
Towards a Language Service Infrastructure for Mobile Environments

Nguyen Cao Hong Ngoc, Donghui Lin, Takao Nakaguchi, and Toru Ishida
Department of Social Informatics, Kyoto University

Yoshida-Honmachi, Sakyo-Ku, Kyoto, 606-8501, Japan
nchngoc@ai.soc.i.kyoto-u.ac.jp, {lindh, nakaguchi, ishida}@i.kyoto-u.ac.jp

Abstract
Since mobile devices have feature-rich configurations and provide diverse functions, the use of mobile devices combined with
the language resources of cloud environments is high promising for achieving a wide range communication that goes beyond the
current language barrier. However, there are mismatches between using resources of mobile devices and services in the cloud such
as the different communication protocol and different input and output methods. In this paper, we propose a language service
infrastructure for mobile environments to combine these services. The proposed language service infrastructure allows users to
use and mashup existing language resources on both cloud environments and their mobile devices. Furthermore, it allows users to
flexibly use services in the cloud or services on mobile devices in their composite service without implementing several different
composite services that have the same functionality. A case study of Mobile Shopping Translation System using both a service in the
cloud (translation service) and services on mobile devices (Bluetooth low energy (BLE) service and text-to-speech service) is introduced.

Keywords: language service infrastructure, mobile environment, service composition

1. Introduction
Due to the developments of both transportation systems and
the Internet, geographical distance is no longer a barrier for
people to communicate with each other (Cairncross, 2001).
Intercultural and multilingual activities are occurring fre-
quently in daily life (Kim, 2000). However, differences in
language and culture remain critical issues (Sechrest et al.,
1972) (McGorry, 2000) (Scollon et al., 2011) (Piller, 2011),
that raise difficulties in understanding each other, and limit
us from achieving the fullest communication expected. Re-
cent significant advances in technology have made mobile
devices such as smart phones and tablets to popular in daily
life. The advantages of mobile devices should make it pos-
sible to overcome language barriers in communication.
Consider the scenario of a Japanese girl traveling to Viet-
nam with an American. While walking on the street, her
smart phone receives notification of a special discount at a
Vietnamese restaurant. The notification and further infor-
mation on her phone are in Japanese while her friend, the
American, receives the same notification but in English. It
is very convenient for them because they do not know Viet-
namese and the local are not good at English or Japanese. It
is good for both travelers and the businesses since without
the notification and translation, travelers may face the lin-
guistic barrier and the restaurant may miss out on potential
customers.
To solve the similar problems, the concept of mobile cloud
computing (Qureshi et al., 2011) (Bahl et al., 2012) (Khan
et al., 2014), where the mobile device can use the cloud for
data processing, has been proposed. Several mobile cloud
applications are available, for example Google Map, Gmail
for iPhone, Cisco’s WebEx on iPad. To implement such ap-
plications, developers must have good knowledge of both
cloud computing techniques and mobile device program-
ming techniques. In addition, critical issues of composing,
and integrating different types of services need to be solved.
However, these tasks are not easy for all developers. One of
the promising solutions is using a language service infras-

tructure, which provides language resources and integrates
services in mobile devices. By using the language ser-
vice infrastructure for mobile environments, users can use
both existing language resources in the cloud and resources
of mobile devices, and create their own services. There
are existing language service infrastructures such as Lan-
guage Grid (Ishida, 2006), CLARIN (Váradi et al., 2008),
PANACEA (Bel, 2010), Meta-Share (Piperidis, 2012), and
LAPPS (Ide et al., 2014), however none of them support for
both services in the cloud (hereafter called cloud services)
and services on mobile devices (hereafter called mobile ser-
vices). In this research, we achieve our goal by extending
the Language Grid, which is the language service infras-
tructure for cloud environments, to cover mobile environ-
ments.

Since services in the cloud and services on mobile devices
have different communication protocols and different in-
put and output methods, establishing the language service
infrastructure for mobile environments faces two main is-
sues: (1) for the atomic services: utilizing both services in
the cloud and services on mobile devices (including data on
mobile devices and device functions wrapped as services),
and (2) for the composite services: handling the differences
of services in the cloud and services on mobile devices and
managing the different execution of services in the two en-
vironments.

