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Abstract

In this paper, we describe a new corpus —named DIRHA-L2F RealCorpus— composed of typical home automation speech interactions in
European Portuguese that has been recorded by the INESC-ID’s Spoken Language Systems Laboratory (L2F) to support the activities
of the Distant-speech Interaction for Robust Home Applications (DIRHA) EU-funded project. The corpus is a multi-microphone and
multi-room database of real continuous audio sequences containing read phonetically rich sentences, read and spontaneous keyword
activation sentences, and read and spontaneous home automation commands. The background noise conditions are controlled and
randomly recreated with noises typically found in home environments. Experimental validation on this corpus is reported in comparison
with the results obtained on a simulated corpus using a fully automated speech processing pipeline for two fundamental automatic
speech recognition tasks of typical “always-listening” home-automation scenarios: system activation and voice command recognition.
Attending to results on both corpora, the presence of overlapping voice-like noise is shown as the main problem: simulated sequences
contain concurrent speakers that result in general in a more challenging corpus, while real sequences performance drops drastically when
TV or radio is on.

Keywords: robust speech processing, real vs. simulated data, voice activity detection, speech recognition, keyword spotting, home

automation

1. Introduction

In domestic environments, the presence of reverberation,
background noise and interfering sources, critically de-
grades the performance of standard speech processing al-
gorithms. A possible solution for improving the overall
recognition robustness is the adoption of a network of dis-
tributed microphones that can partially reduce the impact of
these nuisance factors on spoken dialogue home automa-
tion systems (Seltzer, 2003; Chu et al., 2006). This is
the scenario addressed in the DIRHA project', in which an
“always-listening” monitoring system is foreseen to be able
to analyse and understand the activities and the intentions
of the users inside a domestic environment. In the most
typical DIRHA scenario, the automation system can be op-
erated based on a dialogue manager strategy in which spo-
ken interactions are usually initiated by the user by means
of a certain activation sentence. Then, a spoken dialogue
session is initiated, in which the user can provide specific
home automation commands or ask for status information.
The availability of relevant corpora characterizing home
environments is of fundamental importance to support re-
search on the area of multi-channel processing for smart-
home applications. Thus, some related data collection ef-
forts have been conducted in the past. For instance, in
the context of smart-room services for meeting and semi-
nar assistance, in which typically a single room is simul-
taneously characterized (Janin et al., 2003; McCowan et
al., 2005; Moreau et al., 2008). Concerning multiple-
room environments, in (Vacher et al., 2014) automation
commands in French were recorded in a 5-room smart
home, overlapping either with noises or background events.
Within the DIRHA project, some home automation control
speech databases have been also collected including both
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activation sentences and commands for home automation.
In (Tsiami et al., 2014), a Greek speech database with real
multi-modal data in a two-room environment is described.
The corpus described in (Cristoforetti et al., 2014) consists
of a challenging database containing simulated data in four
different languages: Italian, Austrian German, Greek and
European Portuguese.

In this paper, we describe the data collection protocol con-
ducted at the INESC-ID’s Spoken Language Systems Labo-
ratory (L2F) to build the new multi-channel and multi-room
corpus composed of typical home-automation interactions
in European Portuguese, called DIRHA-L2F RealCorpus.
Experimental validation on this corpus is reported in com-
parison with the results obtained on the simulated corpus
described in (Cristoforetti et al., 2014) —named DIRHA-
L2F SimCorpus— using a fully automated speech process-
ing pipeline for two typical recognition tasks in multi-room
multi-channel acoustically challenging environments: sys-
tem activation and voice command recognition. Both the
real and simulated corpora characterise different household
multi-room environments equipped with a large number of
microphones. The two main components of the processing
system (the multi-room speech activation module and the
multi-channel automatic speech recognition system) make
extensive use of channel selection methods for fully ex-
ploiting the large number of microphone channels present
in each corpus.

