
Markov Logic Networks for Text Mining:

A Qualitative and Empirical Comparison with Integer Linear Programming

Luis Gerardo Mojica and Vincent Ng
Human Language Technology Research Institute

University of Texas at Dallas

Richardson, TX 75083-0688, USA

{mojica,vince}@hlt.utdallas.edu

Abstract

Joint inference approaches such as Integer Linear Programming (ILP) and Markov Logic Networks (MLNs) have recently been

successfully applied to many natural language processing (NLP) tasks, often outperforming their pipeline counterparts. However,

MLNs are arguably much less popular among NLP researchers than ILP. While NLP researchers who desire to employ these joint

inference frameworks do not necessarily have to understand their theoretical underpinnings, it is imperative that they understand which

of them should be applied under what circumstances. With the goal of helping NLP researchers better understand the relative strengths

and weaknesses of MLNs and ILP; we will compare them along different dimensions of interest, such as expressiveness, ease of use,

scalability, and performance. To our knowledge, this is the first systematic comparison of ILP and MLNs on an NLP task.

Keywords: Markov Logic, Integer Linear Programming, Joint Inference

1. Introduction

In the early days of the statistical natural language process-

ing (NLP) era, many language processing tasks were tack-

led using the so-called pipeline architecture: the given task

is broken into a series of sub-tasks such that the output of

one sub-task is an input to the next sub-task in the sequence.

This pipeline architecture is appealing for various reasons,

including modularity, modeling convenience, and manage-

able computational complexity. However, it suffers from

the error propagation problem: errors made in one sub-task

are propagated to the next sub-task in the sequence.

Realizing this weakness, researchers have turned to joint

inference approaches such as Integer Linear Programming

(ILP) (Roth and Yih, 2004) and Markov Logic Networks

(MLNs) (Domingos and Lowd, 2009), which often outper-

form their pipeline counterparts. These joint inference ap-

proaches enable manual specification of constraints. These

constraints effectively allow incorporation of background

knowledge into NLP systems, addressing the aforemen-

tioned error propagation problem by allowing the down-

stream components to influence the upstream components

in a pipelined system architecture. To date, MLNs have

been underused in NLP applications, and are arguably

much less popular among NLP researchers than ILP. While

NLP researchers who desire to employ these joint inference

frameworks do not necessarily have to understand their the-

oretical underpinnings, it is imperative that they understand

which of them should be applied under what circumstances.

In light of this discussion, our goal in this paper is to help

NLP researchers better understand the relative strengths

and weaknesses of MLNs and ILP by comparing them

along different dimensions of interest, such as expressive-

ness (what can and cannot be expressed using a specifica-

tion language?), ease of use (how easy is it to encode con-

straints?), scalability (how efficient is the inference pro-

cedure, especially when applied to large problems?), and

performance (how well do these inference algorithms per-

form?).

To facilitate the comparison, we will discuss how ILP and

MLNs can be applied to the task of fine-grained opinion

extraction. While many tasks could have been chosen, we

chose this task not only for its importance but also for the

fact that its sophistication allows us to demonstrate the dif-

ferences between the two inference frameworks. In fact,

while ILP has been applied to this task (Yang and Cardie,

2013) (henceforth Y&C), MLNs have not, so it would be

informative for us to consider how MLNs can be applied to

it. To our knowledge, this is the first systematic comparison

of ILP and MLNs on an NLP task. It is worth mentioning

that while our discussion is centered on this task, many of

our conclusions and recommendations are generally appli-

cable to other NLP tasks.

The rest of this paper is organized as follows. Section 2

provides some background information, including the task

of fine-grained opinion extraction, the corpus, and the two

inference algorithms. Section 3 describes the constraints

that we enforce on the outputs of a fine-grained opinion

extraction system and how ILP and MLNs encode such

constraints. In Sections 4 and 5, we discuss the relative

strengths and weaknesses of MLNs and ILP. Finally, we

report our empirical results in Section 6, and discuss our

conclusions in Section 7.

2. Preliminaries

2.1. Fine-Grained Opinion Extraction

2.1.1. Task Definition

Fine-grained opinion extraction is an opinion mining task

that involves (1) identifying text spans corresponding to

opinions and their arguments and (2) the relations between

them. Compared to document-level opinion mining (e.g.,

determining whether a customer review is positive, nega-

tive, or neutral), fine-grained opinion extraction occurs at

the sentence and phrase levels and is comparatively less in-

vestigated.

4388

This fine-grained opinion extraction task is typically de-

composed into two subtasks. The first subtask, entity ex-

traction, involves identifying three types of opinionated

entities, including opinions (“O”) and two types of argu-

ments, Sources (“S”, entities generating opinions) and Tar-

gets (“T”, entities of which a opinion is about). The second

subtask, relation extraction, involves extracting Is from re-

lations (i.e., linking a source to its opinion) and Is about re-

lations (i.e., linking a target to its opinion). To better under-

stand the task, consider the following example taken from

the MPQA1 corpus.

1. [Ashcroft]S0
toldO0

us [he]S0
was determinedO1

[to

take every conceivable action]T1

Ashcroft is the source of the two opinions, told and was de-

termined, and to take every conceivable action is the target

of the second opinion. In other words, there are two Is from

relations: one between Ashcroft and told and the other be-

tween Ashcroft and was determined, and there is one Is

about relation between was determined and to take every

conceivable action. Note that the opinion O0 has no target

associated with it. When an opinion has no target argu-

ments or source arguments, we refer to it as target-implicit

or source-implicit, respectively. In this case, O0 is target-

implicit.

