
WikiParq: A Tabulated Wikipedia Resource Using the Parquet Format

Marcus Klang, Pierre Nugues
Lund University, Department of Computer science,

Lund, Sweden

marcus.klang@cs.lth.se, pierre.nugues@cs.lth.se
Abstract

Wikipedia has become one of the most popular resources in natural language processing and it is used in quantities of applications.

However, Wikipedia requires a substantial pre-processing step before it can be used. For instance, its set of nonstandardized annotations,

referred to as the wiki markup, is language-dependent and needs specific parsers from language to language, for English, French, Italian,

etc. In addition, the intricacies of the different Wikipedia resources: main article text, categories, wikidata, infoboxes, scattered into

the article document or in different files make it difficult to have global view of this outstanding resource. In this paper, we describe

WikiParq, a unified format based on the Parquet standard to tabulate and package the Wikipedia corpora. In combination with Spark,

a map-reduce computing framework, and the SQL query language, WikiParq makes it much easier to write database queries to extract

specific information or subcorpora from Wikipedia, such as all the first paragraphs of the articles in French, or all the articles on persons

in Spanish, or all the articles on persons that have versions in French, English, and Spanish. WikiParq is available in six language

versions and is potentially extendible to all the languages of Wikipedia. The WikiParq files are downloadable as tarball archives from

this location: http://semantica.cs.lth.se/wikiparq/.

Keywords:Wikipedia, Parquet, query language.

1. Introduction

1.1. Wikipedia

Wikipedia is a collaborative, multilingual encyclopedia

with more than 35 million articles across nearly 300 lan-

guages. Anyone can edit it and its modification rate is of

about 10 million edits per month1; many of its articles are

categorized; and its cross-references to other articles (links)

are extremely useful to help name disambiguation.

Wikipedia is freely available in the form of dump archives2

and its wealth of information has made it a major resource

in natural language processing applications that range from

word counting to question answering (Ferrucci, 2012).

1.2. Wikipedia Annotation

Wikipedia uses the so-called wiki markup to annotate the

documents. Parsing this markup is then a compulsory

step to any further processing. As for the Wikipedia ar-

ticles, parts of this markup are language-dependent and

can be created and changed by anyone. For exam-

ple, the {{Citation needed}} template in the English

Wikipedia is rendered by {{Citation nécessaire}}
in French and {{citazione necessaria}} in Italian.

Many articles in French use a date template in the form

of {{Year|Month|Day}}, which is not used in other

Wikipedias.

Moreover, the wiki markup is difficult to master for the mil-

lions of Wikipedia editors and, as a consequence, the arti-

cles contain scores of malformed expressions. While it is

relatively easy to create a quick-and-dirty parser, an accu-

rate tool, functional across all the language versions is a ma-

jor challenge.

In this paper, we describe WikiParq, a set of Wikipedia

archives with an easy tabular access. To create WikiParq,

we reformatted Wikipedia dumps from their HTML render-

ing and converted them in the Parquet format. In addition

1https://stats.wikimedia.org/
2http://dumps.wikimedia.org/

to the Wikipedia original content, WikiParq makes it easy

to add any number of linguistic layers such as the parts of

speech of the words or dependency relations.

The WikiParq files are available for download as tarball

archives in six languages: English, French, Spanish, Ger-

man, Russian, and Swedish, as well as the Wikidata con-

tent relevant to these languages, from this location: http:
//semantica.cs.lth.se/wikiparq/.

2. Related Work

There are many tools to parse and/or package Wikipedia.

The most notable ones include WikiExtractor (Attardi and

Fuschetto, 2015), Sweble (Dohrn and Riehle, 2013), and

XOWA (Gnosygnu, 2015). In addition, the Wikimedia

foundation also provides HTML dumps in an efficient com-

pression format called ZIM (Wikimedia CH, 2015).

WikiExtractor is designed to extract the text content, or

other kinds information from the Wikipedia articles, while

Sweble is a real parser that produces abstract syntactic trees

out of the articles. However, both WikiExtractor and Swe-

ble are either limited or complex as users must adapt the

output to the type of information they want to extract. In

addition, they do not support all the features of MediaWiki.