This paper is organised as follows. Section 2. describes the
DIRHA-L2F Corpora under study, including both the new
real and the simulated data sets. Section 3. introduces the
speech processing pipeline used in this work for validation
of home automation command detection and recognition.
Experimental validation is presented and discussed in Sec-
tion 4.. Finally, Section 5. concludes the paper with final
remarks and future work.
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Figure 1: The DIRHA-L2F room set-up: microphones, speaker and noise interference positions and directions used in the

DIRHA-L2F RealCorpus collection.

2. The DIRHA-L2F Corpora
2.1. The DIRHA-L2F RealCorpus

The DIRHA-L2F RealCorpus is a multi-microphone and
multi-room database collected at the INESC-ID’s Spoken
Language Systems Laboratory (L2F). Figure 1 shows the
floorplan of the DIRHA-L2F recording environment com-
posed of two office rooms and one corridor connecting
them. The collected data contains real recordings in Euro-
pean Portuguese language of 20 gender balanced speakers,
ageing between 20 and 60. For each speaker, 12 sessions
of approximately 1-2 minutes were collected, totalling 240
sessions which corresponds to about 4.5 hours. During the
first 9 sessions, speakers were placed at pre-defined con-
stant positions and directions (see Figure 1), while during
the last 3 sessions, speakers were allowed to move freely.
Each session contains a read phonetically rich sentence, a
read keyword sentence followed by a read command and
a spontaneous command (sometimes accompanied of an
spontaneous keyword activation sentence).

Recording equipment The DIRHA-L2F recording en-
vironment is equipped with 22 omni-directional Shure
MX391-0 microphone channels distributed among the two
office rooms as shown in the Figure 1. Moreover, two Shure
WH30TQG headset microphones with wireless connection
are available to collect reference close-talking speech. All
channels are recorded with a sampling rate of 48kHz and
16-bits quantization using the Focusrite Octopre MKII Dy-
namic microphone pre-amplifiers and A/D converters. The
collected signals are digitally received by the computer
through the RME HDSPe RayDAT board and saved in
WAV-PCM format. All channels are synchronized using
the clock signal generated by expansion word clock mod-
ule board RME HDSP 9632.

Recording protocol During the recording sessions,
speakers hold a tablet from which they received instructions
including the position to occupy at each session or the next
sentence to read/produce. The instructions were shown

in the form of slides including text and images and the
prompts were randomly generated for each speaker. The
slide-show was remotely controlled by a recording monitor
so that it was possible to control the amount of silence be-
tween events. In the particular case of read activation sen-
tences and read commands, the text to read was shown next
to an image of a room with an arrow aiming at the object
corresponding to the action. Figure 2 shows an example
corresponding to the Portuguese home control command
Acende a Luz / Turn on the light. For spontaneous com-
mands, the same kind of images with arrows were shown
without including text.
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Figure 2: Example of slide used for recording a read acti-
vation sentence followed by a read command. In English:
DIRHA start session ... turn on the light.

Noise environment conditions The acoustic environ-
ment for each session was controlled and one of the follow-
ing background noise conditions was randomly recreated:
quiet, air conditioning, open window, vacuum cleaner, ra-
dio, TV, and kitchen noises. Table 1 shows the number of
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times each condition is present in the complete corpus (in
some sessions more than one noise condition is present si-
multaneously). The radio, TV, vacuum cleaner, and kitchen
acoustic conditions were recreated using loudspeakers lo-
cated in fixed positions marked in Figure 1. In the case of
radio and TV, on-line available programs from local broad-
casters were reproduced. In the case of kitchen noises and
vacuum cleaner, real recordings made at home were played.

] Acoustic Condition

|

Quiet AC OW TV Radio Kitchen
60 56 43 40 20 20

Vacuum
20

Table 1: Number of recording sessions in the DIRHA-L2F
RealCorpus per acoustic condition: Quiet, Air Condition-
ing (AC), Open Window (OW), TV, Radio, Kitchen and
Vacuum cleaner (Vacuum).