2.1.2. Corpus

For training and evaluation, we use the MPQA 2.0 cor-

pus (Wiebe et al., 2005; Wilson, 2008). After discarding

those ill-formatted documents (lack of punctuation, para-

graphs, etc.), we obtain 433 documents with 8, 377 sen-

tences. These documents contains 4, 717 opinions, 4, 680
targets and 5, 505 sources. The number of Is from relations

is 13, 046, and 9, 763 of the Is about type. Unlike Y&C, we

do not remove sentences containing no opinionated entities.

2.1.3. Why Joint Inference?

A straightforward method to address the fine-grained opin-

ion extraction task is to adopt a pipeline approach, where

we (1) use an entity extraction model to extract the opin-

ions, sources, and targets; (2) use argument-implicit clas-

sifiers to identify those extracted opinions that are source-

implicit as well as those that are target-implicit; and (3)

use opinion-argument classifiers to extract Is from rela-

tions between sources and opinions that are not source-

implicit, as well as Is about relations between targets and

opinions that are not target-implicit.2 However, this so-

called pipeline approach suffers from error propagation,

where errors made in the entity extraction model will be

propagated to the implicit opinion identification compo-

nent, which in turn will be propagated to the relation ex-

traction component. For example, in the example sentence

1http://mpqa.cs.pitt.edu/corpora/mpqa_

corpus/
2Our implementation of the entity extraction model, the

argument-implicit classifiers and the opinion-argument classifiers

follow that of Yang and Cardie (2013). Owing to space limita-

tions, we omit the details of the training procedure as well as the

features used to train each model, and refer the reader to Y&C’s

paper for details.

above, if the entity extraction model failed to retrieve the

span [Ashcroft], or if the source-implicit classifier misclas-

sifies opinions O0 and O1 (as source-implicit), it would not

be possible for the opinion-argumentclassifier to extract the

Is from relations between this span and O0 and O1.

One way to address the aforementioned error propagation

problem is to perform joint inference over the outputs of the

entity extraction model, the argument-implicit classifiers,

and the opinion-argument classifiers. Unlike in the pipeline

approach, where entity extraction influences implicit opin-

ion identification, which in turn influences relation extrac-

tion (but not vice versa), in a joint inference approach, all

three tasks can influence each other.

Specifically, recall that one problem with the pipeline ap-

proach is that if the entity extraction model fails to extract

an entity, the opinion-argument classifiers cannot extract

the relations for the opinion in consideration. To be ro-

bust to the errors made by the entity extraction model, in-

stead of making use of its 1-best output, we make use of its

n-best output and the confidence assigned by the model to

each candidate entity it extracted. Similarity, to be robust to

the errors made by the argument-implicit classifiers, instead

of making use of its binary decisions, we make use of the

confidences associated with its decisions. Given this setup,

if the opinion-argument classifier is highly confident that

an Is about relation exists between two candidate entities,

then these two entities will likely be extracted as an opin-

ion and a target even if the entity extraction component fails

to extract them or the target-implicit classifier erroneously

determines that the opinion candidate is target-implicit. In

other words, the final entity extraction decisions and rela-

tion extraction decisions will be made jointly by the entity

extraction model, the argument-implicit classifiers, and the

opinion-argument classifiers by considering the confidence

values they individually assign to the extraction decisions.

2.2. Joint Inference Frameworks

In this subsection, we provide a brief overview of two joint

inference frameworks, ILP and MLNs.

2.2.1. Integer Linear Programming

At a high level, many NLP tasks are structured prediction

problems which can be naturally expressed as constrained

optimization problems, where the goal is to optimize an ob-

jective function subject to a set of linear (equality and in-

equality) constraints. In principle, a variety of methods can

be used to solve these problems. ILP methods are arguably

the most popular choice among NLP researchers. Formally,

an ILP problem is defined as follows:

Maximize: f(x1, x2, ..., xn)

Subject to: gj(x1, x2, ..., xn) ≥ bj (j = 1, 2, ...,m)

where xi are the variables that take finite integer val-

ues, f(x1, x2, ..., xn) is the objective function, and gj
(x1, x2, ..., xn), 1 ≤ j ≤ m, are the constraints (each con-

straint is linear in x1, x2, ..., xn). Several highly optimized

open source and commercial software for solving ILP prob-

lems, such as lpsolve (Berkelaar et al., 2004) and Gurobi 3,

3www.gurobi.com

4389

are readily available, and therefore the application designer

can focus on modeling issues rather than solving optimiza-

tion problems

2.2.2. Markov Logic Networks

Markov logic (Richardson and Domingos, 2006; Domin-

gos and Lowd, 2009), a popular statistical relational learn-

ing (SRL) approach (Taskar and Getoor, 2007), combines

graphical models with first-order logic. At a high level, a

MLN is a set of weighted first-order logic formulas (fi, wi),
where wi is the weight associated with formula fi. Given a

set of constants that model objects in the domain, it de-

fines a Markov network (Koller and Friedman, 2009) in

which we have (1) one node per atom (i.e., grounded pred-

icate) and (2) a propositional feature corresponding to each

grounding of each first-order formula (i.e., a clique formed

from the atoms in the formula). The weight of the feature

is the weight of the corresponding first-order formula.

