
UDPipe: Trainable Pipeline for Processing CoNLL-U Files Performing
Tokenization, Morphological Analysis, POS Tagging and Parsing

Milan Straka, Jan Hajič, Jana Straková
Charles University in Prague

Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

{straka,hajic,strakova}@ufal.mff.cuni.cz
Abstract

Automatic natural language processing of large texts often presents recurring challenges in multiple languages: even for most advanced
tasks, the texts are first processed by basic processing steps – from tokenization to parsing. We present an extremely simple-to-use tool
consisting of one binary and one model (per language), which performs these tasks for multiple languages without the need for any other
external data. UDPipe, a pipeline processing CoNLL-U-formatted files, performs tokenization, morphological analysis, part-of-speech
tagging, lemmatization and dependency parsing for nearly all treebanks of Universal Dependencies 1.2 (namely, the whole pipeline is
currently available for 32 out of 37 treebanks). In addition, the pipeline is easily trainable with training data in CoNLL-U format (and
in some cases also with additional raw corpora) and requires minimal linguistic knowledge on the users’ part. The training code is also
released.

Keywords: Universal Dependencies; dependency parsing; part-of-speech tagging

1. Introduction
The Universal Dependencies project (Nivre et al., 2016)
seeks to develop cross-linguistically consistent treebank an-
notation for many languages. The annotation scheme is
based on the universal Stanford dependencies (de Marn-
effe et al., 2014), the Google universal part-of-speech tags
(Petrov et al., 2012), and the Interset interlingua for mor-
phosyntactic features (Zeman, 2008). The latest version of
UD (Univeral Dependencies Treebanks version 1.2, 2015)1

consists of 37 dependency treebanks.
Our aim is to create a simple-to-use, one-binary and a
single-model tool (per language), to easily process raw text
to CoNLL-U-formatted tagged and/or parsed dependency
trees (with morphological features if available in UD).
In particular, our goals are
• state-of-the-art tools for tokenization, morphological

analysis, part-of-speech tagging and dependency pars-
ing,

• free C++ tools available under the Mozilla Public Li-
cense (MPL) 2.0 license (code) and CC BY-NC-SA
4.0 license (models),

• simple tool with a single model (per language), easily
trainable with custom data (CoNLL-U format),

• trained models provided for as many UD treebanks as
possible,

• no feature engineering, no external morphological dic-
tionary, no language specific knowledge,

• efficient programming design in terms of RAM and
disc usage.

Following these requirements, we developed a morpholog-
ical dictionary tool and tagger software, which is described
in Section 4. and in detail in (Straková et al., 2014), and a
dependency parser described in Section 5. and in detail in
(Straka et al., 2015). We wrapped these tools along with a
trainable tokenizer based on artificial neural networks (Sec-

1http://hdl.handle.net/11234/1-1548

tion 3., which we describe in a little more detail since it has
not been published previously) in a single tool called UD-
Pipe, described in Section 6. We also compare our set of
tools contained in the UDPipe with other results, expecially
other dependency parsers.

2. Related Work
A considerable number of natural language processing
pipelines are available, e.g. OpenNLP2 or Natural Lan-
guage Processing Toolkit (NLTK), (Bird et al., 2009)3;
however, our aim was to develop an extremely simple tool
to be easily used by users with no language specific knowl-
edge and little interest in programming, a tool with clear
licensing, no feature engineering, no morphosyntactic dic-
tionary or other additional resources necessary, with a train-
able tokenizer (which is, surprisingly, an underestimated
problem) and above- or near state-of-the-art results.

3. Tokenization
Tokenization is usually considered a trivial task for many
languages, notably for those that use separators between
words. Nevertheless, treebanks in many languages use
language-specific or even treebank-specific rules to parti-
tion unseparated words or replace contractions, for exam-
ple, in English, isn’t is usually tokenized as is n’t.
Obviously, it is crucial to perform exactly the same tok-
enization on a text to be processed by a tool trained on such
a (idiosyncratically tokenized) treebank. The requirement
for identical tokenization applies also for additional lan-
guage resources used for additional or different methods
(e.g., when using word embeddings).
Although the tokenization of every treebank can usually
be described using only a limited set of rules, developing
a rule-based tokenizer for several dozens of treebanks ap-
pears to be a very demanding task.

2https://opennlp.apache.org
3http://nltk.org

4290



We describe a tokenizer which is trained solely by com-
paring original (raw) and tokenized text, without any addi-
tional knowledge about the language. The tokenizer learns
both where to split words even without space separators,
and also where to split sentences.
If the original raw text is not available, which is quite com-
mon, we suggest a method of reconstructing plain text of
given tokenized corpus by utilizing an additional raw text
corpus.