Annotation protocol The close-talking speech channel
was used to ease the transcription process. First, auto-
matic speech/non-speech segmentation was applied to de-
tect speech events on the head-set channel. Then, a hu-
man annotator manually corrected the generated segments,
checked for possible mispronunciations in the read speech
events, and transcribed the spontaneous speech events.
Next, a different transcription was generated for each room.
To this end, the speakers were instructed to hit two wooden
spoons as close as possible to the microphone head-set
to produce an impulsive sound at the beginning of each
session. The delay of this impulsive sound at each mi-
crophone with respect to the head-set channel was semi-
automatically computed and used to adjust the segment
boundaries of the two far-field transcriptions per session.
Notice that these resulting segmentation labels are only cor-
rect for the first 9 sessions in which the speaker is at a
fixed position. For that reason, for each session a repre-
sentative channel of each room was manually inspected to
eventually correct segmentation labels. In this final man-
ual transcription step, uncontrolled noises occurring during
the session were also annotated. In addition to the tran-
scriptions, the database includes information of the noise
event files that were played at each session, which can be
useful for instance to perform noise cancellation experi-
ments. Moreover, room impulse responses corresponding
to approximately the 9 fixed positions and orientations of
the real database recordings were measured using the Ex-
ponential Sine Sweep Method (Farina, 2000; Ravanelli et
al., 2012) and are included in the database.

2.2. The DIRHA-L2F SimCorpus

The DIRHA SimCorpus (Cristoforetti et al., 2014) is
a multi-microphone and multi-language database con-
taining simulated acoustic sequences derived from the
microphone-equipped apartment located in Trento (Italy),
named ITEA. The simulated corpora for the different lan-
guages —including European Portuguese (EP)- were pro-
duced thanks to a technique that reconstructs, in a realistic
manner, multi-microphone front-end observations of typi-
cal scenes occurring in a domestic environment. For each
language, the corpus contains a set of acoustic sequences

of duration 60 seconds, at 48kHz sampling frequency and
16-bit accuracy, observed by 40 microphone channels dis-
tributed over five rooms, Figure 3.

Figure 3: The ITEA apartment floor-plan with the speaker
positions and orientations used for the simulation of the
DIRHA SimCorpus.

For the DIRHA SimCorpus in EP, hereinafter referred to
as DIRHA-L2F SimCorpus, a clean-speech data set of very
high quality close-talking speech signals was collected to
derive the simulated corpus. The data set contains 20 speak-
ers with an equal gender distribution, ageing between 25
and 50. The EP simulated corpus is divided into two chunks
(dev and test) containing 75 acoustic sequences each, with
10 different speakers in each data set (Cristoforetti et al.,
2014).

3. Multi-channel speech processing pipeline
for home applications in Portuguese

The DIRHA-L2F RealCorpus is analysed based on exper-
imental tests conducted with a baseline processing system
designed to perform the two detection and recognition tasks
in domestic environments mentioned previously: system
activation and voice command recognition. For each task
the proposed processing pipeline is formed by two distinct
modules that at the same time integrate several technolog-
ical components: 1) multi-room speech activity detection
(SAD), and 2) multi-microphone key-phrase spotting or
command recognition. Figure 4 shows the main blocks that
constitute the processing pipeline for testing the corpus.
Both modules make extensive use of channel selection
strategies to exploit the available network of micro-
phones (Obuchi, 2004; Jeub et al., 2011; Wolfel et al.,
2006). The advantage of this kind of approaches is that
they do not require prior information about the microphone
set-up and the speaker positions, contrasting to the classi-
cal microphone array beamforming methods (Masgrau et
al., 1999; Abad, 2007; Lecouteux et al., 2011).

3.1. Multi-room SAD

The multi-room SAD module takes as input the audio
streams of all the microphones in the apartment and gen-
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Figure 4: Block diagram of the L2F multi-room and multi-channel speech processing pipeline for system activation detec-

tion and voice command recognition.

erates a single speech/non-speech segmentation for the en-
tire home. It combines multi-channel model-based speech
classification with automatic room localization.