The remainder of this paper is organized as follows: Sec-
tion 2 explains the reason why the language service infras-
tructure for mobile environments is needed and introduces
our design concept. The architecture of our language ser-
vice infrastructure is presented in Section 3. Section 4 de-
scribes the realization of the proposed language service in-
frastructure. A case study on the use of the proposed lan-
guage service infrastructure is shown in Section 5. Section
6 describes the related work. Finally, Section 7 concludes
this paper.

4472



2. Language Service Infrastructure for
Mobile Environments

2.1. Why Language Service Infrastructure for
Mobile Environments?

Since 2006, Language Grid (Ishida, 2006) (Murakami et
al., 2010) (Ishida, 2011) (Ishida et al., 2012), the language
service infrastructure, has been operated. The language re-
sources are wrapped as services and provided those services
to users. Although Language Grid is the language infras-
tructure supporting people in intercultural and multilingual
activities, Language Grid provides only cloud language ser-
vices and the infrastructure to combine them. There are
many scenarios in which the combination of both services
in the cloud and services on mobile devices will bring many
benefit to users.
With the rapid growth in hardware complexity and ser-
vices, mobile devices now offer many sophisticated func-
tions such as speech recognition, text-to-speech, Bluetooth
low energy (BLE) links, gesture recognition, camera, text
service. The use of mobile devices to assist people in over-
coming language barriers is becoming more and more pop-
ular such as translation via an image of unknown word, the
spoken word, and gestures. There are many such applica-
tions that take advantage of the display screen, microphone,
speaker, camera, gesture which are unique functions in mo-
bile devices for translation. The use of available functions
in mobile devices as well as the cloud services brings us
several advantages such as providing more alternatives in
selecting a service, and utilizing unique functions that are
used on-site as sensor services (for example the camera,
gesture, BLE). These functions cannot be replaced by cloud
services.
Thus, the use of resources and services on mobile devices
as well as resources and services in the cloud is essential.
However, currently, there is no infrastructure that can sup-
port those tasks easily. Each developer has to find his or her
own solution for creating such applications, which is time
consuming. A language service infrastructure for mobile
environments is required.

2.2. Design Concept
Given the necessity of combining cloud services and mo-
bile services, we need a language service infrastructure that
provides language resources and can integrate with mobile
services so that users can create and use their own services.
Using this infrastructure, users can invoke existing lan-
guage resources which are registered on the language plat-
form such as Google translation service, Bing translation
services, Baidu translation service, SYSTRANet, Stand-
ford POS Tagger, SVMTool. Moreover, users can compose
those existing resources with not only their own language
resources in their mobile devices but also their mobile de-
vice functions which already wrapped as services to create
their required composite services. The language service in-
frastructure for mobile environments that fulfills our design
concept is described in Figure 1:

• Resource: includes the mobile device resources such
as device functions and user’s data (for example: par-
allel texts) and the existing cloud resources.

Figure 1: Design concept

• Atomic service: includes Mobile Atomic Services and
registered language services in the cloud. Mobile
Atomic Services can be atomic languages services on
mobile devices or mobile device functions wrapped as
services.

• Composite service: Atomic services can be composed
by the Web service workflows. A services described
by a workflow is called a composite service. Various
composite services can be made, including the mobile
services and cloud services.

• Application: can be any application which utilize the
composite service via the language service infrastruc-
ture on mobile devices.

3. Architecture
The main idea of this design concept is an appropriate in-
frastructure to combine the services in the cloud and ser-
vices on mobile devices. However, these services have
different characteristics, for instance, the input and out-
put method, the communication protocol. While services
in the cloud usually require input and output parameters,
services on mobile devices sometimes does not require all
those parameters because service on mobile devices use de-
vice components as input and output. The input component
can be the microphone, the camera, the geoloc, the com-
pag, the gesture; the output component can be the display
screen, the speaker, the vibration sensor. With regard to the
communication protocol, mobile services use intra-device
connections while cloud services need an Internet proto-
col. Therefore, our proposed framework includes appropri-
ate modules to deal with those issues.

3.1. Overall Framework
The language service infrastructure for mobile environ-
ments consists of four main components: Service Super-
visor, Grid Composer, Service Database and Service Con-
tainer. The idea of Grid Composer Component and Ser-
vice Database Component are those of the Language Grid
(Murakami et al., 2011) but some unnecessary modules are
omitted. In fact, Service Supervisor Component Service
Container Component are modified.