3.1. Tokenization for Universal Dependencies
The CoNLL-U format, used by UD treebanks, allows re-
construction of the original pre-tokenized text using the
SpaceAfter=No feature: it signals that a given token
was not followed by a space separator in the original text.
In UD 1.2, there are five treebanks using the SpaceAfter
feature.4

Additionally, the so-called multi-word tokens in the
CoNLL-U format allow to capture various contractions –
for example, one can describe that the input token im in
German represents in dem. Note that recognizing multi-
word tokens is quite different from tokenization – the multi-
word token is usually not just a simple string concatenation.
Therefore, the described tokenizer does not handle multi-
word tokens.5

3.2. The Tokenizer (and Segmentation) Model
Given a plain text, the tokenizer locates both token and
sentence boundaries at the same time. We assume that a
(white)space character always acts as a token separator, and
we train the tokenizer to locate only the token boundaries
which arise between two non-space characters.
The tokenizer is based on a bidirectional LSTM artificial
neural network (Graves and Schmidhuber, 2005). Long
short-term memory (LSTM) unit computes the state se-
quence h1, . . . , hn given the input vector x1, . . . , xn. It was
designed to be able to capture non-linear and non-local dy-
namics in sequences (Hochreiter and Schmidhuber, 1997)
and has been used to obtain several state-of-the-art results
in sequence classification, for example part-of-speech tag-
ging (Ling et al., 2015). Recently, a gated linear unit (GRU)
was proposed by Cho et al. (2014) as an alternative to
LSTM, and was shown to have similar performance, while
being less computationally demanding.
The inputs of the proposed tokenizer are fixed-length seg-
ments c1, . . . , cS ∈ A, where A is the alphabet of Unicode
characters and S is the length of the input segments. The
goal of the tokenizer is to divide input characters in tokens
and sentences. The classification task is therefore for each
character to be classified into three classes: token boundary
follows, sentence boundary follows and no boundary.
We represent each character ci ∈ A as an embedding
eci ∈ Rd, a vector of length d, an equivalent of vector word
embedding (Collobert et al., 2011) for characters.

4Czech, English, Finnish, Slovenian and Tamil; although
Finnish-FTB treebank also contains SpaceAfter=No feature,
it is used incorrectly.

5Currently, UDPipe solves the problem by inserting a mod-
ule consisting of a trivial lookup in the dictionary of multi-word
tokens which is generated from training data.

When processing the fixed-length segment of characters
c1, . . . , cS , we use GRU on the sequence ec1 , . . . , ecS to
obtain hf

1 , . . . ,h
f
S , and another GRU on the reversed se-

quence to obtain hr
1, . . . ,h

r
S , and classify every character

ci (into either no boundary, token boundary or sentence
boundary) using a softmax on catenation of vectors hf

i and
hr
S+1−i. We employ dropout (Srivastava et al., 2014) on

the softmax input.
When tokenizing a text, we start by processing the first S
characters. If any sentence boundaries were found, we re-
move as many complete sentences as possible and proceed
by processing the rest of the characters. If there are no sen-
tence boundaries in the segment, we continue with the pro-
cessing from the first word boundary in the second half of
the segment, or last word boundary in the second half of
the segment if the former was not found. In the cast case
when no token boundaries were found in the segment, we
continue the processing from the middle of the segment.
We train the tokenizer using the Adam stochastic optimiza-
tion method (Kingma and Ba, 2014). We randomly shuffle
input sentences in each training epoch and we concatenate
them (using a space character) into one long string. Us-
ing the described method, we locate the positions of the
S-character segments covering this string, and perform the
stochastic optimization using minibatches of size 100.

3.3. Generating Detokenized Text of a Tokenized
Corpus

In case the SpaceAfter=No feature is not present in the
treebank and the language uses spaces between words,6 we
can use additional raw corpus to detokenize the treebank,
i.e., to fill the missing SpaceAfter=No features accord-
ing to the raw corpus. This allows us to train the tokenizer
even when the SpaceAfter=No feature is missing in the
treebank.
We suggest the following heuristic when deciding if a
SpaceAfter=No feature should be added between words
v and w. We start by counting the number of occurrences
of lowercased sequence v w in the raw corpus, and com-
pare it to the number of corpus occurrences of lowercased
sequence vw . If one of the figures is greater than the
other, we add or do not add the SpaceAfter=No fea-
ture accordingly. If both counts are the same, then if both
words v and w contain a letter, or both contain a digit,
we do not add the SpaceAfter=No. Otherwise, we
continue counting number of occurrences of additional se-
quences, until we either find a differing number, or we pro-
cess the whole sequence (in which case we do not add the
SpaceAfter=No feature). The additional sequences are:
• lowercased v w and vw,
• lowercased v w and vw where each character is re-

placed by its Unicode General category,
• lowercased v w and vw where each character is

replaced by its Unicode General category.
Although the method may seem as an unfounded heuristic,
it has straightforward motivation and we show in the next
Section that it performs well.

6For languages that do not use spaces between words, we can
utilize the tokenizer directly without any modification.