Formally, the probability of a world ω which represents an

assignment of values to all atoms in the Markov network is

given by:

Pr(ω) =
1

Z
exp

(

∑

i

wiN(fi, ω)

)

where N(fi, ω) is the number of groundings of fi which

evaluate to True in ω and Z is a normalization constant

called the partition function.

The key inference tasks over MLNs are computing the par-

tition function (Z) and the most-probable explanation given

evidence (the MAP task). Most queries can be reduced to

these inference tasks. Formally, the partition function and

the MAP tasks are given by:

Z =
∑

ω

exp

(

∑

i

wiN(fi, ω)

)

(1)

argmax
ω

P (ω) = argmax
ω

∑

i

wiN(fi, ω) (2)

Unlike ILP, which optimizes an objective function provided

by the user, MLNs typically optimize the conditional like-

lihood of the data. Software packages such as Alchemy

(Kok et al., 2008), Alchemy 2.0 (Venugopal and Gogate,

2012), Markov the beast (Riedel, 2009) and Tuffy (Niu et

al., 2011) for inference and learning with MLNs are widely

available.

3. Joint Inference for Fine-Grained Opinion

Extraction

3.1. Consistency Constraints

As mentioned before, joint inference enables the entity ex-

traction model, the argument-implicit classifiers, and the

opinion-argument classifiers to influence each other by em-

ploying constraints to enforce global consistency over their

outputs. In this subsection, we enumerate seven constraints.

Note that Constraints (1) and (2) are intra-task constraints,

which enforce consistency over the outputs of the entity ex-

traction model, whereas the other constraints are inter-task

constraints, which enforce consistency over the outputs of

models for different tasks.

The first five constraints were originally proposed by Y&C.

Constraint (1) states that an opinion/source/target candi-

date (obtained from the 30-best output of the CRF-based

entity extraction model) can only be assigned exactly one

of four types: opinion, target, source, or none (if it does

not belong to any of the other three types). Constraint

(2) indicates that among every pair of overlapping en-

tity candidates, at most one should be extracted as a non-

none type entity. Constraint (3) enforces the consistency

between opinion-argument classifiers and the argument-

implicit classifiers. Specifically, an opinion candidate can

be related to source and target arguments if it is not an

argument-implicit opinion. Constraint (4) enforces the con-

sistency between the opinion-argument classifiers and the

entity extractor. Specifically, the relations between opin-

ion and arguments should be consistent with their entity

types (i.e., a Is from relation must involve an opinion and

a source, and a Is about relation must involve an opinion

and a target). In the same way, a span related with a tar-

get or source argument must be an opinion. Constraint (5)

enforces the consistency between the opinion-implicit clas-

sifiers and the entity extractor. Specifically, an opinion can-

didate that is not argument-implicit must be an opinion.

Hypothesizing that some verb senses and argument roles

defined in VerbNet (Schuler, 2005) are useful for identi-

fying text spans corresponding to opinions and their argu-

ments as well as their relationships4, we introduce three

constraints that exploit the PropBank-style semantic role

labels provided by Mate Tools (Björkelund et al., 2009).

Specifically, Constraint (6) states that (1) a span candidate

associated with a particular verb sense should be assigned

a non-none label, and (2) a span candidate associated with

a verb argument should be assigned a non-none label. Con-

straint (7) indicates that two entities that are assigned a verb

sense and an argument role respectively might be in a Is

from or Is about relation. Note that while the first five con-

straints are hard constraints, Constraints (6) and (7) are soft

constraints.

3.2. ILP Formulation

In this subsection, we show how to formulate fine-grained

opinion extraction in the ILP framework. Recall that ILP

requires that we define a constrained optimization problem.

Below we first define the objective function and then de-

scribe how we encode the aforementioned constraints.

We create one ILP program for each test sentence. Specifi-

cally, for each test sentence, let O be the set of opinion can-

didates (provided by the 30-best CRF output), Ak be the set

of argument candidates (also provided by the 30-best CRF

output), where k denotes the relation type (Is about or Is

from), and S be the union of O and Ak.

Next, we introduce a set of binary indicator variables whose

values are to be determined by ILP during the joint infer-

4For example, in the sentence Williamson still hopes for an

expedited review by the report, the opinion hopes is assigned the

verb sense hope.01, and its A0 and A1 arguments, Williamson

and for an expedited review by the report, are its source and target,

respectively.

4390

Num Consistency constraint ILP MLN

1 Uniqueness
∑

z

xiz = 1 ∃c Span(i,c!).

