
The Hunvec Framework For NN-CRF-based Sequential Tagging

Katalin Pajkossy Attila Zséder
BUTE, Institute of Mathematics HAS Research Institute for Linguistics

H-1111 Egry József u. 13-17, Budapest H-1068 Benczúr u 33, Budapest
pajkossy@mokk.bme.hu zseder@mokk.bme.hu

Abstract
In this work we present the open source hunvec framework for sequential tagging, built upon Theano and Pylearn2. The
underlying statistical model, which connects linear CRF-s with neural networks, was used by Collobert and co-workers, and several
other researchers. For demonstrating the flexibility of our tool, we describe a set of experiments on part-of-speech and named-entity-
recognition tasks, using English and Hungarian datasets, where we modify both model and training parameters, and illustrate the usage
of custom features. Model parameters we experiment with affect the vectorial word representations used by the model; we apply
different word vector initializations, defined by Word2vec and GloVe embeddings and enrich the representation of words by vectors
assigned trigram features. We extend training methods by using their regularized (l2 and dropout) version. When testing our framework
on a Hungarian named entity corpus, we find that its performance reaches the best published results on this dataset, with no need for
language-specific feature engineering. Our code is available at http://github.com/zseder/hunvec

Keywords: neural networks, sequential tagging, named entity recognition

1. Introduction and related work
Sequential labeling models provide algorithms for NLP
tasks of basic importance, including part-of-speech tagging
(POS) and named entity recognition (NER). In this work we
use a model which connects linear CRF-s with neural net-
works, introduced in (Collobert and Weston, 2008; Peng et
al., 2009; Do and Artieres, 2010). Our implementation is
based on (Collobert et al., 2011). This work attracted much
attention among NLP researchers, inspiring several adapta-
tions (see (Zheng et al., 2013)) and extensions (see (Santos
and Zadrozny, 2014)). The model is capable of utilizing
distributed word representations as part of the model’s ini-
tialization; the effect of using different embeddings has also
been studied ((Demir and Ozgur, 2014), (Ling et al., 2015)).
Although the results of the previous work are impressive,
the number of tools publicly available for researchers is
limited. For creating word embeddings there are excellent
open source packages, Word2Vec (Mikolov et al., 2013)
and GloVe (Pennington et al., 2014). There are also sev-
eral low-level libraries for working with deep neural net-
works, like Theano (Bergstra et al., 2010; Bastien et al.,
2012), Torch (Collobert et al., 2002), or the recently pub-
lished Tensorflow (Abadi et al., 2015). However, working
with these frameworks requires solid programming skills
and to the best of our knowledge, there is no publicly avail-
able, high-level library for sequential tagging, that would
let a broader range of researchers investigate the domain.
Our framework, hunvec, built upon Theano, attempts to
fill this gap.

2. Model and architecture
Our model, following the work of (Collobert et al., 2011),
uses their sentence-level training scheme. The log likeli-
hood of a sentence s1s2 . . . sT having labels indexed by
t1t2 . . . tT is defined as

T∑
i=1

(A[ti,ti+1] + fθ,ti(~si))− logZθ(~s) (1)

where the trainable elements A[i,j] form a transition ma-
trix A, fθ,ti scores are given by a neural network’s output
with trainable parameters θ, ~si is the input vector computed
for si, and Zθ is the partition function which accounts for
normalizing the probabilities.
We follow a windowing approach: the network’s input, ~si
is the concatenation of a fixed length sequence (window)
surrounding the target word si in the sentence, where the
units in the sequence are the words, possibly augmented
with word features (see Figure 1 for illustration). In the
first layer these units are mapped to a continuous vector
space, which can be of different dimension for the words
and features (practically, the feature space is of much lower
dimension). The first layer’s output is the concatenation of
these vectors, then, transformations defined by regular mul-
tilayer perceptron layers follow, and the output layer’s (un-
normalized) activations correspond to the tag scores. We
chose tanh as activation function.
The window size, the dimension of the word and feature
representations and the number of hidden layers and neu-
rons are hyperparameters of the model. We can enhance
our models by initializing the mapping of words using pre-
trained word vectors (embeddings). We train the parame-
ters of our model (network weights and transition scores)
using stochastic gradient descent.