First, single-channel speech/non-speech segmentation is
run individually for each channel of the house with a clas-
sification block, which is implemented using an artificial
neural network of the multi-layer perceptron (MLP) type
(Meinedo, 2008), based on perceptual linear prediction
(PLP) features. Then, the SAD module smooths the proba-
bilities obtained by the classifiers, which are finally used
by a finite state machine to obtain “speech” and “non-
speech” segments. A baseline room-dependent segmenta-
tion is obtained based on the majority voting fusion of all
the channel segmentations resulting from the microphones
of that specific room. Speech segments detected at each
room are time-aligned to obtain possible candidate speech
events simultaneously detected in several rooms. Then, all
candidate speech events are further processed to decide in
which room they were originated, which we refer to as
“room assignment” stage. Room localization information
is obtained based on the envelope variance (EV) (Wolf and
Nadeu, 2010) measures of each channel. More details about
this module can be found in (Abad et al., 2014).

3.2. Multi-room ASR

The multi-room ASR module (Matos et al., 2014) takes as
input the multiple-channel audio segments provided by the
SAD module and selects the most convenient channel for
further processing, which will consist either on key-phrase
spotting or voice command recognition depending on the
aimed task indicated by the dialogue manager. For both
system activation and command recognition tasks the same
set of acoustic models (AM) and multi-channel processing
strategies have been considered.

Multi-channel processing The EV measure is used for
microphone selection, since it presents a good trade-off be-
tween performance for ASR applications and processing
complexity (Wolf and Nadeu, 2010; Wolf, 2013; Matos et
al., 2014). For each candidate speech segment, the selected
channel for automatic speech recognition is the one that
obtains maximum EV among all the possible microphone
channels.

Acoustic models A data-simulation based approach was
adopted to create training data for the characteristics of

the DIRHA far-field environment, by artificially convolving
“clean” recordings from the BD-PUBLICO corpus (Neto et
al., 1997) with IRs measured at a number of locations in the
ITEA apartment, and contaminating them with noise at var-
ious SNR values. Then, training data representing different
acoustic conditions were used together to obtain a single
set of multi-condition acoustic models. The AM consists
of word-internal tied-state context-dependent triphones of
3 states and 16 Gaussians per state. Feature characteriza-
tion is based on the conventional 13-dimensional MFCCs,
augmented by their first and second derivatives, and mean
normalized, thus reaching a dimensionality of 39. More de-
tails about acoustic model training can be found in (Matos
etal., 2014).

ASR tasks For the system activation task, a classical
keyword-filler approach has been considered. The back-
ground HMM is trained using all the AM training corpora
and it consists of a 24-states HMM with left-to-right tran-
sitions and 32 Gaussian mixtures per state. For the com-
mand recognition task, an equally-likely finite state gram-
mar formed by all the unique possible command sentences
was initially used. However, in practice it was necessary
to use an extended command grammar incorporating the
background model to better handle inaccurate segmenta-
tions provided by the automatic SAD. Moreover, a different
grammar is considered for the simulated and real test data
sets.

4. Experimental validation: Real vs
Simulated data

The processing chain for system activation and voice com-
mand recognition of home automation applications in Eu-
ropean Portuguese (EP) is used for validation and compar-
ison of simulated and real multi-room and multi-channel
in-domain data. The system activation task evaluation in-
distinctly considers the detection of both read and sponta-
neous system activations (the latter are only present in the
real data), while the voice command recognition evaluation
is restricted to the detection and recognition of read spoken
commands. In these experiments, the development set (dev)
of the DIRHA-L2F SimCorpus has been used for parameter
tuning of the systems, while results are provided for the test
set of the DIRHA-L2F SimCorpus and for the DIRHA-L2F
RealCorpus (there is only one partition of the real corpus).
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To facilitate the analysis of results in the the DIRHA-L2F
RealCorpus, recording sessions have been grouped into 4
categories: quiet background QB , low and stationary noise
background LB (air conditioning and open windows), high
and non-stationary noise background HB (vacuum cleaner
and kitchen noises) and voice-like noise background VB
(radio and TV).