4291



Language Unit
UDPipe + SpaceAfter UDPipe + detokenization Rule-based tokenizer Baseline tokenizer

Prec Recall F1 Prec Recall F1 Prec Recall F1 Prec Recall F1

Czech
Tokens 100.0 100.0 100.0 99.9 99.9 99.9 100.0 100.0 100.0 85.1 72.8 78.4

Sentences 89.3 81.7 85.3 88.2 80.7 84.3 88.6 72.7 79.9 73.9 68.1 70.9

English
Tokens 98.6 98.7 98.7 98.6 98.1 98.4 91.3 96.1 93.7 85.6 73.4 79.0

Sentences 76.9 66.2 71.2 76.5 64.2 69.9 74.4 42.7 54.3 72.3 51.8 60.4

Finnish
Tokens 99.8 99.8 99.8 99.7 99.5 99.6 53.7 55.2 54.4 84.3 72.2 77.8

Sentences 91.7 89.2 90.4 92.8 88.3 90.5 48.1 40.0 43.6 89.5 82.9 86.1

Slovenian
Tokens 99.9 99.9 99.9 100.0 99.9 99.9 99.5 99.6 99.6 85.3 74.1 79.3

Sentences 98.4 98.4 98.4 97.2 97.5 97.3 95.1 90.6 92.8 95.0 96.3 95.7

Tamil
Tokens 99.6 99.7 99.6 99.3 99.4 99.4 95.6 98.5 97.0 90.1 81.7 85.7

Sentences 98.3 99.1 98.7 98.0 99.1 98.7 16.7 0.8 1.6 73.6 85.8 79.2

Table 1: Tokenizer precision, recall and F1-score on treebanks of Universal Dependencies 1.2 which include the original raw
text. The UDPipe tokenizer results are presented both when using the original plain text (through the SpaceAfter=No
feature) and when reconstructing the original plain text using additional raw text corpus. For comparison, we also provide
results for a baseline tokenizer (which splits tokens on spaces and sentences on spaces following dot, question mark or
exclamation mark) and a rule-based tokenizer from MorphoDiTa (Straková et al., 2014), developed initially for Czech.
Best results in each category (Precision/Recall/F1-score) are shown in bold font.

3.4. Tokenization Results

Our goal was not only to achieve high tokenizing accu-
racy (score), but also reasonable runtime performance. We
therefore utilized GRUs instead of LSTMs and preferred
short character embeddings during hyperparameter selec-
tion. We decided to select single hyperparameters for all
treebanks, so that we avoid the need for development set for
treebanks which do not contain the SpaceAfter=No fea-
ture. We utilize character embeddings of size 24, dropout
value of 0.3 and segment size 50.
We present the tokenization results on those UD 1.2 tree-
banks containing the original texts in Table 1, as F1-score
compared to gold tokenization of the treebanks. For com-
parison, we also provide a baseline tokenizer (which splits
tokens on spaces and sentences on spaces following dot,
question mark or exclamation mark) and a rule-based tok-
enizer from MorphoDiTa (Straková et al., 2014) developed
initially for Czech. The performance of the rule-based to-
kenizer shows some interesting (even if not unexpected)
properties – while the tokenizer reaches very high perfor-
mance for Czech and Slovak (which are two closely related
languages and mother tongues of the authors), it fails for
sentence boundary detection in Tamil. This happens be-
cause the rule-based tokenizer heavily depends on casing,
while Tamil does not have cased characters.
The trainable tokenizer performs remarkably well, notably
in token boundary detection. The lower performance in
sentence boundary detection for some treebanks is caused
among others by the fact that the original texts are seg-
mented using some additional structural information (e.g.,
headings, titles), the information about which is not re-
tained in the corpus.
We also evaluate the effect of detokenization described in
Section 3.3. in Table 1. We used the W2C corpora col-

lection7 as the source of additional raw corpora.8 Perfor-
mance of the tokenizer trained using automatically gener-
ated SpaceAfter=No feature is highly competitive when
compared to the performance of the tokenizer trained us-
ing gold annotations. Due to these positive results, we
expect the tokenizer trained on automatically detokenized
treebanks using raw texts to perform well even on those
treebanks which do not use the SpaceAfter=No feature
(32 out of 37 treebanks of UD 1.2).

4. Morphological Analysis and POS Tagging
There are several morphological fields used in the CoNLL-
U format:
• universal part-of-speech tag (Petrov et al., 2012),
• list of morphological features (Zeman, 2008),
• language-specific part-of-speech tag,
• lemma or stem.

UDPipe is able to fill all these fields, depending on which
of them are available in the training data.
To perform the POS tagging and lemmatization, UDPipe
uses MorphoDiTa (Straková et al., 2014). The MorphoDiTa
POS tagger is based on part of (Spoustová et al., 2009) and
is implemented as a supervised, rich feature averaged per-
ceptron (Collins, 2002), employing dynamic programming
at runtime (Viterbi decoder).