3. Implementation
As a basis of our implementation, we chose Pylearn2
(Goodfellow et al., 2013), which is a machine learning
library for conducting scientific experiments built upon
Theano (Bergstra et al., 2010; Bastien et al., 2012). There-
fore, we get all the benefits of Theano; the automatic cal-
culation of the gradients will be optimized and stabilized,
and the same code can be compiled to GPU if preferred to
CPU. One training epoch on a tagged corpora of average
size (15-50 thousand sentences) runs for 15-90 minutes on
a regular 2-core CPU, and it usually took 15-20 epochs un-
til converged. Tagging the same amount of sentences takes

4278

http://github.com/zseder/hunvec


Figure 1: Window-based approach with a 3-length window,
feature vectors represent the last trigrams

less than one minute.
We designed hunvec in a way that models and training
options can be modified with very little effort. Modifying
the network architecture (number of hidden layers and neu-
rons), the training parameters (like using momentum, learn-
ing rate/decay, regularization), or the input (like changing
the window size, replacing the initial word embeddings, or
adding new features) are as easy as replacing one line in
the code or a command line parameter, so researchers with
little programming skill can experiment with it.
In our experiments we use a shallow network architecture
with one hidden layer, this can also be replaced by a deep
network as in (Do and Artieres, 2010). Since Pylearn2 is
used and actively developed by the deep learning commu-
nity, many of the new methods of deep learning get im-
plemented quickly, and can be used in an easy, plug-and-
play fashion, which lets us further develop our tool eas-
ily. Some of the methods of training deep architectures
suggested in the literature, such as Nesterov momentum
(Sutskever et al., 2013) or dropout regularization (Srivas-
tava, 2013) are available as training option; in some of
the experiments we present in the next sections we used
dropout regularization. We publish our code on github at
http://github.com/zseder/hunvec, under MIT
License.

4. Experiments
Although the library is still rough on the edges, we are con-
tinuously experimenting with it. We publish the library in
this early phase, because we believe that it can be already
useful for researchers and also the development could ben-
efit from their feedback. As a sanity check, we repeated
the experiments of (Collobert et al., 2011) on English POS-
tagging and NER, using the same experimental setup (ex-
plained in Section 4.1., 4.2., and 4.3.). For demonstrating
the flexibility of our tool, we also present results of modify-
ing some of the hyperparameters of our model (see Section
4.2. and 4.3.). In order to investigate whether our tool is

applicable to different datasets with good results, we also
trained models on a Hungarian NER corpus (see 4.1.).

4.1. Datasets and preprocessing
For English POS task we use the Wall Street Journal dataset
from Penn Treebank III. (Marcus et al., 1993), and use a
canonical split, section 0-18 for training, section 19-21 for
validation and section 22-24 for testing.
For English NER we use the CoNNL-2003 benchmark
(Reuters) dataset (Tjong Kim Sang and De Meulder, 2003).
For Hungarian NER we use the Szeged NER Corpus
(Szarvas et al., 2006a), which is CoNNL-style annotated
corpus of 200 thousand tokens. We use the same train-
development-test split as the authors of (Szarvas et al.,
2006b) and (Varga and Simon, 2007)
We preprocess our corpora by replacing the numerical
strings with a common symbol.

4.2. Network and training parameters
Following (Collobert et al., 2011), we use a network archi-
tecture having a single hidden layer of 300 units, and use
a fixed learning rate, scaled by the respective layer’s size.
We experiment with applying different regularization meth-
ods; l2 penalty term and dropout regularization (Srivastava,
2013).

4.3. Pretrained word embeddings and features
As in (Collobert et al., 2011), we use a window size of 5,
and use word vectors of 50 and feature vectors of 5 dimen-
sions. In our experiments on English datasets we apply dif-
ferent embeddings as word vector initialization; the embed-
ding published by (Collobert et al., 2011) (which will be re-
ferred to as Senna in the later sections), and the word vec-
tors published by the GloVe project, which were trained
on Wikipedia 2014 and Gigaword 5 corpora. For mod-
els trained on the Hungarian dataset we use Word2Vec
vectors, which we trained on the Hungarian Webcorpus
(Halácsy et al., 2004) with negative sampling, using the
tool’s skipgram model. For the feature vectors we use no
specific initialization.
Following (Collobert et al., 2011), we use a capitalization
feature in all our experiments, which we extend with ad-
ditional features in some setups. Our additional feature
set for the English POS task is the same that was used by
Collobert, consisting only of features corresponding to the
two-long suffices. As our aim is to demonstrate the flexibil-
ity of our tool, we tested our models the Hungarian dataset
without any laborious language-specific feature engineer-
ing; instead, we chose to use a simple feature set contain-
ing three features representing the last three trigrams of the
given word. We use this feature set also for the English
NER task.