• Service Supervisor: controls service invocation by ser-
vice users. This component is in charge of both inter-
grid and intra-grid execution of services.

4473



Figure 2: Overall framework

• Grid Composer: creates a grid network within its ser-
vices grid. Though Language Grid supports inter-grid
network to share service information across grids, our
framework does not support it and we omit the inter-
grid data access module.

• Service Database: is a repository to store various types
of service information.

• Service Container: consists of all services such as
composite services, mobile atomic services, and some
modules which control the execution of those services.

Figure 2 describes the overall framework of the language
service infrastructure for mobile environments.

3.2. Service Supervisor
The Service Supervisor controls service invocation by ser-
vice users. Similar to Language Grid, the control covers
access endpoint locating, and access logging. The User
Request Handler extracts from the service request the in-
formation necessary to invoke a service. The extracted in-
formation is sent to the Invocation Processor, which exe-
cutes the sequence of pre-process, service invocation, post-
process, and logging.
In order to establish method invokers for both cloud ser-
vices and mobile services, both Inter-Grid Executor and
Intra-Grid Executor are needed. The Intra-Grid Executor
is responsible for creating method invokers for services on
Service Container while the module Inter-Grid Executor is
responsible for creating method invokers for cloud services.
In Inter-Grid Executor, SOAP Method Invoker (SOAP MI)
uses SOAP to communicate with services while JSRPC MI
uses JSON-RPC. SOAP MI encodes a method invocation
request as a SOAP request and decodes SOAP response to
return object. SOAP MI and JSRPC MI have same func-
tionality as in the original Service Grid.
This component is modified to deal with the differences
in communication method between cloud services and ser-
vices on the mobile services. For example, in order to

use the speech recognition service in mobile devices, Java
Method Invoker (Java MI) is used while in order to use the
translation service in the cloud such as Google translation
service, SOAP MI is used. The composite service that con-
sists of speech recognition service and Google translation
service for translating the voice message to another lan-
guage needs to satisfy the different communication meth-
ods of its two atomic services. Therefore, Intra-Grid Ex-
ecutor as well as Inter-Grid Executor are played the impor-
tant role in our framework.

3.3. Grid Composer
The Intra-Grid Data Access provides read and write inter-
faces for the Service Database. Though we actually do not
need to compose grid because we focus on combining mo-
bile services and cloud services inside mobile devices, we
keep the Grid Composer module so that we will be able to
support inter-grid connection in the future.

3.4. Service Container
The Service Container executes composite services and
atomic services. The Mobile Atomic Service that executes
atomic services by wrapping resources (including mobile
data and device functions) as services with standard in-
terfaces. The Composite Service provides service work-
flow execution, and dynamic service binding defined as
system requirements. The Service Adapter is designed to
deal with the adaptation of device functions wrapped as ser-
vices on mobile devices to suit ordinal cloud services. The
Service Execution Manager has responsibility of execut-
ing Composite Services (cloud services combined with mo-
bile atomic services), especially some monitoring or event-
detecting services. These services run continuously to de-
tect events and have their own life cycles whereas normal
services work once when invoked. Therefore, the compos-
ite services that contain the monitoring function must be
run constantly. For example, the BLE detection service,
which uses Bluetooth connection to detect the nearby bea-
cons and returns the beacon list, needs to update beacon
information every second. Service Execution Manager sup-
ports this kind of execution. To deal with event-detecting
services without the event processing middle-ware, we sim-
plify the execution model by introducing periodical exe-
cution of composite services and a queue for each event-
detecting service instead of centralizing on shared event-
queue middle-ware.