4.1. Morphological Analysis
In order to use the averaged perceptron tagger, morpholog-
ical analyses for every input form must be provided. Per-
forming such analysis for a language with small tag set may

7http://hdl.handle.net/11858/
00-097C-0000-0022-6133-9

8Surprisingly, we obtained best tokenization results by using
only the first 500kB of every raw corpus.

4292



be trivial (by considering all possible tags), but if the tag
set is richer (which is the case of many languages using
morphological features in CoNLL-U) or if lemmatization
is performed, either a morphological dictionary or a spe-
cialized analyzer is usually required.
In order to avoid the need for additional language resource
or language-specific code, we have developed the following
morphological “guesser.”
For every suffix of fixed length,9 we establish G most fre-
quent analyses according to the training data. If there are
not enough forms with the given suffix, we consider shorter
and shorter suffixes, until we obtain the required number
of analyses.Each analysis consists of a universal part-of-
speech tag, language-specific part-of-speech tag if avail-
able, list of (possible empty) morphological features and a
lemma rule. The lemma rule is the shortest formula for gen-
erating a lemma from a given form, using any combination
of “remove a specific prefix“, “remove a specific suffix“,
“append a prefix“ and “append a suffix“ operations.
We then generate a morphological dictionary of full forms
from the UD data. Such a dictionary, even if it covers most
frequent analyses, is almost surely not complete. We there-
fore enrich the dictionary by adding E additional analyses
to every form of the dictionary (using the analyses associ-
ated with the form suffix, which we described above).
To analyze a given form, we try locating it in the enriched
dictionary. If it is contained in the dictionary, we return
the dictionary analyses (including the E added ones); oth-
erwise, we return all G analyses associated with the form
suffix. Usually E can be considerably smaller than G, be-
cause the most common form analyses are likely present in
the dictionary itself. Consequently, most forms having E
instead of G � E analyses speeds up the decoding sub-
stantially, by a factor of (G/E)3, because Viterbi decoder
of order 3 is used (each state consist of a pair of tags).
Morphological information is, in some languages, also in-
dicated by a prefix. For example, negations in Czech are
frequently formed by prefixing a word with ne-, and su-
perlatives are formed by prefixing comparatives with nej-
prefix. If we detect such situation during analyzer construc-
tion, we create the above described suffix guesser individu-
ally for every such prefix.10

4.2. Classification Features
Internally, UDPipe uses in fact two models, one disam-
biguating all available morphological fields (a POS tag-
ger), and the other one performing lemmatization (a lem-
matizer), because a combination of two taggers improves
overall accuracy. Both POS tagger and lemmatizer employ
their own morphological guesser and utilize different clas-
sification feature sets.
The POS tagger disambiguates all available morphological
fields (and can jointly disambiguate a lemma too, if it helps
tagging accuracy). It uses a feature set adopted from Spous-
tová et al. (2009), who described classification features de-
veloped for Czech, a morphologically rich language. The

9We use suffixes of length 4, thereby constructing morpholog-
ical guesser with reasonable high accuracy and small size.

10We currently use four such most widely used prefixes, if they
are used by at least 10 lemmas.

lemmatizer disambiguates the lemma (and jointly also uni-
versal part-of-speech tag in order to improve lemmatization
accuracy). Both feature sets are in the UDPipe repository.

4.3. Tagging Results
One of the most important hyperparameters of tagger train-
ing is the number of analyses G returned by the guesser, and
the number of analyses E added to the dictionary for every
word form. These hyperparameters were tuned11 separately
for every treebank, so that the tagging performance on the
development portion of the treebank would be as high as
possible.
The success rate (whether the correct analysis is one
of those returned by the analyzer) of the morphological
guesser is presented in Table 2, together with the average
number of analyses returned by the guesser. The same char-
acteristics is returned for the lemmatization guesser.
The part-of-speech tagging and lemmatization accuracy is
presented also in Table 2. We do not compare our tagger
to any related work, because we could not find any part-of-
speech tagging and lemmatization results on Universal De-
pendencies 1.2. However, the used POS tagger algorithm
and the used feature set achieve state-of-the-art results on
Czech and very good results on English (Spoustová et al.,
2009).

5. Dependency Parsing
Parsito is a transition-based, non-projective dependency
parser described in (Straka et al., 2015), capable of parsing
both projective and non-projective sentences. The parser,
inspired by (Chen and Manning, 2014), uses a neural net-
work classifier for prediction and requires no feature engi-
neering. In (Straka et al., 2015) a new search-based oracle
is proposed, which improves parsing accuracy similarly to
a dynamic oracle, but is applicable to any transition system,
such as the fully non-projective swap system. The parser
has excellent parsing speed, compact models, and achieves
high accuracy.
UDPipe employs the Parsito parser nearly unmodified.
Compared to (Straka et al., 2015), only an optional beam-
search decoding along the lines of (Zhang and Nivre, 2011)
was added. The beam-search decoding improves accu-
racy, but decreases runtime performance. By default, beam
search of size 5 is used.