A major challenge for such parsers is the template expan-

sion. Dealing with these templates is a nontrivial issue as

they can, via the Scribunto extension3, embed scripting lan-

guages such as Lua.

XOWA and ZIM dumps are, or can be converted into,

HTML documents, where one can subsequently use HTML

parsers to extract information. The category, for instance, is

relatively easy to extract using HTML CSS class informa-

tion. However, neither XOWA nor ZIM dumps make the

extraction of specific information from Wikipedia as easy

as database querying. In addition, they cannot be easily ex-

tended with external information.

3https://www.mediawiki.org/wiki/Extension:
Scribunto

4141

3. The Wikipedia Annotation Pipeline

The Wikipedia annotation pipeline consists of five different

steps:

1. The first step converts the Wikipedia dumps into

HTML documents that we subsequently parse into

DOM abstract syntactic trees using jsoup.

2. The second step consists of a HTML parser that tra-

verses the DOM trees and outputs a flattened unfor-

matted text with multiple layers of structural informa-

tion such as anchors, typeface properties, paragraphs,

etc. At the end of this step, we have the text and easily

parseable structural information.

3. The third step consists of a linking stage that associates

the documents and anchors with unique identifiers, ei-

ther Wikidata identifiers (Q numbers) or, as a fallback,

Wikipedia page titles.

4. The fourth step annotates the resulting text with gram-

matical layers that are entirely parametrizable and that

can range from tokenization to semantic role labelling

and beyond. The linguistic annotation is provided by

external language processing tools. This step is op-

tional.

5. The fifth and final stage links mentions of proper nouns

and concepts, possibly ambiguous, to unique entity

identifiers. As in the third step, we use the Wikidata

nomenclature to identify the entities. This fifth step is

also optional.

3.1. Wiki Markup and HTML Parsing

The first and second steps of the annotation pipeline parse

and convert the dumps into an intermediate document

model. As input data, the markup parser uses either HTML

documents from ZIM archives or XOWA outputs. It then

uses the jsoup HTML parser4 to build the document object

model (DOM) of every page, where we extract the text, sec-

tions, paragraphs, infoboxes, anchors (the wiki links), ta-

bles, and lists.

The parser recursively traverses the HTML DOM and uses

heuristic hints based on the CSS classes and HTML tags

such as <table>, <p>, , and to carry out the

information extraction. It outputs the flattened text and

nine independent sequences of ranges, where the sequences

describe respectively the tokens, sections, paragraphs, list

items, list sections, anchors, headings, italic and bold char-

acters. This structured data is an intermediate format that

we call the Multilayer Document Model (MLDM), which

is similar to a property graph model. Figure 1 shows the

conversion pipeline from the Wikimedia dumps to the ab-

stract syntactic trees (AST) and MLDM layers.

3.2. Anchor Resolution

The third step links the documents and anchors to their en-

tity id, a unique entity identifier across Wikipedia language

editions available from Wikidata.

4http://jsoup.org/

Prior to the linking step, we collected a set of entities from

Wikidata, a freely available graph database that connects the

Wikipedia pages across languages. Each Wikidata entity

has a unique identifier, a Q-number, that is shared by all the

Wikipedia language versions on this entity.

TheWikipedia pages onBeijing in English, Pékin in French,

Pequim in Portuguese, and北京 in Chinese, are all linked

to the Q956 Wikidata number, for instance, as well as 190

others languages. In total, Wikidata covers a set of more

than 16 million items that defines the search space of entity

linking. In the few cases where a Wikipedia page has no

Q-number, we replace it by the page name. In addition to

the Q-numbers, Wikidata structures its content in the form

of a graph, where each node is assigned a set of properties

and values. For instance, Beijing (Q956) is an instance of

a city (Q515) and has a coordinate location of 39°54’18”N,

116°23’29”E (P625).

We implemented the anchor resolver through a lookup dic-

tionary that uses all the Wikipedia page titles, redirects, and

Wikidata identifiers. The page labels, i.e. the page titles and

all their synonyms, form the entries of this dictionary, while

the Wikidata identifiers are the outputs. In case a page label

has no Wikidata number, the dictionary uses its normalized

page title.