2 Non-Overlapping

∑

z 6=N

xiz +
∑

z 6=N

xjz ≤ 1 Overlap(i,j)⇒ (Span(i,N) v

Span(j,N))

3
Explicit Relation & Implicit

Relation Classifiers

[1]
∑

j∈Ak

uij = 1−vik+aik+bik

[2] aik ≤ 1− vik; bik ≤ 1− vik

[1]Implicit src(i)⇒

!Is from(i,j)

[2]Implicit trg(i)⇒

!Is about(i,j)

4
Relation Classifier & Entity Ex-

tractor

[1]
∑

i∈O

uij = xjz+cjk+djk

[2] cjk ≤ xjz; djk ≤ xjz

[1] Is from(i,j)⇒Span(j,S)

[2] ∃iSpan(j,S)⇒Is from(i,j)

[3] Is about(i,j)⇒Span(j,T)

[4] ∃iSpan(j,T)⇒Is about(i,j)

[5] Is from(i,j)⇒Span(i,O)

[6] Is about(i,j)⇒Span(i,O)

5
Implicit Classifiers & Entity

Extractor
vik + xiO ≥ 1

[1]!Implicit src(i)⇒Span(i,O)

[2]!Implicit trg(i)⇒Span(i,O)

6 SRL & Entity Extractor −
[1] Sense(i,s+) ⇒ Span(i,c+)

[2] Role(i,r+) ⇒ Span(i,c+)

7 SRL & Relation Classifier −

[1] Sense(i,s+) ∧ Role(j,r+)

⇒Is from(i,j)

[2] Sense(i,s+) ∧ Role(j,r+)

⇒Is about(i,j)

− MLN Consistency −
[1] !Is from(i,i).

[2] !Is about(i,i).

Table 1: Consistency constraints for fine-grained opinion extraction encoded as linear constraints for ILP and first-order

logic formulas for MLNs.

ence process. Specifically, xiz has the value 1 if ILP be-

lieves that span i should have entity label z, where z =∈
{opinion, target, source, none}; uij has the value 1 if and

only if ILP believes that opinion candidate i in O has a rela-

tion with argument candidate j in Ak and vik has the value

1 if ILP believes that this opinion candidate is related to a

null argument in the relation type k.

Finally, we combine these binary variables (xiz , uij , and

vik) with the confidence values returned by the entity ex-

traction model (fiz), the opinion-argument classifiers (rij),

and the argument-implicit classifiers (ri∅) into the follow-

ing objective function:

argmax
x,u,v

λ
∑

i∈S

∑

z

fizxiz (3)

+(1− λ)
∑

k

∑

i∈O





∑

j∈Ak

rijuij + ri∅vik





As we can see, the function is a linear combination of the

confidence values from the three predictors (fiz , rij , ri∅),

and λ is a parameter used to balance the contribution of the

entity extraction model and the relation extraction classi-

fiers.

The objective function will be optimized subject to the

seven consistency constraints defined in the previous sec-

tion. The column under “ILP” in Table 1 shows how these

constraints can be encoded in ILP. The encoding of the first

five constraints is due to Y&C.

Two points deserve mention. First, merely enforcing the

consistency between the argument-implicit classifiers and

the opinion-argument classifiers in Constraint (3) does not

require the use of the variables aik and bik. These two vari-

ables are used to enforce an additional constraint: an opin-

ion can be related to at most three arguments. The same is

true for Constraint (4): the variables cjk and djk are used to

enforce the additional constraint that a source or target can

be related to at most three opinions. Second, we do not en-

code Constraints (6) and (7) as ILP constraints. The reason

is that these two constraints are intended as soft constraints:

although it is possible to soften hard constraints in ILP, it is

by no means easy to directly encode soft constraints in ILP,

as we will see in the next section.

3.3. MLN Formulation

Unlike ILP, which operates at the propositional level by

defining propositional variables, MLNs employ first-order

logic, which defines predicates that operate on sets of ob-

jects. MLNs employ two types of predicates.

Query predicates are those whose assignments are not

given during inference and thus need to be predicted.

For the fine-grained opinion extraction task, we define

five query predicates. Span(i,l) is true when the la-

bel assigned to text span i is l. Is about(i,j)

asserts that opinion i is related to source j. Sim-

ilarly, Is from(i,j) asserts that opinion i is re-

lated to target j. Finally, Implicit src(i) and

Implicit trg(i) assert that opinion i is source-

implicit and target-implicit, respectively.

Evidence predicates are those whose values are known

during inference. We define three evidence predicates.

Overlap(i,j) indicates that spans i and j overlap.

Sense(i,s) and Role(i,r) indicate that span i has

verb sense s and verb argument r assigned to it, respec-

tively.

4391

The column under “MLN” in Table 1 shows how the

seven consistency constraints can be encoded in an MLN.

For instance, the formula ∃c Span(i,c!), which im-

plements Constraint (1), encodes the hard constraint that

each span i can have exactly one label. (The ! symbol as-

serts that the labels assigned to a span are mutually exclu-

sive.) The formulas Sense(i,s+) ⇒ Span(i,c+)

and Role(i,r+) ⇒ Span(i,c+), which implement

Constraint (6), encode the soft constraint that a candi-

date entity having sense s or role r should be labeled as

a span with entity type c. The (+) operator asserts that

there exists an instantiated formula for every combina-

tion of values in the variable domain. For instance, given

Sense(i,s+) ⇒ Span(i,c+), one formula will be

instantiated for each combination of sense s and entity la-

bel c of candidate span i.

In addition to the seven constraints, we need the two for-

mulas shown in the last row of Table 1. They ensure that

spans are not related to themselves. Note that this constraint

needs to be explicitly specified for the MLN but not for

ILP. The reason is that MLN operates at the predicate level,

meaning that it will instantiate all predicates within its argu-

ments domain. On the other hand, in ILP, we have control

over which variables are created because ILP operates at

the propositional level.