5.1. Parsing Results
We trained the parser as described in (Straka et al., 2015),
choosing the hyperparameters, transition system and an or-
acle which maximize the parser performance on the devel-
opment portion of the data.
We report both unlabelled (UAS) and labelled attachment
score (LAS) of the parser in Table 3.
We consider both the situations when the part-of-speech
tags are automatically generated and when the gold tags
are used, because while most users will parse data with au-
tomatically generated POS tags, system comparison is usu-
ally performed using gold tags.

11We considered G ∈ {8, 10, 12} and E ∈ {4, 5, 6}.

4293



Language
Size UDPipe morphological analyzer UDPipe tagger

Words Sentences TA/F UPOS XPOS Feats Tags LA/F Lemma UPOS XPOS Feats Tags Lemma

Ancient Greek 244 993 16 221 7.5 99.8 98.4 98.8 98.4 4.6 90.4 90.9 77.3 88.5 77.2 86.7

Ancient Greek–PROIEL 206 966 16 633 7.9 99.7 99.7 98.7 98.5 5.0 95.0 96.6 96.3 88.9 88.0 93.4

Arabic 282 384 7 664 6.7 99.9 99.3 99.3 99.3 6.7 — 98.7 97.5 97.5 97.3 —

Basque 121 443 8 993 6.2 98.5 — 97.2 95.9 4.5 97.1 93.1 — 87.3 85.6 93.5

Bulgarian 156 319 11 138 7.0 99.6 98.6 98.8 98.2 6.1 98.3 97.8 94.3 93.9 92.7 94.5

Croatian 87 765 3 957 6.9 99.2 — 96.0 95.4 3.8 97.6 95.1 — 85.7 85.1 92.4

Czech 1 506 490 87 913 7.4 99.8 98.7 98.3 98.2 6.4 99.6 98.4 93.0 92.4 92.0 97.8

Danish 100 733 5 512 7.2 99.8 — 98.9 98.8 7.2 99.0 95.8 — 94.5 93.3 95.5

Dutch 200 654 13 735 6.6 98.0 96.0 98.2 95.7 5.2 93.4 89.2 88.4 90.8 85.9 88.9

English 254 830 16 622 9.1 99.7 99.2 99.5 99.1 7.5 99.4 94.5 93.4 95.0 92.0 97.0

Estonian 9 491 1 315 7.3 97.1 88.4 93.6 88.3 5.0 85.8 87.9 73.0 79.3 72.9 77.0

Finnish 181 022 13 581 5.4 98.9 98.9 97.5 97.1 4.2 90.5 94.9 95.7 92.7 91.6 86.5

Finnish–FTB 159 829 18 792 6.0 98.4 96.8 97.6 96.8 5.7 93.7 93.6 91.0 92.7 90.5 89.0

French 401 491 16 446 7.5 99.9 — — 99.9 6.9 — 95.9 — — 95.9 —

German 298 242 15 894 6.9 99.7 — — 99.7 7.3 — 90.7 — — 90.7 —

Gothic 56 128 5 450 7.8 99.5 99.5 97.9 97.8 4.6 95.9 95.4 95.8 88.0 86.2 93.4

Greek 59 156 2 411 6.7 99.7 99.4 99.2 98.3 4.9 97.3 97.4 97.1 92.3 91.0 94.7

Hebrew 158 855 6 216 8.3 99.7 99.4 97.5 96.7 6.6 — 94.8 94.5 91.2 90.1 —

Hindi 351 704 16 647 14.1 99.5 98.9 97.6 96.5 12.6 99.6 95.8 94.6 89.6 87.2 98.0

Hungarian 26 538 1 299 5.3 97.8 — 96.4 95.7 5.2 95.4 92.8 — 89.8 88.8 87.3

Indonesian 121 923 5 593 7.4 99.9 — — 99.9 7.2 — 93.6 — — 93.6 —

Irish 23 686 1 020 6.1 97.5 97.0 88.9 86.7 4.9 92.6 90.3 88.7 79.0 75.7 87.3

Italian 271 180 12 677 7.5 99.9 99.6 99.6 99.4 5.0 99.5 97.2 96.9 96.8 96.0 97.7

Japanese–KTC 267 631 9 995 — — — — — — — — — — — —

Latin 47 303 3 269 8.5 98.2 92.5 95.0 92.5 6.4 92.2 90.8 76.5 79.7 76.2 79.9

Latin–ITT 259 684 15 295 6.0 99.9 99.2 99.5 99.1 4.1 99.7 98.8 93.7 94.4 93.4 98.4

Latin–PROIEL 165 201 14 982 7.8 99.7 99.7 98.3 98.1 5.4 97.7 96.2 95.8 88.4 87.7 95.2

Norwegian 311 277 20 045 7.6 99.6 — 99.4 99.1 6.7 99.5 97.2 — 95.4 94.6 96.9

Old Church Slavonic 57 507 6 346 7.4 99.5 99.4 97.6 97.2 4.3 94.5 95.7 95.4 88.6 88.0 92.9

