeline work on a sentence level. In this set of ar-
ticles from the same subdomain, writing style is not

Ohttps://www.surfsara.nl

Newsreader Modules: Execution Time Statistics
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Figure 2: Newsreader Modules: execution time statis-
tics

likely to vary excessively and longer documents will
thus typically contain more sentences of similar length
and style as shorter documents. We selected the 40%
of the articles that consisted of 1,000 - 4,000 charac-
ters, because this covers the typical news article length
resulting in the 2.5 million articles mentioned above.
The total process was divided in 225 jobs resulting
in approximately 45 million NLP processing tasks
(where one task corresponds to the execution of a sin-
gle module). Figure 2] provides a boxplot of the exe-
cution time of the 45 million NLP processing tasks.
The average processing time was 4.4 minutes per doc-
ument. Overall, it took 198,134 core hours (a sin-
gle CPU core would take 198,134 hours to process
the data) to process the entire dataset. The SURF-
sara cluster consists of 170 nodes, 1,400 cores and 2
petabytes of data storage. This means that, in case of
full capacity, 141.5 hours would be needed to process
the full dataset with an average of approximately 17.7
thousand documents per hour

The source code to the newsreader-hadoop Cascading
application is available under a Apache 2.0 license and
can be found on GitHu In addition to the applica-
tion source a full distribution including all NLP mod-
ules is available as download from the GitHub site.

""Hadoop at SURFsara is shared among other users. In
practice, we processed around 4,000 documents per hour.

Zhttps://github.com/sara-nl/
newsreader—hadoop
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Figure 3: Streaming computing architecture

5. Streaming processing with Storm

Streaming processing deals with scenarios where doc-
uments may arrive at any time and have to be pro-
cessed as fast as possible. In batch processing all the
cluster nodes are busy processing a large set of doc-
uments, whereas in a streaming processing scenario
resources may be idle, waiting for documents to ar-
rive. Therefore, streaming computing focuses on max-
imizing resource usage for each document minimizing
document latency. In our approach, we minimize doc-
ument latency by running the pipeline modules for one
document in parallel.

5.1. A distributed architecture for streaming
processing

We implement the streaming architecture using virtual
machines (VMs). Virtualization is a widespread prac-
tice that increases the server utilization and addresses
the variety of dependencies and installation require-
ments. All the required software and the NLP mod-
ules are installed into VMs and can be deployed into a
cluster of nodes. We distinguish two types of VMs in
the distributed architecture:

e There is one boss VM which is the main entry
point and receives the documents to be analyzed.

e There are many worker nodes performing the ac-
tual processing. Instances of NLP modules are
deployed among worker nodes, and the execution
is performed in parallel.

Figure [3] shows the main architecture for streaming
processing. Documents arrive to the boss node and
are stored in a queue, which streamlines the document
flow and avoids overloading the system. Documents
enter the processing chain as soon as there is a worker
node ready to accept them. Once entered, they are an-
alyzed using all available resources, that is, the NLP
modules of the processing chain are executed in par-
allel using different worker nodes, whenever possible.

The Nimbus component in the boss node orchestrates
the processing flow and performs the necessary load
balancing between the machines in the cluster. The
boss node also contains a MongoDB database where
partially annotated documents are stored. When the
processing chain finishes, the resulting documents are
removed from the MongoDB database, stored into an
output queue and sent to a central database, where
new information is merged with the information rep-
resented so far.

Inside the worker nodes, each NLP module is wrapped
inside a Storm bolt, which performs several tasks. The
bolt receives the document identifier as a tuple, and it
queries the MongoDB database to retrieve the infor-
mation pieces needed by the particular module. For
example, the coreference module requires terms, con-
stituent trees and named entities to create the corefer-
ence chains, and thus the bolt node retrieves only these
layers and not retrieve any additional layers (such as
dependency trees, factuality or semantic roles) of the
NAF document from the database. When the module
finishes, the bolt node updates the database to insert
the new annotations, and passes the document identi-
fier to the next stage in the processing chain.