As mentioned before, MLN formulas encode either hard

or soft constraints. Hard constraints are encoded as for-

mulas with infinite weights (those ending with a period),

whereas soft constraints are encoded as formulas with fi-

nite weights (i.e., when a soft formula logically evaluates

to True, the knowledge encoded in it is proportional to the

their weight). Note that while Constraints (2)−(5) are orig-

inally intended as hard constraints, they are implemented

as soft constraints in our MLN. The reason is that doing so

may make the MLN more robust to the noise inherent in the

entity extractor and the relation classifiers’ classifications.

A few other points deserve mention. First, while ILP incor-

porates the confidence values associated with the various

classifiers’ outputs into the objective function, these outputs

are incorporated into an MLN as soft evidence, which can

be thought of as our prior belief that a given atom (i.e., a

grounded query predicate) is true. Specifically, we include

as priors the atoms Span(s,l 6= N) with weight we

when p(s = l|x) ≥ γ, where p(s = l|x) is the probability

that the CRF thinks span s has entity type l given evidence

x. We include another atom Span(s,N) with weight

wn. In addition, we include atom Is from(i,j) with

weight wr when p(src(i, j)|x) ≥ ξ, where p(src(i, j)|x)
is the probability that the relation extractor thinks opin-

ion i and source j. In a similar fashion, we include atom

Is about(i,j) with weight wr. Also, we included pri-

ors Implicit src(i) and Implicit trg(i) with

weights equal to the positive probability values given by

the corresponding implicit prediction classifier. In con-

trast, we include atoms Sense(i,s), Role(i,s) and

Overlap(i,j) as evidences to the MLN since directly

observe them.

Second, unlike ILP, which implements the additional con-

straint that limits the number of arguments an opinion can

take in Constraint (3), MLNs cannot do so: since Markov

Logic is a function-less language, MLNs in general cannot

encode cardinality constraints.

Finally, as mentioned before, MLNs do not require the

specification of an objective function. Instead, they in-

fer the most likely combination of variables (MAP tuple)

from the induced Markov Network obtained by ground-

ing the MLN, typically by maximizing the conditional log-

likelihood of the data.

4. MLNs: Strengths

In this section, we will discuss the strengths of MLNs.

The ability to employ soft constraints. Soft constraints

are useful because (1) they allow us to model phenomena

that are true with a certain probability, and (2) they provide

tunable “knobs” or additional parameters that are used to

increase the system’s performance. A soft constraint can

be created easily in a MLN by assigning a weight (i.e.,

a real value) to the desired constraint, where the magni-

tude of the weight indicates the importance that the con-

straint is satisfied. If it is difficult to assign weights manu-

ally, weight learning algorithms for MLNs can be used in-

stead (e.g., Richardson and Domingos (2006), Huynh and

Mooney (2011)). The ability to learn from data is one of

the advantages of MLNs over ILP: unlike MLNs, ILP is a

pure inference framework that does not have the ability to

learn.

While it is easy to encode soft constraints in MLNs, the

same is not true for ILP. One can, however, “soften” a hard

constraint in ILP by incorporating it into the objective func-

tion and associating it with a coefficient. Consider, for in-

stance, Equation (3), where the two terms in the objective

function weighted using the parameter λ. Note that this pa-

rameter has a softening effect: a smaller λ implies that the

first term will have less of an impact on the objective func-

tion. Hence, any hard constraint can be softened in a similar

manner by associating it with a ”weight” parameter when

incorporated into the objective function, where the magni-

tude of the weight indicates the importance of satisfying the

constraint. If it is difficult to manually specify the param-

eters, one can use a held-out development set to tune these

weights.

Compact representation. While ILP operates at the

propositional level, MLNs operate at the predicate level.

This enables MLNs to inherit a key advantage of first-order

logic over propositional logic: MLNs can encode a problem

more compactly than ILP. This is appealing from a user’s

perspective: a user can focus on encoding the constraints on

the outputs, and leave the grounding of these predicates and

formulas entirely to the MLN inference engine. In particu-

lar, when applying an MLN to different problem instances,

the first-order formulas remain unchanged: all we need to

change are the evidence predicates (i.e., the observations).5

In contrast, an ILP program cannot encode a problem in-

stance compactly. The reason, as mentioned above, is that

ILP operates at the propositional level: one variable has to

5A problem instance corresponds to a joint inference problem.

In our fine-grained opinion extraction task, since we perform joint

inference over each sentence, a problem instance corresponds to

the joint inference problem created for a sentence.

4392

be created for each decision that is to be made by the ILP

inference engine, and constraints have to be defined over

these variables. Given that both the objective function and

the linear constraints are dependent on the variables, a dif-

ferent objective function and a different set of linear con-

straints have to be created for each problem instance.

Ease of specification. It is typically much easier to for-

mulate constraints in MLNs than in ILP. One reason is

that it is easier for humans to reason with constraints ex-

pressed as logical formulas than constraints expressed as

linear equalities/inequalities. As an example, consider Con-

straint (5), which states that an opinion candidate that is not

argument-implicit must an opinion. As can be seen from

Table 1, this constraint can be easily encoded as two first-

order formulas, which state that an opinion candidate that

is not source-implicit or target-implicit must be an opinion.