Persian 152 871 5 997 6.8 99.9 99.6 99.7 99.6 5.0 — 96.9 96.1 96.3 96.0 —

Polish 83 571 8 227 7.5 99.7 97.0 97.0 97.0 5.5 97.6 96.0 84.7 84.8 84.5 92.7

Portuguese 212 545 9 359 14.3 99.9 98.7 99.2 98.6 4.8 99.4 97.4 91.5 94.5 91.1 97.8

Romanian 12 094 633 6.8 97.9 93.3 94.5 93.3 5.8 93.8 88.3 80.9 82.0 80.9 75.3

Slovenian 140 418 7 996 7.5 99.4 97.3 97.7 97.2 5.5 98.9 95.6 87.6 88.0 86.9 94.8

Spanish 431 587 16 013 8.1 99.7 — 99.1 98.4 5.6 99.4 95.0 — 95.6 92.9 96.2

Swedish 96 819 6 026 6.9 99.7 98.8 99.0 98.7 4.3 98.8 95.7 93.5 94.3 92.8 95.5

Tamil 9 581 600 4.7 95.7 91.8 93.4 91.7 4.7 95.4 85.4 79.4 82.5 78.6 87.7

Table 2: Morphological analyzer success rate and tagging accuracy for all Universal Dependencies 1.2 treebanks. The tag
analyses per form (TA/F) is the average number of morphological tagger analyses per form, while lemma analyses per
form (LA/F) is the average number of lemmatizer analyses. We report the success rate, i.e., the ratio of words, for which
the analyser produces among others the correct analysis, for the morphological analyser. The column Tags stands for all
morphological tags (concatenation of UPOS, XPOS and Feats). For the tagger, accuracy is reported.

4294



Size Non-proj. Automatic POS tags Gold POS tags

Language
Words Non-proj. UDPipe UDPipe (Ammar et al., 2016)

edges monolin. multilin.
Sentences Non-proj. UAS LAS UAS LAS LAS LASsentences

Ancient 244 993 9.78% 69.3 62.9 72.0 67.1Greek 16 221 63.22%
Ancient 206 966 5.95% 76.3 70.4 77.8 73.0Greek–PROIEL 16 633 39.48%

Arabic 282 384 0.33% 80.8 76.0 81.0 76.67 664 8.19%

Basque 121 443 4.95% 75.0 69.7 80.0 76.28 993 33.74%

Bulgarian 156 319 0.21% 89.2 84.7 91.7 87.211 138 2.83%

Croatian 87 765 0.46% 78.7 71.5 82.9 76.63 957 7.48%

Czech 1 506 490 0.93% 86.6 82.7 88.6 85.887 913 12.58%

Danish 100 733 1.97% 78.6 74.8 83.5 80.65 512 22.84%

Dutch 200 654 4.10% 78.7 71.3 78.5 75.013 735 30.87%

English 254 830 0.48% 84.0 80.2 87.5 85.0 85.9 85.416 622 4.96%

Estonian 9 491 0.08% 81.3 73.4 87.3 84.51 315 0.61%

Finnish 181 022 0.74% 80.7 76.3 84.5 81.713 581 7.68%

Finnish–FTB 159 829 1.09% 81.2 76.3 85.6 82.918 792 6.78%

French 401 491 0.83% 81.9 77.8 84.5 81.0 81.7 82.416 446 12.45%

German 298 242 0.90% 77.9 71.8 82.9 78.6 79.3 78.915 894 12.08%

Gothic 56 128 3.86% 76.5 68.8 79.5 74.15 450 23.85%

Greek 59 156 1.95% 80.8 76.7 82.4 79.42 411 27.87%

Hebrew 158 855 0.00% 82.7 77.1 85.6 81.86 216 0.00%

Hindi 351 704 0.76% 91.7 87.5 94.2 91.216 647 13.60%

Hungarian 26 538 2.09% 76.2 69.3 82.3 76.91 299 25.17%

Indonesian 121 923 0.13% 80.7 73.9 82.8 78.35 593 1.93%

Irish 23 686 0.81% 72.8 63.4 75.6 69.51 020 12.84%

Italian 271 180 0.32% 88.7 85.7 90.2 88.1 88.7 89.112 677 3.94%

Japanese–KTC 267 631 0.00% – – 85.9 76.99 995 0.00%

Latin 47 303 7.13% 58.1 48.5 62.7 55.73 269 46.22%

Latin–ITT 259 684 3.45% 79.6 76.2 81.2 78.715 295 37.20%

Latin–PROIEL 165 201 5.22% 75.2 68.3 78.3 73.314 982 30.09%

Norwegian 311 277 0.60% 87.0 84.5 90.2 88.320 045 7.70%
Old Church 57 507 3.71% 81.1 74.1 84.6 79.5Slavonic 6 346 21.57%