3.3. Grammatical Annotation

Once we have extracted and structured the text, we can ap-

ply a grammatical annotation that is language specific. De-

pending on the language, and the components or resources

available for it, the annotation can range from a simple to-

kenization to semantic-role labels or coreference chains.

Multilinguality. We implemented the grammatical anno-

tation so that it has a multilingual support at the core. All the

language-dependent algorithms are stored in separate pack-

ages and tied to the system through abstractions that operate

on the Multilayer Document Model. More specifically, the

token annotations include a dictionary loosely inspired by

the CoNLL format (Buchholz and Marsi, 2006) extended

with naming conventions from Exner and Nugues (2014).

Dependency Injection. The annotators apply the depen-

dency injection (Fowler, 2004) pattern that solves the prob-

lem of hard-coded dependencies by making the code only

depend on a dependency injector. The dependency injector

is constructed once and reused multiple times. The injec-

tor can be configured to provide different concrete imple-

mentations which allow a high-level way of switching the

implementation of an abstraction. The role of the injector

is to provide instances of requested abstractions as well as

concrete classes. The injector also injects the dependen-

cies needed to construct these instances. We used Guice

(Google, 2011) as base library on top of which we devel-

oped thread-safe constructions to be able to process indices

and storage.

Tool chains. The tool chains are instances of annotators

and are specific to the languages we process. For English,

Spanish, and German, we use CoreNLP (Manning et al.,

2014). For French, we use CoreNLP for tokenizing the

text and MATE for parsing (Björkelund et al., 2010). For

Swedish, we use Stagger (Östling, 2013) and MaltParser

4142

Wiki markup

Wikimedia
dump

HTML

XOWA

HTML/ZIM

HTML/XOWA

DOM

} jsoup

Sections
Text

Multilayer document model

Paragraphs

…

List items
Anchors
Tokens
Italic characters

WDM parser }Nine sequences of
ranges describing the
structural information

html
head

title
body

p
div

table

Figure 1: Conversion of Wikipedia dumps into abstract syntactic trees and the Multilayer Document Model (MLDM)

(Nivre et al., 2006). For Russian, there is no linguistic an-

notation and the tool chain is reduced to nothing as of today.

3.4. Entity Linking

The final step links mentions of named entities and con-

cepts to unique Wikidata identifiers. This last opera-

tion is an optional step. While Wikidata defines unam-

biguous mappings between a Q-number and language-

dependent strings, strings may have ambiguous Q-numbers.

For example, the mention Göran Persson in the Swedish

Wikipedia refers to at least four different entities with three

different Q-numbers: A former Swedish prime minister

(Q53747), a progressive musician (Q6042900), a politician

(Q5626648), and a Swedish statesman from the 16th cen-

tury (Q2625684). The latter is also being spelled Jöran Per-

son.

To carry out the mention disambiguation, we reimple-

mented a variant of TagMe (Ferragina and Scaiella, 2010).

TagMe requires minimal grammatical information as it only

needs a dictionary of mention-entity pairs and of incoming

links. We can then apply it to any of our language versions.

3.5. Visualizing the Annotations

We created a tool to visualize the annotations of the Mul-

tilayer Document Model. The layers are selectable from a

dropdown menu and their visualization uses brat compo-

nents5. Figures 2, 3, and 4 show screenshots with differ-

ent layers. They all refer to the Wikipedia article Carl von

Linné in English.

Figure 2 shows the first paragraph of the article with the

token and named entity layers, while Fig. 3 shows the en-

tity links with those manually marked as anchors in the text

superimposed to the automatically assigned entity links.

The numbers refer to the Wikidata nomenclature. Finally,

Fig. 4 shows the dependency relations. This layer is op-

tional and depends on the availability of a parser for the

language version. This visualization tool is available at:

http://vilde.cs.lth.se:8080/.

4. Parquet: A Storage and Extraction

Format

Parquet6 is a popular column-oriented storage format, i.e.

a columnar format, where instead of storing a file by row,

the data is structured by column. Table 1 shows a simple

example of data tabulated in two columns, where the first

one consists of words and the second one, of their parts of

5http://brat.nlplab.org/
6https://parquet.apache.org/

speech, and Table 2 shows how the first table is stored us-

ing a row-oriented format and a columnar one, where the

columns are stored sequentially.

Word POS

The dt

boy nn

fell vb

Table 1: An example of tabulated data.