On the other hand, it is comparatively more difficult for

a human to encode and understand the corresponding ILP

constraint: if vik = 0 (opinion candidate i is not implicit),

then in order for this inequality to be true, xiO has to be

equal to 1 (i.e., i has to be an opinion).

If the above example is not compelling enough, consider

encoding the transitivity constraint. If relation R is tran-

sitive, we can encode transitivity in MLN using the for-

mula R(i, j) ∧ R(j, k) ⇒ R(i, k). In ILP, one can enforce

transitivity over three variables using the linear inequality

(1?xi,j) + (1?xj,k) ≥ (1?xi,k). Again, it is comparatively

much harder to encode and understand this constraint in

ILP than in MLN. In fact, the encoding process will only

become harder as a constraint involves more variables. In

other words, ILP puts a much larger burden on the user than

MLNs in terms of problem encoding, especially when the

problem involves encoding complex output constraints.

A related point deserves mention: not all constraints that

are intuitively true for a problem will indeed improve per-

formance when they are enforced. For instance, while all

the constraints in Table 1 are intuitively useful to have,

not all of them will be as useful as we think: their use-

fulness depends on the correctness of the underlying mod-

els (i.e., the entity extractor and the relation classifiers). If

these models are ”reasonably accurate”, enforcing the con-

straints could improve performance. Otherwise, enforcing

the constraints could have an adverse effect on overall per-

formance. One way to determine the usefulness of con-

straints is to experiment with them on a held-out develop-

ment set. MLNs, however, provide an alternative solution.

By encoding constraints as soft formulas, the user does not

need to worry about whether employing a constraint will

hurt performance: if the soft constraint is determined to be

not useful, it will be assigned a low weight by the MLN.

5. MLNs: Weaknesses

In this section, we will discuss the weaknesses of MLNs.

Exponential time and space complexity. Since ground-

ing a MLN is exponential in the size of the domain and

inference is shown to be NP-hard (Richardson and Domin-

gos, 2006), handling large problems has traditionally been

one of its major challenges. Fortunately, recent advances

in lifted inference algorithms have been developed to re-

duce the domain size of the variables in MLNs (Gogate

and Domingos, 2010), and scalable approaches to weight

learning have been developed that leverage fast, approxi-

mate counting techniques (Gogate et al., 2010). Despite

these advances, scalability is still a major issue surround-

ing inference and parameter estimation in MLNs. As of

today, ILP can solve larger problems than MLNs. This in

part explains the broader use of ILP in the NLP community

than MLNs for joint inference.

Failure to exploit prior information in learning. As

mentioned before, the confidence values assigned by the

different models (e.g., the entity extractor and the relation

classifiers in the fine-grained extraction task) can be incor-

porated as prior information for an MLN. However, exist-

ing weight learning algorithms cannot take advantage of

such prior information during the training process (Venu-

gopal et al., 2014). In particular, prior information can only

be applied during test time. Moreover, since the weights

were learned without taking into account the prior informa-

tion, they could be suboptimal when combined with prior

information to make decisions during the inference process.

Typically, the priors are scaled before they are used in com-

bination with the learned weights during test time (Venu-

gopal et al., 2014).

In ILP, prior information is used within the objective func-

tion. Since there is no learning in ILP, the issue of combin-

ing priors with weight learning is not applicable to ILP.

No support for functions and preprocessing overhead.

Markov Logic is a functionless language. Common opera-

tors such as equality checking and comparison are not read-

ily available. To perform these operations, new predicates

have to be defined, which may result in an expensive pre-

processing step before inference and weight training. In our

running example, if we were to assert that two entity can-

didates refer to distinct entities in Formula 4.1, we cannot

simply include the expression i 6= j in it. Instead, we need

to include a predicate Neq(i,j), converting the formula

to: Is from(i,j) ∧ Neq(i,j) ⇒ Span(j,S).6.

This is problematic for two reasons. First, the number of

additional atoms that need to be added to the network can

be large depending on the domain size of the predicate’s

arguments. This could significantly increase the network

space requirements as well as the time for inference and

parameter learning. Second, the preprocessing step can be

computationally expensive because the number of ground-

ings is exponential in the size of the predicate’s domain.

ILP constraints, in contrast, are expressed as mathematical

equations, so ILP natively support functions and therefore

does not incur this preprocessing overhead. Note, however,

that some MLNs implementations (e.g., Rockit (Noessner

et al., 2013) and Markov the Beast (Riedel, 2008)) create

an ILP program as an inference subroutine that allows the

use of a predefined set of functions.

Failure to encode cardinality constraints. Another con-

sequence of defining Markov Logic as a functionless lan-

guage is that MLNs cannot encode cardinality constraints.

So, the additional cardinality constraint encoded as part of

6We circumvented this problem by including the two hard for-

mulas in the last row of Table 1, which together have the same

effect as Neq(i,j).