Persian 152 871 0.38% 84.1 79.7 86.3 83.05 997 5.14%

Polish 83 571 0.04% 86.2 79.4 91.3 87.88 227 0.32%

Portuguese 212 545 1.27% 85.0 81.3 87.2 84.7 85.7 86.29 359 18.44%

Romanian 12 094 0.89% 68.4 56.4 74.1 63.2633 11.37%

Slovenian 140 418 1.11% 83.8 80.2 89.5 88.17 996 13.61%

Spanish 431 587 0.30% 83.3 79.7 87.1 84.5 83.7 84.316 013 6.05%

Swedish 96 819 0.19% 81.2 77.0 86.2 83.2 83.5 84.56 026 2.77%

Tamil 9 581 0.29% 64.8 56.3 78.1 71.5600 2.17%

Table 3: Parsing accuracy on all treebanks of Universal Dependencies version 1.2. We characterize each treebank by its
size and level of non-projectivity and present our parsing results in terms of unlabeled attachment score UAS and labeled
attachment score LAS. We show the results separately for the case when the POS tags are automatically recognized, and
when the gold POS tags are used. For comparison, we also show parsing results of (Ammar et al., 2016), both in the
monolingual setting and in multilingual setting. Best results in each category (UAS/LAS) are shown in bold font.

4295



We compare our parser results to (Ammar et al., 2016),
which present two parsers trained on 7 treebanks from Uni-
versal Dependencies 1.2. The first parser is monolingual (it
is trained on the training data of the target language only),
the second one is trained on all 7 treebanks. Although both
these parsers utilize additional raw corpora during train-
ing (by employing pretrained word embeddings and Brown
clusters embeddings) and use more advanced Stack-LSTM
model (Dyer et al., 2015), UDPipe parsing results are quite
competitive, as presented in Table 3.
Note that for some languages there is a noticeable drop
in parsing performance when automatically generated POS
tags are used instead of gold POS tags. Since we train the
tagger and the parser using the same input data, we were
concerned whether it is proper to train the parser using gen-
erated POS tags that were trained on the same data (be-
cause these POS tags are nearly identical to the gold tags,
unlike POS tags generated on development and testing por-
tion of the data). However, when the parser is trained us-
ing POS tags generated by 10-fold cross-training (i.e., POS
tags of each fold of the training data are generated by a tag-
ging model trained on the remaining folds), the resulting
attachment scores (both unlabelled and labelled) averaged
across all treebanks dropped, demonstrating that this is not
the case.

6. UDPipe
UDPipe is a single C++ tool containing a tokenizer, mor-
phological analyzer, POS tagger, lemmatizer and a de-
pendency parser as described in the previous sections.
It is released under the very permissive Mozilla Pub-
lic License (MPL) and can be obtained from the UD-
Pipe homepage http://ufal.mff.cuni.cz/udpipe or
directly using the permanent ID http://hdl.handle.

net/11234/1-1659. The training code is part of the re-
lease.
The whole pipeline is easily trainable using training data
in CoNLL-U format (and optionally additional raw text if
the tokenizer is to be trained and the pre-tokenized version
of the text is not available).12 All the trained models of
the whole pipeline are stored in a single file. Naturally,
it is possible to train only a selected part of the complete
pipeline.
We believe UDPipe to be a light-weight, efficient soft-
ware with low resource usage and high throughput – the
complete pipeline usually has throughput of several thou-
sand words per second, with model sizes on the order of
megabytes.
In addition to the UDPipe binary we also provide a library
with many language bindings – we currently offer Java,
Python, Perl and C#. Furthermore, UDPipe is available as
a web service with REST API.
Finally, we released models for most of UD 1.2 treebanks –
the only missing treebanks are Japanese (because of licens-
ing issues) and four historical treebanks (due to unavailable
raw corpus for tokenizer training, which we nevertheless
hope to obtain soon).

12Note that even if we have set the hyperparameters to reason-
able defaults, some hyperparameter tuning still must take place in
order to obtain best possible performance results.

7. Conclusions and Future Work
We presented UDPipe, a simple, unified tool for tokeniza-
tion, morphological analysis, POS tagging, lemmatization
and dependency parsing. It is distributed as one binary (and
as a library) and with models for most of the Universal De-
pendencies treebanks. UDPipe can also be easily trained
for new languages and requires neither additional resources
such as morphosyntactic dictionaries, nor feature engineer-
ing and no language-specific knowledge.
There are several areas we want to explore in the future. We
want to evaluate the effect of employing real morphologi-
cal dictionary instead of morphological analysis using UD
data only described in Section 4.1. Furthermore, we would
like to utilize additional raw corpora during training, for ex-
ample by using word embeddings, character-level embed-
dings, or improving the morphological guesser.

Acknowledgments
This work has been partially supported and has been us-
ing language resources and tools developed, stored and dis-
tributed by the LINDAT/CLARIN project of the Ministry of
Education, Youth and Sports of the Czech Republic (project
LM2015071). This research was also partially supported by
SVV project number 260 224.