Row-oriented Column-oriented

The The

dt First column boy

boy fell

nn dt

fell Second column nn

vb vb

Table 2: Storage organization in row- and column-oriented

formats.

In files with large numbers of columns, the Parquet format

enables a program to read the columns as needed and skip

the others. In addition to providing a faster access to the

selected columns, such a format is also very efficient for

compressing redundant data; something extremely useful in

our case.

5. The WikiParq Format

We created a program to tabulate and store all the annotation

layers we described in Sect. 3. using the Parquet format.

5.1. The WikiParq Columns

In its current version, the WikiParq format consists of ten

main columns. Some columns borrow concepts from graph

database structures in the form of source nodes, target

nodes (values), and predicates (or properties) between these

nodes:

uri: The wikidata identifier of the document, for instance

urn:wikidata:Q34;

lang: The language of the document, for instance de for

German, fr for French;

doc: The part of the document. The values can be article
(the text), category, or disambiguation;

4143

Figure 2: Visualizing tokens and named entities

Figure 3: Visualizing the links: Anchors and disambiguated mentions of entities and concepts

source: The layer we are annotating. There are two main

types of layers consisting of either nodes or edges. The

token layer contains nodes: node/token. It is equiv-
alent to a node in a graph, while the dependency layer

uses edges;

sourceId: The identifier of an element in the layer, for in-

stance 1 for the first token in a layer;

predicate: The relation annotating the node, for instance

the part of speech: token:pos. We use similar proper-

ties to annotate a token with its lemma, token:lemma,
a head in a dependency graph, token:head, or a re-
solved Wikipedia link, link:resolved_target;

value[1-9]: The values of the target node, normally one:

value1. For instance, for a token and a part-of-

speech property, the value can be a common noun:

NN. Some relations, such as link:resolved_target,
have more than one value. In this case, we have

value1 for the target, value2 for the text, etc.

type: The format of the value, which can either be

string, range, or reference, doclink, weblink,
wikilink (anchor),

valuei1: Start of the range of the node, if this is relevant,

i.e. the type is range or reference. An example of

reference that refers to the first token of a document is:

4144

Figure 4: Visualizing the grammatical dependencies

valuei1 = 1 and value1 = node/token;

valuei2: End of the range of the node, if this is relevant

(range).

Table 3 shows examples of Wikiparq annotations for a

whole document, a token, its range and part of speech, as

well as an anchor to the Finland entity.

5.2. The WikiParq Predicates

We used a set of predicates to describe the relations linking

a node to its values. This allows us to represent data in the

form of triples consisting of a node, a predicate, and a value.

For instance, the token in Table 3 has a text, a range, and a

part of speech that conceptually correspond to:

wd:Q34/sv/article/node/3614, token:text, "officiellt"
wd:Q34/sv/article/node/3614, range:token, "18-28"
wd:Q34/sv/article/node/3614, token:cpostag, "ADJ"

This representation is very flexible. For instance, we desig-

nate and annotate token sequences or sentences through the

creation of nodes with ranges corresponding to the spans

of the groups or the sentences. We can also easily merge

multiple editions of Wikipedia by just considering the lang

prefix. Table 4 shows the list of all the predicates we are

using so far.

We converted the Wikipedia versions of six languages: En-

glish, French, Spanish, German, Russian, and Swedish,

from archives in the Multilayer Document Model into

WikiParq. We also created a WikiParq version of the

Wikidata content relevant to these languages. We used

Wikipedia dumps from February 3rd or 4th, 2016 and a

Wikidata dump from February 22nd, 2016.

The English WikiParq tar file gives an idea of the resulting

data volume: It is 15 Gbytes large, has 4.8 million articles,

49.8million paragraphs, and 175million resolved links. For

Swedish, the total number of triples is of 7.8 billions for the

language-annotated version.

6. Querying WikiParq

The Parquet format has been integrated in a number of pro-

cessing frameworks including map-reduce based databases.

It is the default storage format of Spark SQL (Armbrust et

al., 2015), a module to query structured data using Spark

(Zaharia et al., 2012). Spark is a memory-based implemen-

tation of the map-reduce framework (Dean and Ghemawat,

2008) that has become a very popular tool in cluster com-

puting.