5. Results
Our results on the different datasets are described in Section
5.1., 5.2. and 5.3., and some conclusions we could draw
regarding the used word vector initializations and regular-
ization methods can be read in Section 5.4. and 5.5..
For evaluation we use metrics commonly used for these
tasks; for evaluating POS tagging we calculate per word

4279

http://github.com/zseder/hunvec


l2 dropout Collobert
only no init. 96.80 96.87 96.37
caps. senna 97.27 97.15 97.20

glove 97.12 97.09 *
caps. + no init. 97.05 97.13 *
bigram senna 97.33 97.23 97.29
suffix glove 97.22 97.15 *

Table 1: Results of English POS tagging (precision)

l2 dropout Collobert
only no init. 83.78 83.38 81.47
caps. senna 88.01 88.31 88.61

glove 87.70 87.81 *
caps. + no init. 84.05 84.42 *
trigram senna 88.24 88.74 *
(last 3) glove 88.33 88.35 *

Table 2: Results of English NER (F1-measure)

precision and for NER the weighted average of the F1 score
of each categories.

5.1. English POS tagging task
Table 1 shows our results on this dataset, compared to those
reported in (Collobert et al., 2011). As can be seen, results
of identical setup are similar, our results of the simplest
model being slightly better (see first row). Our best result
on this dataset is 97.33% precision, the model in question
was trained using Senna initialization and l2 regulariza-
tion, and uses bigram suffix features.

5.2. Results on English NER
Table 2 shows our results on English NER. On this dataset
we experimented with the setup used in (Collobert et al.,
2011) (see first block) and with the addition of simple tri-
gram features (see second block). As the table shows,
when using identical setup than reported by Collobert and
co-workers, our results are similar (the performance of
simplest models being somewhat higher and those using
Senna initialization slightly lower). The results also show
that the usage of the trigram features resulted in a definite
boost of performance in every setup. Our best result on this
dataset is 88.74 F1-measure, it was reached using Senna
initialization and dropout regularization, with the usage of
trigram features.

5.3. Results on Hungarian NER
For Hungarian NER task the best published results of NER
systems trained and tested on Szeged NER Corpus reach
94,77 (Szarvas et al., 2006b) and 95.05 F1-measure(Varga

l2 dropout
only no init. 94.28 94.15
caps. word2vec 94.36 94.65

caps.+ no init. 94.49 94.92
trigram word2vec 94.88 95.48

Table 3: Results of Hungarian NER (F1-measure)

and Simon, 2007). For this task we extended our basic
models using Word2Vec initialization, and with added tri-
gram features. Our results are shown in Table 3. As can
be seen, here the impact of the word vector initialization
is less, than on the CoNNL-2003 benchmark dataset, still,
it provides a consistent boost of performance, as well as
the usage of the trigram features. Our models trained with
both Word2Vec initialization and trigram features reach
the performance of the above two, more sophisticated sys-
tems on this dataset (see last row of Table 3).

5.4. Effect of dropout regularization
We compared the effect of dropout regularization (with a
dropout rate of 0.5 for all weights) versus l2 weight decay
in all experimental setups. The results are mixed; while on
the POS dataset models trained with l2 weight decay per-
formed somewhat better in most of the setups, on the other
datasets (English and Hungarian NER) dropout regulariza-
tion resulted in better results, especially in the case where
we used additional features.

5.5. Effect of different word vector initializations
On both of our English datasets we compared the effect
of using Senna and GloVe initialization. As the results
presented show, models with Senna initialization outper-
formed those initialized with GloVe in almost all experi-
mental setups; slightly on the POS and in a larger extent on
the NER dataset. However, since these vectors were trained
on different datasets, we cannot conclude that the model
that generated Senna is the better suited to this task, we
only compare the utility of the resulting word vectors.
On the Hungarian dataset we experimented with
Word2Vec initialization; using these vectors which
we could train in only a few hours improved our results in
all setups.

6. Conclusions and future work
In this work, we presented an open-source library for neu-
ral network based sequential tagging, and showed its basic
functionalities of it on common NLP tasks. When testing
our framework on a standard Hungarian named entity cor-
pus, we found that without much optimization or language-
specific feature engineering its performance reaches the
best published results on this dataset. In the future we plan
to further investigate the effect of different hyperparame-
ters, including training parameters (like tuning the dropout
rate), different word vector initializations and feature vec-
tors, and as a furher goal, network depth.

7. Bibliographical References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
et al. (2015). Tensorflow: Large-scale machine learn-
ing on heterogeneous systems, 2015. Software available
from tensorflow.org.

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Good-
fellow, I. J., Bergeron, A., Bouchard, N., and Bengio,
Y. (2012). Theano: new features and speed improve-
ments. Deep Learning and Unsupervised Feature Learn-
ing NIPS 2012 Workshop.

4280



Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pas-
canu, R., Desjardins, G., Turian, J., Warde-Farley, D.,
and Bengio, Y. (2010). Theano: a CPU and GPU math
expression compiler. In Proceedings of the Python for
Scientific Computing Conference (SciPy), June. Oral
Presentation.

Collobert, R. and Weston, J. (2008). A unified architecture
for natural language processing: Deep neural networks
with multitask learning. In Proceedings of the 25th Inter-
national Conference on Machine Learning, ICML ’08,
pages 160–167, New York, NY, USA. ACM.