4393

Overlap Exact

Opinion Target Source Opinion Target Source

Experiment P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

ILP 50.5 72.2 59.4 44.9 36.2 40.1 67.3 37.4 48.1 39.2 56.1 46.2 15.1 12.2 13.5 57.7 32.0 41.2

MLN 75.6 45.5 56.8 55.0 34.7 42.6 77.1 49.6 60.4 59.2 35.6 44.5 25.3 16.0 19.6 67.7 43.6 53.0

MLNSRL 66.4 47.0 55.0 51.2 25.6 34.2 64.5 59.6 62.0 52.1 36.9 43.2 15.9 8.0 10.6 55.4 51.3 53.3

Table 2: Entity extraction results with respect to the Overlap and Exact metrics.

the implementation of Constraints (3) and (4) for ILP (e.g.,

an opinion can be related to at most three sources/targets)

cannot not be enforced in an MLN. Note that some of the

aforementioned MLN implementations such as Markov the

Beast and Rockit are able to address this weakness. The

reason is that they implement MLNs by casting the opti-

mization problem of counting the number of satisfied con-

straints as an ILP problem. In other words, once a MLN is

mapped to ILP, one can include cardinality constraints as in

any other ILP formulations.

6. Evaluation

6.1. Experimental Setup

Corpus. As mentioned in Section 2.1.2, for evaluation

we use the 433 documents in the MPQA 2.0 corpus that

remain after discarding those that are ill-formed. Unlike

Y&C, we do not remove from these documents the sen-

tences that contain no opinionated entities in our evaluation.

Hence, our evaluation setting is arguably more challenging

than that of Y&C. 20% of the corpus is reserved solely for

parameter tuning (i.e., the regularization parameters in the

entity extractor and the relation extraction classifiers, λ (for

ILP), γ, ξ, we and wr (for the MLN)). Evaluation results

are obtained via five-fold cross-validation experiments on

the remaining documents.

Software packages. We employ Gurobi for ILP-based

joint inference and Tuffy for MLN-based joint inference.

Evaluation metrics. We use the same evaluation criteria

as Y&C: precision, recall and F1 score for both overlap

and exact matching mechanisms7. In addition, we report

the time taken by the ILP/MLN package to produce the test

results in each experiment.

Systems. We compare the performance of three systems

that exploit joint inference for fine-grained opinion extrac-

tion. The first system (ILP) performs ILP-based joint in-

ference via encoding the first five constraints in Table 1.

The second system (MLN) is the same as the first one ex-

cept that we replace ILP with MLN as the underlying joint

inference framework. The third system (MLNSRL) is the

same as the second one except that it additionally exploits

Constraints (6) and (7) for joint inference.

6.2. Results and Discussion

Entity extraction results. Entity extraction results ob-

tained for the three aforementioned systems using the over-

lap and exact metrics are shown in Table 2. Comparing

rows 1 and 2, we can see that with respect to both metrics,

7An overlap match occurs when a predicted entity span’s in-

dices overlap with those of a gold entity.

Is from Is about

Experiment P R F1 P R F1

ILP 68.3 11.6 19.8 54.9 14.3 22.7

MLN 58.8 12.8 21.0 47.7 20.3 28.5

MLNSRL 46.1 19.1 27.0 42.1 8.5 14.1

Table 3: Relation extraction results with respect to the

overlap metric.

ILP outperforms MLN on Opinion extraction but underper-

forms it on Source and Target extraction. The addition of

the constraints on semantic roles to the MLN does not al-

ways improve its performance: comparing rows 2 and 3,

we can see that with respect to both metrics, MLNSRL un-

derperforms MLN on both Opinion and Target extraction

and outperforms it slightly on Source extraction. Hence,

as far as entity extraction is concerned, neither inference

frameworks are superior to the other, and moreover, a richer

MLN model does not always yield better performance. It

is worth noting that the ILP results are lower than those re-

ported in Y&C’s paper. These results suggest that retaining

sentences without opinionated entities yields a harder task.

Relation extraction results. Relation extraction results

obtained using the overlap metric are shown in Table 3. The

system configurations underlying the three rows in this ta-

ble are the same as those in Table 2. As we can see, MLN

outperforms both ILP and MLNSRL with respect to both

relations. It seems to have benefitted more from joint in-

ference than ILP. In particular, its better performance on

extracting both types of relations is partly responsible for

its superior performance on Source and Target extraction.

While MLNSRL has similarly benefitted from joint infer-

ence (its relatively strong performance on extracting Is from

relations has contributed in part to its strong performance

on Source extraction), it has also suffered from joint infer-

ence. Specifically, its poor performance on extracting Is

about relations has contributed in part to its poor perfor-

mance on Target extraction. These results suggest that joint

inference can sometimes improve performance and some-

times hurt performance. We speculate that semantic role

information has been used correctly by MLNSRL to model

one but not both relation types, and that the weight learn-

ing process is not robust enough to weaken the influence of

”incorrect” formulas. Additional experiments are needed to

determine the reason.

Cardinality constraints. While the five constraints

shown in Table 1 were enforced by both inference frame-

works, recall that MLN does not impose the cardinality

constraints that ILP employs in its encoding of Constraints

(3) and (4). The results in Tables 2 and 3 do not seem to

4394

suggest that the lack of cardinality constraints has had an

adverse impact on MLN’s performance.

Running time. ILP, MLN, and MLNSRL took approx-

imately 550 seconds, 7200 seconds, and 21600 seconds

to produce test outputs, respectively. Note that the times

shown here include not only inference time but also the

time needed to read the input files, for instance. Hence,

it is not entirely correct to conclude that MLN is 40 times

slower than ILP. Nevertheless, this large time difference

cannot be solely accounted for by differences in input read-

ing time. We attribute the additional time used by the MLN

to the grounding process. With the addition of predicates

and formulas related to semantic roles, more predicates and

formulas need to be grounded, hence the substantial in-

crease in MLNSRL’s runtime.