Spark SQL makes it very easy to extract information from

WikiParq as it follows the familiar SQL syntax and, at the

same time, is very fast. In addition, processing can trans-

parently be distributed on a cluster. Spark uses the concept

of dataframe, similar to that of R or Python pandas, for load-

ing and saving Parquet files. We can consider dataframes as

wrappers to Spark resilient datasets (RDD) with structured

schemas.

In the next sections, we provide query examples to show

how to extract information from Wikipedia using WikiParq

and the Spark (Scala) API.

6.1. Loading a File

The API is straightforward and loading a file, here the En-

glish Wikipedia (en_wiki), only needs two instructions:

val en_wiki = sqlContext.read.parquet(filenames)
en_wiki.registerTempTable("enwiki")

which result in a table.

6.2. Extracting Text

To extract all the articles from a Wikipedia version, here

Swedish, we use this simple query:

SELECT uri, lang, value1 AS text
FROM svwiki
WHERE predicate = 'document:text'

inside a sqlContext.sql().
To count all the nouns in a collection, we use:

SELECT COUNT(*)
FROM svwiki
WHERE predicate = 'token:cpostag'
AND value1 = 'NOUN'

which results in about 116 millions for Swedish. The cor-

responding number for verbs is 34 millions.

In the subsequent examples, we used the Parquet files of six

languages: de, en, es, fr, ru, and sv, as well as the Wikidata

parquet file.

6.3. Counting the Articles per Language

Once the files are loaded, we can extract data or information

using SQL queries as for instance for this request:

Extract all the articles on persons in Wikipedia?

4145

Ann. target uri doc source sourceId predicate value1 valuei1 valuei2 type lang

Document wd:Q34 article null null document:text Sverige... null null string sv

Token text wd:Q34 article node/token 3614 token:text officiellt null null string sv

Token range wd:Q34 article node/token 3614 range:token null 18 28 range sv

Token POS wd:Q34 article node/token 3614 token:cpostag ADJ null null string sv

Link wd:Q34 article node/anchor 2329 link:resolved_target wd:Q33 null null wikilink sv

Table 3: Examples of the Wikiparq annotations for a whole document, here the article Sverige ‘Sweden’ in the Swedish

Wikipedia, a word in it, here officiellt, its range, and part of speech, as well as an anchor (wiki link) to Finland. We abridged

urn:wikidata in wd

document link category token range edge ne paragraph section

alt_title resolved_target member-of cpostag clean deprel:label label source title

title unresolved_target title deprel heading head

wiki_page_id feats italic tail

text head link

category idx list_item

lemma list_section

norm named_entity

pos paragraph

text section

sentence

strong

token

Table 4: List of available predicates organized by prefix. To have the full name, the prefix is concatenated to the relation

name, i.e. document:title or link:resolved_target

To carry this out, we first extract the persons from the Wiki-

data ontology. We use the instance of property (P31) and

we keep the entities having the property of being an instance

of a human (Q5). This is translated in SQL as:

sqlContext.sql("""
SELECT uri
FROM wikidata
WHERE predicate = 'wd:P31'
AND value1 = 'urn:wikidata:Q5'

""").cache().registerTempTable("persons")

and results in a table called persons.
We then extract the language versions associated with each

of these entities (persons). We run the extraction using this

query:

sqlContext.sql("""
SELECT wikidata.uri AS uri, lang
FROM wikidata
JOIN persons
ON persons.uri = wikidata.uri
WHERE predicate = 'wd:sitelink'

""").registerTempTable("person_sitelinks")

that produces a table of entity identifiers (Q-numbers) and

languages. The wd:sitelink predicate enables us to find

the language versions of an entity according to Wikidata.