4. Realization of the Language Service
Infrastructure for Mobile Environments

Implementing the language service infrastructure for mo-
bile environments requires two main issues to be solved: (1)
for the atomic services: utilizing both services in the cloud
and services on mobile devices (including mobile data and
device functions wrapped as services), and (2) for the com-
posite services: handling the differences of service in the
cloud and services on mobile devices and the different exe-
cution demands of services in the cloud and services on mo-
bile devices. Our proposed framework provides some spe-
cial modules including Inter-Grid Executor, Mobile Atomic
Services, Service Adapter, Service Execution Manager in

4474



Service Interface Input Output Function
DeviceSpeechRecognitionService Language Text Receive speech via the microphone and convert

to text
DeviceTextToSpeechService Language, Text,

VoiceType,
AudioType

N/A Read a text

DeviceGestureService Language Text Recognize text from hand-writing on screen
DeviceLocationService N/A Position Return current position (latitude, longitude)
DeviceTextService Language ListOfSuggestion Check spelling
DeviceBLEService N/A ListOfBeacons Detect nearby beacons
DeviceCameraService CaptureRequest CaptureResult Capture a single image from the image sensor

Table 1: Interfaces of device functions

order to fulfill these requirements. However, in the initial
phase, we only force on the most important parts to realize
the language service infrastructure. They are the Mobile
Atomic Services and the Service Adaptation.

4.1. Mobile Atomic Services
This is one module of Service Container component and
consists of mobile data wrapped as services and device
functions wrapped as services. Mobile data can include
user’s dictionaries or parallel texts or any user data which
can be wrapped as services with wrappers compatible wrap-
pers with our framework. In order to utilize the device func-
tions, the compatible interfaces (Table 3.4.) are provided
using device native APIs.

4.2. Service Adapter
This is one module of Service Container component to deal
with the adaptation of device functions wrapped as services
on mobile devices. Since services in the cloud usually re-
quire input and output parameters, services on mobile de-
vices sometimes does not require all those parameters (be-
cause service on mobile devices use device components as
input and output), some services which have the same func-
tionality in the cloud and on mobile devices have different
interfaces. For instance, the interface of speech recognition
service in Language Grid has speech as input while the in-
terface of speech recognition service in mobile devices does
not. This complicates the developers’ task when they create
the composite service. For each concrete service, they have
to write one composite service that corresponds to that ser-
vice’s interface. It is more convenient for developers if they
need to write just one composite service and have it bound
to many concrete services that have the same functionality.
Service adapters in the framework are the bridge between
the developer view and concrete services. Service adapters
can handle:

• the difference in service names (for example: the com-
posite service requires DeviceTextToSpeechService but
the concrete service is TextToSpeechService)

• the difference in service input and output parameters
(for example: DeviceTextToSpeechService requires
only language as input parameter but TextToSpeech-
Service requires both language and speech as input
parameters)

Figure 3: An example of interface adaptation process of
text-to-speech translation service

Our proposed solution is to select the Service Adapter au-
tomatically by Service Container when the adaptation is
needed. When a composite service combines Translation-
Service and DeviceTextToSpeechService and the concrete
service of DeviceTextToSpeechService is the cloud service,
the Service Container assign the Service Adapter to the tar-
get of invocation of DeviceTextToSpeechService from the
composite service (Figure 3). In this example, DeviceText-
ToSpeechService is required but the concrete service is Text-
ToSpeechService so the service names are obviously dif-
ferent. Moreover, the text-to-speech service on Android
devices does not need the output parameter (because the
speech can go directly through the speaker) whereas the
text-to-speech service in Language Grid requires the speech
as the output parameter. Therefore, Service Adapter has to
deal with two differences (the difference in service names
and the difference in service input and output parameters).
The different in service name is fixed in the process of re-
turning the actual wrapper by Service Container. Instead of
finding service by types, Service Container will find all ser-
vices and return the compatible service by using the map-
ping table. The different in service input and output pa-
rameters is fixed by adding more functions corresponding
to each service adapter. For example, the adapter for De-
viceTextToSpeechService needs a function to read the audio
file from the output of TextToSpeechService on the mobile
device. Table 4.2. shows some examples of how to solve
different interfaces between mobile services and cloud ser-
vices.

4475



Adapter Name Service Interface
(Android)

Service Interface
(Language Grid)

Description

DSRStoSRSAdapter

public interface
DeviceSpeechRecognitionService {

String recognize (String language);

}

public interface
SpeechRecognitionService {

String recognize (String language,
Speech speech);

String[] getSupportedVoiceTypes();
String[] getSupportedAudioTypes();

}

This adapter implements the adap-
tation of speech recognition service
in Language Grid to the speech
recognition service on Android de-
vices. A function to record an audio
file from the microphone to be the
input of speech recognition service
in Language Grid is required.