Ammar, W., Mulcaire, G., Ballesteros, M., Dyer, C., and
Smith, N. A. (2016). One parser, many languages.
CoRR, abs/1602.01595.

Bird, S., Klein, E., and Loper, E. (2009). Natural Lan-
guage Processing with Python. O’Reilly Media, Inc., 1st
edition.

Chen, D. and Manning, C. (2014). A fast and accurate de-
pendency parser using neural networks. In Proceedings
of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 740–750, Doha,
Qatar, October. Association for Computational Linguis-
tics.

Cho, K., van Merrienboer, B., Bahdanau, D., and Ben-
gio, Y. (2014). On the properties of neural ma-
chine translation: Encoder-decoder approaches. CoRR,
abs/1409.1259.

Collins, M. (2002). Discriminative Training Methods for
Hidden Markov Models: Theory and Experiments with
Perceptron Algorithms. In Proceedings of the 2002 Con-
ference on Empirical Methods in Natural Language Pro-
cessing, pages 1–8. Association for Computational Lin-
guistics, July.

Collobert, R., Weston, J., Bottou, L., Karlen, M.,
Kavukcuoglu, K., and Kuksa, P. (2011). Natural lan-
guage processing (almost) from scratch. The Journal of
Machine Learning Research, 12:2493–2537.

de Marneffe, M.-C., Dozat, T., Silveira, N., Haverinen, K.,
Ginter, F., Nivre, J., and Manning, C. D. (2014). Univer-
sal stanford dependencies: A cross-linguistic typology.
In Proceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC-2014).

Dyer, C., Ballesteros, M., Ling, W., Matthews, A., and
Smith, N. A. (2015). Transition-based dependency pars-
ing with stack long short-term memory. In Proceedings

4296



of the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1:
Long Papers), pages 334–343, Beijing, China, July. As-
sociation for Computational Linguistics.

Graves, A. and Schmidhuber, J. (2005). Framewise
phoneme classification with bidirectional lstm and other
neural network architectures. Neural Networks, pages 5–
6.

Hochreiter, S. and Schmidhuber, J. (1997). Long
short-term memory. Neural Comput., 9(8):1735–1780,
November.

Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. CoRR, abs/1412.6980.

Ling, W., Luı́s, T., Marujo, L., Astudillo, R. F., Amir,
S., Dyer, C., Black, A. W., and Trancoso, I. (2015).
Finding function in form: Compositional character mod-
els for open vocabulary word representation. CoRR,
abs/1508.02096.

Nivre, J., de Marneffe, M.-C., Ginter, F., Goldberg, Y.,
Hajič, J., Manning, C. D., McDonald, R., Petrov, S.,
Pyyaslo, S., Silveira, N., Tsarfaty, R., and Zeman, D.
(2016). Universal dependencies v1: A multilingual tree-
bank collection. Submitted to this LREC.

Petrov, S., Das, D., and McDonald, R. (2012). A universal
part-of-speech tagset. In Proceedings of the Eight Inter-
national Conference on Language Resources and Evalu-
ation (LREC’12), Istanbul, Turkey, may. European Lan-
guage Resources Association (ELRA).

Spoustová, D. j., Hajič, J., Raab, J., and Spousta, M.
(2009). Semi-Supervised Training for the Averaged Per-
ceptron POS Tagger. In Proceedings of the 12th Confer-
ence of the European Chapter of the ACL (EACL 2009),
pages 763–771, Athens, Greece, March. Association for
Computational Linguistics.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. (2014). Dropout: A simple way
to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15:1929–1958.

Straka, M., Hajič, J., Straková, J., and Hajič jr., J. (2015).
Parsing universal dependency treebanks using neural net-
works and search-based oracle. In Proceedings of Four-
teenth International Workshop on Treebanks and Lin-
guistic Theories (TLT 14), December.

Straková, J., Straka, M., and Hajič, J. (2014). Open-source
tools for morphology, lemmatization, pos tagging and
named entity recognition. In Proceedings of 52nd An-
nual Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 13–18, Balti-
more, Maryland, June. Association for Computational
Linguistics.

Univeral Dependencies Treebanks version 1.2.
(2015). Released Nov 15, 2015. Perma-
nent identifier for download http://hdl.
handle.net/11234/1-1548, documentation at
http://universaldependencies.org/.

Zeman, D. (2008). Reusable tagset conversion using
tagset drivers. In Proceedings of the Sixth Interna-
tional Conference on Language Resources and Evalu-

ation (LREC’08), Marrakech, Morocco, may. European
Language Resources Association (ELRA).

Zhang, Y. and Nivre, J. (2011). Transition-based depen-
dency parsing with rich non-local features. In Proceed-
ings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technolo-
gies: Short Papers - Volume 2, HLT ’11, pages 188–193,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

4297