Finally, we count the persons per language using this query:

sqlContext.sql("""
SELECT lang, COUNT(lang) as count

FROM person_sitelinks
GROUP BY lang
ORDER BY lang

""").show()

This results in a table with the number of persons per lan-

guage version:

+----+-------+
|lang| count|
+----+-------+
de	597515
en	1339313
es	274878
fr	462839
ru	313566
sv	183926
+----+-------+

6.4. Counting the Language Versions of an

Article

Going on with this dataset, a second question we may pose

is:

For a given article, how many language versions

are there?

which is translated in SQL as:

sqlContext.sql("""
SELECT uri, COUNT(lang) AS numLangs
FROM person_sitelinks

4146

GROUP BY uri
""").registerTempTable("lang_person")

The excerpt below shows a subset of the first answers to this

question:

+--------------------+--------+
| uri|numLangs|
+--------------------+--------+
urn:wikidata:Q100250	2
urn:wikidata:Q100412	3
urn:wikidata:Q100863	1
urn:wikidata:Q101097	1
urn:wikidata:Q101141	2
urn:wikidata:Q101259	1
urn:wikidata:Q101303	2
urn:wikidata:Q101754	2
urn:wikidata:Q101916	2
urn:wikidata:Q102032	2
urn:wikidata:Q102483	6
urn:wikidata:Q102645	3
urn:wikidata:Q10287	6
+--------------------+--------+

The Q-number is the Wikidata identifier of a Wikipedia en-

tity. For instance, Q101916 is the identifier of Friedrich von

Weech, a German regional historian and archivist, who has

German and Swedish versions.

6.5. Counting Articles with a Constraint on the

Language Versions

At this point, we may wonder:

How many articles are available in the six ver-

sions?

This question is rendered by the following SQL query:

sqlContext.sql("""
SELECT COUNT(uri)
FROM lang_person
WHERE numLangs = 6""")

and the answer is: 41,509 articles.

6.6. Extracting the Text of the Articles

So far, we carried out extractions that could have also

been done from Wikidata using the SPARQL language.

WikiParq merges Wikidata and Wikipedia and extends the

query possibilities to span both resources seamlessly as for

instance with this request whose goal could be to build

loosely parallel corpora in six languages:

Extract the text of all the articles with six lan-

guage versions

Such a request is translated by these two following SQL

queries, where the first one selects the articles with six lan-

guage versions:

sqlContext.sql("""
SELECT * FROM lang_person
WHERE numLangs = 6

""").cache().registerTempTable("lang6_person")

and the second one outputs the text, here in Swedish:

sqlContext.sql("""
SELECT lang6_person.uri, value1 AS text
FROM svwiki
JOIN lang6_person
ON svwiki.uri = lang6_person.uri
WHERE svwiki.predicate = 'document:text'

""").show()

6.7. Extracting all the Mentions of an Entity

A last example shows how to build dictionaries of the words

or phrases used in Wikipedia to name an entity: A dictio-

nary of mentions. To carry this out, we need to extract all

the labels of a entity in Wikipedia. This operation is easy

to carry out, for instance for Barack Obama in the English

Wikipedia. Barack Obama has Q76 as Wikidata identifier.

This leads to this query:

sqlContext.sql("""
SELECT value1 AS target, value2 AS mention,
COUNT(*) AS freq
FROM enwiki
WHERE enwiki.predicate =
'link:resolved_target'

AND value1 = 'urn:wikidata:Q76'
GROUP BY value1, value2
ORDER BY value1, freq DESC

""").show()

that results in a table, where we show the first lines below:

+----------------+--------------------+-----+
| target| mention| freq|
+----------------+--------------------+-----+
urn:wikidata:Q76	Barack Obama	14960
urn:wikidata:Q76	Obama	887
urn:wikidata:Q76	President Obama	546
urn:wikidata:Q76	President Barack ...	142
urn:wikidata:Q76	Barack H. Obama	64
urn:wikidata:Q76	Obama, Barack	45
urn:wikidata:Q76	Barack Obama's	40
urn:wikidata:Q76	President Obama's	21
urn:wikidata:Q76	Barack	21
urn:wikidata:Q76	President Barack ...	13
urn:wikidata:Q76	Obama administration	9
urn:wikidata:Q76	Obama's	8
urn:wikidata:Q76	President-elect O...	8
urn:wikidata:Q76	President	7
urn:wikidata:Q76	Sen. Barack Obama	7
urn:wikidata:Q76	Barack Hussein Obama	7
urn:wikidata:Q76	Barack Hussein Ob...	6
urn:wikidata:Q76	U.S. President Ba...	6
urn:wikidata:Q76	Senator Barack Obama	6
urn:wikidata:Q76	Barack Obama’s	5
+----------------+--------------------+-----+

7. Conclusion

We have describedWikiParq, a unified tabulated format that

uses the Parquet standard to package the Wikipedia cor-

pora. In combination with Spark, a map-reduce computing

4147

framework, and the SQL query language, this format makes

it easy to write concise database queries to extract specific

information from Wikipedia and have the answer in a few

minutes.