DTTSStoTTSSAdapter

public interface
DeviceTextToSpeechService {

void speak (String language, String
text, String voiceType, String
audioType);

. . .

}

public interface
TextToSpeechService {

Speech speak (String language,
String text, String voiceType, String
audioType);

. . .

}

This adapter implements the adap-
tation of text-to-speech service in
Language Grid to the text-to-speech
service on Android devices. A
function to play an audio file, which
is the output of text-to-speech ser-
vice in Language Grid, is required.

Table 2: Examples of interface adaptation of mobile services (Android) and cloud services (Language Grid)

5. Case Study
In this section, we will introduce some examples which use
both services in the cloud and services on mobile devices
to support people overcome the language barrier in inter-
cultural and multilingual environments.

5.1. Mobile Shopping Translation System
As mentioned in the scenario in the Introduction, the store
in the system will have a beacon that advertises the store’s
information. When travelers across the store, their mobile
devices (running the application of this system) will receive
notification from the beacon. Travelers can view on the mo-
bile or listen via their headphone the summary or detailed
information from the stores in their own language before
making decision to go inside the store or not. The beacon
only advertises the store’s information; other information
will be transferred between the system server and the user’s
mobile device associated with existing translation services
provided in the cloud. The stores can promote their infor-
mation in any language, regardless of customer’s languages
and the language translation is done transparently to the
customer. The customer can choose the language desired.
In Mobile Shopping Translation System, composite service
is a combination of BLE service, translation service and
text-to-speech service. BLE service is a service on mobile
devices. Translation service can be any provided translation
service in the cloud such as Bing translation, Google trans-
lation, Baidu translation. Text-to-speech service can be a
service in the cloud (for example text-to-speech service of
Language Grid) or a service on mobile device (for exam-
ple text-to-speech function on Android device wrapped as
a service). This example application shows the necessary of
composing cloud services and mobile services. Without the
proposed language service infrastructure, it is more com-
plicated to combine the BLE function, the text-to-speech
function with the translation service in the cloud since the
device functions have not realized as services. In addition,
developers have to write two different composite services,
one for the text-to-speech function on the device and one

Figure 4: The composite service of Mobile Shopping
Translation System (MSTS)

for the text-to-speech service in the cloud. Moreover, if
someone else has to develop other application which re-
quires BLE function or text-to-speech function, he or she
has to write everything from the beginning. Thanks to the
proposed language service infrastructure, BLE function and
text-to-speech function are realized as services, developers
easily combine them with other services and they need to
write only one composite service which can use both text-
to-speech service in the cloud and text-to-speech service on
mobile devices (Figure 4).

The language service infrastructure calls the ServiceCon-
tainer.java file of the Service Container, method findAll(),
which returns all types of services, while the BindingSer-
viceFactory.java (Figure 5) is called to check if the com-
posite service needs DeviceTextToSpeechService while the
wrapper provides TextToSpeechService; the adapter must

4476



Figure 5: Classes related with interface adaptation process
in Mobile Shopping Translation System application

download the audio file to the device and play it because
the result of the actual wrapper has no output parameter.
In BindingServiceFactory.java file of the Composite Ser-
vice, the variable interfaceClass is the interface that the
composite service will invoke. The variable clazz is the
class of wrapper. The variable s is wrapper instance. What
adapter is required to do is convert the interface that clazz
implements to interfaceClass.findAdapter() function is im-
plemented as a table-lookup process.

5.2. Other Applications
There are more interesting applications that can be created
as combinations of services in the cloud and services on
mobile devices. People have already developed some ini-
tial applications; but they have to develop everything by
themselves. Due to our proposed infrastructure, their tasks
become easier because they only have to combine the exist-
ing services in the cloud and on mobile devices. Our pro-
posed infrastructure has covered most of the main issues in
more fully utilizing the power of cloud services and mobile
services.

• Speech translation application: This application re-
ceives speech via device’s microphone, converts to
text, translates it into target language and output the
translated text as speech via the device’s loudspeaker.
The speech recognition service, translation service and
text-to-speech service are required. However, both
mobile device and the cloud provide the speech recog-
nition service and text-to-speech service. To utilize
both cloud and mobile services, two adapting func-
tions are needed: one function to record an audio file
from the microphone and pass it as input to the speech
recognition service in the cloud and one function to
play an audio file, which is the output of text-to-speech

service in the cloud.