4.1. Key-phrase Spotting Evaluation

Tables 2 and 3 present F-score (%) results of detected sys-
tem activations using ground-truth and automatic segmen-
tation, respectively. In both cases, the multi-channel key-
phrase spotting component processes all the segments ei-
ther labelled (ground-truth) or classified (automatic seg-
mentation) as speech.

- < R

S

§ 3 9

Corpus Set | & -7 3
SimCorpus | test | 76.19 64.00 69.57
OB | 92.22 81.37 86.46
LB | 93.10 78.83 85.38
RealCorpus | HB | 97.78 68.75 80.73
VB | 94.03 61.76 74.56

Y [ 9371 7358 8243 |

Table 2: System activation performance with ground-truth
speech/non-speech segmentation in the DIRHA SimCorpus
and DIRHA-L2F RealCorpus test sets.

S S}
St
2 5 3 3
Corpus | Set | = & & 3
Sim test | 10.67 67.86 50.67 58.02
QB | 6.86 94.81 71.57 81.56
LB | 16.06 9451 6277 7544
Real HB | 12.50 92.68 59.38 72.38
VB | 12.75 48.48 15.69 23.70
> 11235 88.02 5259  65.84 |

Table 3: System activation performance with automatic
speech/non-speech segmentation in the DIRHA SimCorpus
and DIRHA-L2F RealCorpus test sets.

Regarding the overall results using ground-truth segmenta-
tion on the two test sets, it is clear that the system performs
considerably better in the real data set, even though the pa-
rameter tuning was performed on a development simulated
data set. The fact of simulating a larger household with
5 rooms, besides including extremely challenging acous-
tic conditions with several simultaneous overlapping audio
events are factors that contribute to this performance dif-
ference. In both cases, the Precision score is considerably
higher than the Recall. Particularly, in the real test set the
overall Precision is remarkably high and it stays more or
less constant for the different acoustic conditions. How-
ever, the recall clearly decreases for the more challenging

acoustic environments. Thus, it seems that the distant noisy
and reverberant acoustic environment smooths the speech
events in such a way that the probability of matching the
background model increases for more challenging acoustic
conditions. Consequently, there is an increase of missed
system activation detections.

Comparing ground-truth and automatic segmentation re-
sults, a generalized performance degradation is observed
due to the use of automatic segmentation. Overall results
are still better on the real corpus, but the differences be-
tween the two tests sets are reduced. In the case of the
SimCorpus results, recall decreases around 14%. A con-
siderable contribution to the recall decrease is due to the
miss segmentation errors introduced by the SAD module
(10.7%). On the other hand, the inserted segmentation
errors in combination with the challenging characteristics
of the data contribute to the precision performance drop.
Regarding the results in the RealCorpus set, an important
overall performance drop is observed due to the use of au-
tomatic segmentation: F-score from 82.43% to 65.84%.
However, a more careful analysis of the real data results
by environmental acoustic condition reveals that most of
the error contribution is due to the voice-like background
noise condition (VB). In these conditions, segmentation er-
rors provoke a drastic drop of both precision (due to an in-
crease of inserted segments) and recall (due to an increase
of partially deleted and noise masked segments including
activation phrases).

4.2. Commands Recognition Evaluation

The overall multi-room and multi-channel voice command
recognition processing pipeline WER (%) performance re-
sults are shown in Tables 4 and 5 using ground-truth and au-
tomatic segmentation respectively. In the latter, all speech
segments that actually correspond to a speech event differ-
ent from a read command are disregarded, while the re-
maining hypothesized speech segments are processed.

Corpus [ Sets | #Sent. | WER(%) |
SimCorpus | test 75 5.15
0B 59 0.00
LB 81 1.29
RealCorpus | HB 40 7.72
VB 60 8.40

Y | 240 | 384 |

Table 4: Command recognition performance using ground-
truth speech/non-speech segmentation in the DIRHA Sim-
Corpus and DIRHA-L2F RealCorpus test sets.

Results using ground-truth segmentation (Table 4) for both
simulated and real test sets show that the combination of
the robust multi-condition acoustic models together with
the channel selection strategy allows for extremely good
performance in both test sets. The results are particularly
remarkable on the real test set taking into account that the
system tuning was carried out using simulated data.