Currently, six versions of Wikipedia are available as tarball

archives in the WikiParq format from this location: http:
//semantica.cs.lth.se/wikiparq/. We also provide

a Parquet version of Wikidata, as well as a Scala program

and a Jupyter notebook to run the examples described in this

paper. We ran and tested all the examples on a laptop with

an Intel i7 processor and 16 Gbytes of memory.

Acknowledgments

This research was supported by Vetenskapsrådet, the

Swedish research council, under the Det digitaliserade

samhället program.

8. Bibliographical References

Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu, D.,

Bradley, J. K., Meng, X., Kaftan, T., Franklin, M. J.,

Ghodsi, A., and Zaharia, M. (2015). Spark sql: Rela-

tional data processing in spark. In Proceedings of the

2015 ACM SIGMOD International Conference on Man-

agement of Data, SIGMOD ’15, pages 1383–1394.

Attardi, G. and Fuschetto, A. (2015). Wikiextractor.

https://github.com/attardi/wikiextractor/.

Björkelund, A., Bohnet, B., Hafdell, L., and Nugues, P.

(2010). A high-performance syntactic and semantic de-

pendency parser. In Coling 2010: Demonstration Vol-

ume, pages 33–36, Beijing, August 23-27. Coling 2010

Organizing Committee.

Buchholz, S. and Marsi, E. (2006). CoNLL-X shared task

on multilingual dependency parsing. In Proceedings of

the Tenth Conference on Computational Natural Lan-

guage Learning (CoNLL-X), pages 149–164, New York

City, June. Association for Computational Linguistics.

Dean, J. and Ghemawat, S. (2008). Mapreduce: simplified

data processing on large clusters. Communications of the

ACM, 51(1):107–113.

Dohrn, H. and Riehle, D. (2013). Design and implementa-

tion of wiki content transformations and refactorings. In

Proceedings of the 9th International Symposium on Open

Collaboration, WikiSym ’13, pages 2:1–2:10.

Exner, P. and Nugues, P. (2014). KOSHIK: A large-scale

distributed computing framework for NLP. In Proceed-

ings of ICPRAM 2014 – The 3rd International Confer-

ence on Pattern Recognition Applications and Methods,

pages 464–470, Angers, March 6-8.

Ferragina, P. and Scaiella, U. (2010). Fast and accurate

annotation of short texts with wikipedia pages. In Pro-

ceedings of CIKM’10, Toronto.

Ferrucci, D. A. (2012). Introduction to “This is Watson”.

IBM Journal of Research and Development, 56(3.4):1:1

–1:15, May-June.

Fowler, M. (2004). Inversion of control containers and the

dependency injection pattern. Last accessed: 2013-12-

20.

Gnosygnu. (2015). Xowa.

https://github.com/gnosygnu/xowa.

Google. (2011). Guice (version 3.0). Last accessed: 2013-

11-10.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J.,

Bethard, S. J., and McClosky, D. (2014). The Stan-

ford CoreNLP natural language processing toolkit. In

Proceedings of 52nd Annual Meeting of the Association

for Computational Linguistics: System Demonstrations,

pages 55–60, Baltimore, Maryland.

Nivre, J., Hall, J., and Nilsson, J. (2006). MaltParser: A

data-driven parser-generator for dependency parsing. In

Proceedings of LREC-2006, pages 2216–2219.

Östling, R. (2013). Stagger: an open-source part of speech

tagger for Swedish. Northern European Journal of Lan-

guage Technology, 3:1–18.

Wikimedia CH. (2015). Openzim.

http://www.openzim.org.

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J.,

McCauley, M., Franklin, M. J., Shenker, S., and Stoica,

I. (2012). Resilient distributed datasets: A fault-tolerant

abstraction for in-memory cluster computing. In Pro-

ceedings of the 9th USENIX Conference on Networked

Systems Design and Implementation.

4148