• User manual from the bar code application: The main
idea of this application is to use device’s camera to
scan a bar code then retrieve and show the correspond-
ing user manual (and price). Therefore, the composite
service includes the camera service, user manual cor-
pus. The camera service is a mobile service while user
manual corpus is the service in the cloud. The trans-
lation service in the cloud and user dictionaries on the
mobile device may be integrated if necessary.

• Photo wiki application: The main idea of this appli-
cation is to use device’s camera to scan a word of
interest to the user and return the wiki of that word.
The camera service, image-to-text service and wiki re-
source are three main services in the composite service
needed for this application.

6. Related Work
Numerous of platforms have been proposed for creating,
coordinating and making language resources available and
readily usable for users. They are Language Grid (Ishida,
2006), PANACEA (Bel, 2010), Meta-Share (Piperidis,
2012), and LAPPS (Ide et al., 2014). None of these, un-
fortunately, satisfy the requirements of utilizing services in
the cloud and device functions on mobile devices, none of
them is satisfied. Language Grid, PANACEA, Meta-Share,
LAPPS provide language resources and language tools and
some of them provide a workflow manager or composition
tools but all of them are web-service based. None of those
platforms offer services targeting mobile device function.
The proposed framework can utilize services on both cloud
and mobile devices, as well as supporting the combination
among them.
Language Grid (Ishida, 2006), Meta-Share (Piperidis,
2012) define their own standards to ensure the compati-
bility of services. The core of the Meta-Share model is
the resourceInfo component, which contains all the infor-
mation relevant for the description of a language resource.
LAPPS (Ide et al., 2014) defines a Web Service Exchange
Vocabulary and established a Web Service Exchange Vocab-
ulary Repository. Each service in the LAPPS Grid pub-
lishes metadata describing what it requires for input and
what it produces as output. Web Service Exchange Vocabu-
lary specifies a terminology for a core of linguistic objects
and features exchanged among natural language processing
tools. That is, it not only identifies a standard terminology
but also indicates the relations among them. PANACEA
(Bel, 2010) is grounded on the use of existing standards for
defining web service input and output formats, i.e. Trav-
eling Objects. It has implemented converters to reduce the
bulk of input and output format problem. Our proposed
framework aims to solve the differences between the inter-
faces of services on cloud and services in mobile devices.
Those services have the same functionality but require dif-
ferent input and output parameters since mobile devices
can interact directly with users via their device components
such as the microphone or speaker. Thanks to the Service
Adapter module in our proposed framework, this issue is

4477



resolved so that developers need not to write different com-
posite services for the same functional service on different
devices (mobile device or located servers).

7. Conclusion
This paper proposed a language service infrastructure for
mobile environments. It opens a new approach to over-
come the language barrier with mobile devices. Our pro-
posed infrastructure use both Inter-Grid Executor Module
and Intra-Grid Executor Module to overcome the differ-
ent of communication protocols between cloud services and
mobile services; Service Adapter deals with the different in
input and output methods between cloud services and mo-
bile services; and Service Execution Manager deals with
the execution of the composite service, especially those
that includes the monitoring services. The proposed infras-
tructure not only allows users to use existing language re-
sources in the cloud as well as their own language resources
on their mobile devices, but also allows users mashup cloud
services and mobile services (services on the devices and
device functions wrapped as services). In addition, it allows
users to flexibly combine cloud services and/ or mobile
services in their composite services without implementing
many different composite services which have the same
functionality. Finally, a case study of Mobile Shopping
Translation System was presented to illustrate our proposed
language service infrastructure.
Since some device functions place restriction on threads
(for example, some of them need to be invoked in user in-
terface (UI) thread or non-UI thread) or exclusive execu-
tion (for example, some of them can be executed only from
a single client), the framework should deal with this issue.
This task is considered to be our future work.

8. Acknowledgements
This research was supported by a Grant-in-Aid for Scien-
tific Research (S) (24220002, 2012-2016) from Japan So-
ciety for the Promotion of Science (JSPS).