Collobert, R., Bengio, S., and Mariéthoz, J. (2002). Torch:
a modular machine learning software library. Technical
report, IDIAP.

Collobert, R., Weston, J., Bottou, L., Karlen, M.,
Kavukcuoglu, K., and Kuksa, P. (2011). Natural lan-
guage processing (almost) from scratch. Journal of Ma-
chine Learning Research (JMLR).

Demir, H. and Ozgur, A. (2014). Improving named en-
tity recognition for morphologically rich languages us-
ing word embeddings. In 13th International Conference
on Machine Learning and Applications, ICMLA 2014,
Detroit, MI, USA, December 3-6, 2014, pages 117–122.

Do, T.-M.-T. and Artieres, T. (2010). Neural conditional
random fields. In Proceedings of the Thirteenth Inter-
national Conference on Artificial Intelligence and Statis-
tics, volume 9. JMLR: W&CP, 5.

Goodfellow, I. J., Warde-Farley, D., Lamblin, P., Dumoulin,
V., Mirza, M., Pascanu, R., Bergstra, J., Bastien, F., and
Bengio, Y. (2013). Pylearn2: a machine learning re-
search library. arXiv preprint arXiv:1308.4214.

Halácsy, P., Kornai, A., Németh, L., Rung, A., Szakadát, I.,
and Trón, V. (2004). Creating open language resources
for Hungarian. In Proc. LREC2004, pages 203–210.

Ling, W., Dyer, C., Black, A., and Trancoso, I. (2015).
Two/too simple adaptations of word2vec for syntax prob-
lems.

Marcus, M., Santorini, B., and Marcinkiewicz, M. A.
(1993). Building a large annotated corpus of English:
The Penn treebank. Computational Linguistics, 19:313–
330.

Mikolov, T., Yih, W.-t., and Geoffrey, Z. (2013). Linguistic
regularities in continuous space word representations. In
Proceedings of NAACL-HLT 2013, pages 746–751.

Peng, J., Bo, L., and Xu, J. (2009). Conditional neural
fields. In Y. Bengio, et al., editors, Advances in Neural
Information Processing Systems 22, pages 1419–1427.
Curran Associates, Inc.

Pennington, J., Socher, R., and Manning, C. (2014).
Glove: Global vectors for word representation. In Con-
ference on Empirical Methods in Natural Language Pro-
cessing (EMNLP 2014).

Santos, C. D. and Zadrozny, B. (2014). Learning
character-level representations for part-of-speech tag-
ging. In Tony Jebara et al., editors, Proceedings of
the 31st International Conference on Machine Learn-
ing (ICML-14), pages 1818–1826. JMLR Workshop and
Conference Proceedings.

Srivastava, N. (2013). Improving Neural Networks

with Dropout. Master’s thesis, University of Toronto,
Toronto, Canada, January.

Sutskever, I., Martens, J., Dahl, G. E., and Hinton, G. E.
(2013). On the importance of initialization and momen-
tum in deep learning. In Sanjoy Dasgupta et al., editors,
Proceedings of the 30th International Conference on
Machine Learning (ICML-13), volume 28, pages 1139–
1147. JMLR Workshop and Conference Proceedings.

Szarvas, G., Farkas, R., Felföldi, L., Kocsor, A., and Csirik,
J. (2006a). A highly accurate named entity corpus for
hungarian. In Proceedings of International Conference
on Language Resources and Evaluation.

Szarvas, G., Farkas, R., and Kocsor, A. (2006b). A mul-
tilingual named entity recognition system using boost-
ing and C4.5 decision tree learning algorithms. In Dis-
covery Science, 9th International Conference, DS 2006,
Barcelona, Spain, October 8-10, 2006, Proceedings,
pages 268–278.

Tjong Kim Sang, E. F. and De Meulder, F. (2003). In-
troduction to the conll-2003 shared task: Language-
independent named entity recognition. In Walter Daele-
mans et al., editors, Proceedings of CoNLL-2003, pages
142–147. Edmonton, Canada.

Varga, D. and Simon, E. (2007). Hungarian named en-
tity recognition with a maximum entropy approach. Acta
Cybern., 18(2):293–301, February.

Zheng, X., Chen, H., and Xu, T. (2013). Deep learning for
chinese word segmentation and pos tagging. In EMNLP,
pages 647–657. ACL.

4281


	Introduction and related work
	Model and architecture
	Implementation
	Experiments
	Datasets and preprocessing
	Network and training parameters
	Pretrained word embeddings and features

	Results
	English POS tagging task
	Results on English NER
	Results on Hungarian NER
	Effect of dropout regularization
	Effect of different word vector initializations

	Conclusions and future work
	Bibliographical References