7. Conclusions

We conducted a qualitative comparison of two joint infer-

ence frameworks, ILP and MLNs, as well as an empiri-

cal comparison on the fine-grained opinion extraction task.

Empirically speaking, neither of them consistently pro-

duces superior results to the other, but our very rough ap-

proximation of running time provided suggestive evidence

that ILP-based inference was more efficient than MLN-

based inference. Qualitatively speaking, MLNs are supe-

rior to ILP in terms of their ease of specification as well as

their ability to employ soft constraints and encode problem

constraints in a compact manner. Their biggest drawback,

however, is their inability to scale to large problems. Nev-

ertheless, fast and scalable inference for MLNs is an active

area of research that continuously produces advances to-

wards more efficient algorithms.

In future work, we plan to conduct an extensive empirical

comparison of these two frameworks on a range of NLP

tasks that can potentially benefit from joint inference.

8. Acknowledgments

We thank the three anonymous reviewers for their insightful

comments on an earlier draft of this paper. This work was

supported in part by NSF Grant IIS-1546538.

9. Bibliographical References

Berkelaar, M., Eikland, K., Notebaert, P., et al. (2004). lp-

solve: Open source (mixed-integer) linear programming

system. Eindhoven University of Technology.

Björkelund, A., Hafdell, L., and Nugues, P. (2009). Mul-

tilingual semantic role labeling. In Proceedings of the

Thirteenth Conference on Computational Natural Lan-

guage Learning: Shared Task, pages 43–48.

Domingos, P. and Lowd, D. (2009). Markov logic: An in-

terface layer for artificial intelligence. Synthesis Lectures

on Artificial Intelligence and Machine Learning, 3(1):1–

155.

Gogate, V. and Domingos, P. (2010). Exploiting logical

structure in lifted probabilistic inference. In AAAI 2010

Workshop on Statistical and Relational Artificial Intelli-

gence.

Gogate, V., Webb, W., and Domingos, P. (2010). Learning

efficient markov networks. In Advances in Neural Infor-

mation Processing Systems, pages 748–756.

Huynh, T. N. and Mooney, R. J. (2011). Online max-

margin weight learning for Markov Logic Networks. In

Proceedings of the Eleventh SIAM International Confer-

ence on Data Mining, pages 642–651.

Kok, S., Singla, P., Richardson, M., Domingos, P., Sum-

ner, M., Poon, H., Lowd, D., and Wang, J. (2008). The

Alchemy system for statistical relational AI: User man-

ual. Department of Computer Science and Engineering,

University of Washington, page 41.

Koller, D. and Friedman, N. (2009). Probabilistic graphi-

cal models: principles and techniques. MIT press.

Niu, F., Ré, C., Doan, A., and Shavlik, J. (2011). Tuffy:

Scaling up statistical inference in Markov Logic Net-

works using an RDBMS. Proceedings of the VLDB En-

dowment, 4(6):373–384.

Noessner, J., Niepert, M., and Stuckenschmidt, H. (2013).

Rockit: Exploiting parallelism and symmetry for MAP

inference in statistical relational models. arXiv preprint

arXiv:1304.4379.

Richardson, M. and Domingos, P. (2006). Markov Logic

Networks. Machine learning, 62(1-2):107–136.

Riedel, S. (2008). Improving the accuracy and efficiency

of MAP inference for Markov Logic. In Proceedings of

the 24th Annual Conference on Uncertainty in Artificial

Intelligence, pages 468–475.

Riedel, S. (2009). Cutting plane MAP inference for

Markov Logic. In SRL 2009.

Roth, D. and Yih, W.-T. (2004). A linear programming for-

mulation for global inference in natural language tasks.

In Proceedings of the Eighth Conference on Computa-

tional Natural Langguage Learning, pages 1–8.

Saurı́, R. (2008). A factuality profiler for eventualities in

text. Ph.D. thesis, Brandeis University.

Schuler, K. K. (2005). VerbNet: A broad-coverage, com-

prehensive verb lexicon. Ph.D. thesis, University of

Pennsylvania.

Taskar, B. and Getoor, L. (2007). Introduction to statistical

relational learning. The MIT Press.

Venugopal, D. and Gogate, V. (2012). On lifting the gibbs

sampling algorithm. In Advances in Neural Information

Processing Systems, pages 1655–1663.

Venugopal, D., Chen, C., Gogate, V., and Ng, V. (2014).

Relieving the computational bottleneck: Joint inference

for event extraction with high-dimensional features. In

Proceedings of the 2014 Conference on Empirical Meth-

ods in Natural Language Processing, pages 831–843.

Wiebe, J., Wilson, T., and Cardie, C. (2005). Annotating

expressions of opinions and emotions in language. Lan-

guage Resources and Evaluation, 39(2-3):165–210.

Wilson, T. A. (2008). Fine-grained subjectivity and senti-

ment analysis: Recognizing the intensity, polarity, and

attitudes of private states. Ph.D. thesis, University of

Pittsburgh.

Yang, B. and Cardie, C. (2013). Joint inference for fine-

grained opinion extraction. In Proceedings of the 51st

Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 1640–1649.

4395