9. Bibliographical References
Paramvir Bahl, Richard Y. Han, Li Erran Li, and Ma-

hadev Satyanarayanan. 2012. Advancing the state of
mobile cloud computing. In Proceedings of the Third
ACM Workshop on Mobile Cloud Computing and Ser-
vices, MCS ’12, pages 21–28, New York, NY, USA.
ACM.

Núria Bel. 2010. Platform for automatic, normalized
annotation and cost-effective acquisition of language
resources for human language technologies. panacea.
Procesamiento del Lenguaje Natural, 45:327–328.

Frances Cairncross. 2001. The death of distance: How the
communications revolution is changing our lives. Har-
vard Business Press.

Nancy Ide, James Pustejovsky, Christopher Cieri, Eric
Nyberg, Denise DiPersio, Chunqi Shi, Keith Suder-
man, Marc Verhagen, Di Wang, and Jonathan Wright.
2014. The language application grid. Proceedings of the
Ninth International Language Resources and Evaluation
(LREC2014), pages 22–30.

Toru Ishida, Yohei Murakami, Donghui Lin, Masahiro
Tanaka, and Rieko Inaba. 2012. Language grid revis-
ited: An infrastructure for intercultural collaboration. In
Yves Demazeau, Jrg P. Mller, Juan M. Corchado Rodr-
guez, and Javier Bajo Prez, editors, Advances on Practi-
cal Applications of Agents and Multi-Agent Systems, vol-
ume 155 of Advances in Intelligent and Soft Computing,
pages 1–16. Springer Berlin Heidelberg.

Toru Ishida. 2006. Language grid: An infrastructure for
intercultural collaboration. In IEEE/IPSJ Symposium on
Applications and the Internet, pages 96–100.

Toru Ishida. 2011. The language grid: Service-oriented
collective intelligence for language resource interoper-
ability. Springer Science & Business Media.

Atta ur Rehman Khan, Mazliza Othman, Sajjad Ahmad
Madani, and Samee Ullah Khan. 2014. A survey of mo-
bile cloud computing application models. IEEECommu-
nications Surveys Tutorials, 16(1):393–413.

Young Yun Kim. 2000. Becoming intercultural: An in-
tegrative theory of communication and cross-cultural
adaptation. Sage Publications.

Susan Y. McGorry. 2000. Measurement in a crosscultural
environment: survey translation issues. Qualitative Mar-
ket Research: An International Journal, 3(2):74–81.

Yohei Murakami, Donghui Lin, Masahiro Tanaka, Takao
Nakaguchi, and Toru Ishida. 2010. Language service
management with the language grid. In The Proceedings
of the International Conference on Language Resources
and Evaluation (LREC2010), pages 3526–3531.

Yohei Murakami, Donghui Lin, Masahiro Tanaka, Takao
Nakaguchi, and Toru Ishida. 2011. Service grid archi-
tecture. In The Language Grid, pages 19–34. Springer.

Ingrid Piller. 2011. Intercultural communication: A criti-
cal introduction. Edinburgh University Press.

Stelios Piperidis. 2012. The meta-share language re-
sources sharing infrastructure: Principles, challenges,
solutions. In The Proceedings of the Eighth Interna-
tional Conference on Language Resources and Evalua-
tion (LREC2012), pages 36–42.

Shahryar Shafique Qureshi, Toufeeq Ahmad, Khalid
Rafique, and Shuja ul islam. 2011. Mobile cloud com-
puting as future for mobile applications - implementa-
tion methods and challenging issues. In Cloud Comput-
ing and Intelligence Systems (CCIS), 2011 IEEE Inter-
national Conference on, pages 467–471, Sept.

Ron Scollon, Suzanne Wong Scollon, and Rodney H Jones.
2011. Intercultural communication: A discourse ap-
proach. John Wiley & Sons.

Lee Sechrest, Todd L Fay, and SM Hafeez Zaidi. 1972.
Problems of translation in cross-cultural research. Jour-
nal of cross-cultural psychology, 3(1):41–56.

Tamás Váradi, Steven Krauwer, Peter Wittenburg, Martin
Wynne, and Kimmo Koskenniemi. 2008. Clarin: Com-
mon language resources and technology infrastructure.
In The Proceedings of the Sixth International Conference
on Language Resources and Evaluation (LREC2008),
pages 1244–1248.

4478