Nevertheless, the rather restricted read command recogni-
tion grammar used is favoured by the ground-truth segmen-
tation that does not introduce insertions due to wrongly hy-
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Corpus | Sets Total Match +Miss +Ins
#Sent. | #Sent. WER(%) | WER(%) | #Sent. WER(%)
Sim test 75 68 13.69 21.03 2 23.27
0B 59 59 2.20 2.20 2 3.57
LB 81 81 3.22 3.22 1 3.86
Real HB 40 39 13.99 15.04 6 23.58
VB 60 58 55.56 57.42 83 165.27
X | 240 | 237 1746 | 1849 | 92 4738 |

Table 5: Command recognition performance with automatic speech/non-speech segmentation in the DIRHA SimCorpus

and DIRHA-L2F RealCorpus test sets.

pothesized speech segments (and neither deletions due to
lost speech segments). In the case of automatic segmenta-
tion results of Table 5, regarding the WER contribution of
the detected commands, the performance goes from 5.15%
with ideal segmentation to 13.69% in the SimCorpus set,
and from 3.84% to 17.46% in the RealCorpus set. The
performance drop is more noticeable for more challenging
acoustic conditions, particularly for the SimCorpus and the
HB and VB RealCorpus sets. Notice that the main reason for
this degradation is the inaccurate segmentation of the com-
mands to be processed, which may result in partial deletion
of the commands or in commands masked by noise and re-
verberation embedded in long audio segments. Neverthe-
less, it is worth noting that, although inaccurate in some
acoustic conditions, most of the read commands have been
retrieved by the SAD module: more than 90% and 98%
are detected in the simulated and real test sets, respectively.
Consequently, the impact of missed detected commands in
the aggregated WER performance is very limited in the Re-
alCorpus test set (from 17.46% to 18.49%), while it is more
relevant in the SimCorpus case (from 13.69% to 21.03%).
Finally, regarding the total WER performance that also con-
siders the insertions due to false alarm speech segments, we
can observe a large degradation of the RealCorpus results
compared to the SimCorpus, mostly due to the poor perfor-
mance in VB acoustic conditions, i.e., with radio or TV as
continuous overlapping interference sources. In the remain-
ing conditions, the proposed multi-channel voice command
recognition system achieves remarkable overall voice com-
mand recognition performance.

5. Conclusions

This paper shows the utility of the DIRHA-L2F Real-
Corpus for experimental validation of speech processing
components in European Portuguese for system activation
and voice command recognition in typical multi-room and
multi-channel home automation applications.

Excellent results were achieved in the voice command
recognition task using ground-truth segmentation informa-
tion even in the case of extremely challenging acoustic con-
ditions. When using automatic segmentation, the command
recognition performance was also remarkable in most of
the acoustic conditions. However, it dramatically degraded
in the presence of overlapping and continuous voice-like
noise, such as TV and radio. In the case of the system acti-
vation task, the F-score performance also decreases around
17% with respect to the use of ground-truth segmentation

information.

Comparing the processing system performance on real data
with respect to simulated data, it can be concluded that re-
sults on real data are generally better for both recognition
tasks in most conditions. This is partially due to the fact
that the simulated corpus characterizes a more challenging
home environment of 5 rooms with the regular presence
of overlapped speech. Only in the most challenging noise
condition of the real corpus, the results are considerably
worse. The main source of error for this performance drop
are the segmentation errors caused by continuous voice-like
noises.

One of the most remarkable characteristics of the com-
plete segmentation, channel selection and speech recogni-
tion pipeline is that it is considerably robust to different
home environment characteristics. Thus, the system per-
formed remarkably well in real data collected in a totally
different acoustic environment to that used for the devel-
opment of the systems in most of the acoustic conditions.
One of the main reasons is that the algorithm considered
for multi-channel processing that is exploited both by the
segmentation module and the recognition module does not
rely in any a priori information or calibration step.
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