We describe the topology in a declarative way, speci-
fying the type of information each NLP module pro-
duces and consumes. This leads to a precise definition
of the pre- and post-requisites of the modules, which
is used to automatically decide the module execution
order, including modules that are executed in parallel
if there is no dependency between them. Figure [T| pre-
sented in Section [3.| shows the topology used in our
experiments.

Most NLP modules are standalone programs, but
some work following a client/server architecture.
Servers typically consume many resources making
it inefficient to use many instances. To overcome
this limitation, the system allows creating specialized
worker nodes that only execute some specific tasks.
The NED module server requires 8GB of RAM and
is deployed into a dedicated worker node used exclu-
sively for NED. Using a custom scheduler inside Nim-
bus we guarantee that Storm will send the NED tuples
to the dedicated worker, and that this worker will only
perform this particular task.

5.2. Experiments and evaluation

We implemented a Poisson process that simulates a
streaming scenario with documents arriving at any
moment. Poisson processes emulate events occurring
individually at random moments, but tending to oc-
cur at an average rate when viewed as a group. Pois-
son processes contain one parameter, the rate param-
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Proc. Elapsed Idle Latency
time time (doc/sent/token)
290,276 148,156 7,558 148.60/4.18/0.17

Table 2: Streaming processing in seconds of 1000 doc-
uments.

eter, which sets the average number of events per unit
of time. In our experiments we set the rate param-
eter to 1,000 documents within a time frame of 40
hours. The documents contained 35,480 sentences
and 872, 393 tokens.

We created a cluster comprising one boss node (1CPU,
6GM RAM), one dedicated worker node for NED
(1CPU, 10GB), and 7 worker nodes for the rest of
the modules (2 CPU, 8GB). Table [2] shows the results
of the processing. Processing time indicates the time
spent when serial processing is used. The elapsed time
indicates time when using parallel processing. La-
tency is the average time needed to process one docu-
ment/sentence/word.

Processing the documents in a serial fashion would re-
quire circa 80 days, each document taking 290 sec-
onds in average. Parallel processing drops this latency
to 148.6 seconds, a gain of 50%. Looking at Figure I]
one would expect higher gains because there are up
to 6 modules running in parallel. The reason for not
obtaining a maximum latency lies in the imbalance
among the modules’ processing times. Some modules
need much more time to complete their task acting as
bottlenecks that hurt the overall performance.

Scripts for creating a fully working streaming cluster
are publicly available and can be distributed freelyE]

6. Conclusion and future work

We presented two architectures for batch and stream-
ing scenarios. The architectures serve two different
but complementary purposes: batch processing allows
dealing with massive amounts of documents in one go;
streaming processing allows dealing with the continu-
ous flow of new information.

The Hadoop based batch approach was used to ef-
ficiently process a very large quantity of documents
(2,498,633), with an overall latency of 4.4 minutes
per document providing a potential of processing al-
most 18 thousand documents per hour. The stream-
ing architecture based on Storm allows dropping the
overall document latency by half, which allows quick
consumption of new documents into the system.

The parallel execution of unrelated modules within a
pipeline application could be explored for batch pro-

Bhttps://github.com/ixa-ehu/
vmc—from-scratch

cessing with Hadoop. This might reduce pipeline ex-
ecution time, but would go against the ideas behind
the MapReduce programming model and complicate
resource allocation. Another point worth examining
is finding the sweet spot of documents processed per
map task. One map task executes the NLP pipeline
for one or many documents depending on how data is
stored on HDFS. Scheduling these tasks incurs over-
head but many mappers improve cluster throughput
which for multi-tenant clusters is preferred. Finally,
the pipeline definition could be improved to support
more flexible workflow definitions and better error
handling.

As mentioned in Section [5] the optimization by par-
allellization of modules is not as high as might be as-
pected due to certain tools forming a bottleneck. One
possible way of decreasing the overall latency is to
run such demanding modules on stronger nodes in the
cluster We hope to investigate this option in future
work.
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