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Abstract
We announce a new language resource for research on semantic parsing, a large, carefully curated collection of semantic dependency
graphs representing multiple linguistic traditions. This resource is called SDP 2016 and provides an update and extension to previous
versions used as Semantic Dependency Parsing target representations in the 2014 and 2015 Semantic Evaluation Exercises (SemEval). For
a common core of English text, this third edition comprises semantic dependency graphs from four distinct frameworks, packaged in a
unified abstract format and aligned at the sentence and token levels. SDP 2016 is the first general release of this resource and available for
licensing from the Linguistic Data Consortium from May 2016. The data is accompanied by an open-source SDP utility toolkit and system
results from previous contrastive parsing evaluations against these target representations.
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1. Background and Goals
Increased interest in natural language ‘understanding’ has
brought into the focus of much current research a variety
of techniques often described as ‘semantic parsing’. In this
work, we seek to contribute to improved comparability of
representations and results in one sub-area of semantic pars-
ing, viz. analysis of natural language strings into bi-lexical
semantic dependency graphs; these are general represen-
tations of sentence meaning whose nodes correspond to
surface lexical units and whose directed edges encode core
predicate–argument relations.1

We have prepared for public release in May 2016 an as-
sortment of semantic dependency graphs stemming from
four distinct linguistic traditions, for substantial volumes of
English, Chinese, and Czech running text, and providing
both in-domain training and test, as well as out-of-domain
test data. To eliminate minor divergences across resources,
these graph banks are aligned at the sentence and token
level, within each language, represented in a unified abstract
graph model, and packaged in a common file format. Where
applicable, the graphs are paired with original representa-
tions from which they were derived (e.g. underspecified
logical-forms or tectogrammatical trees), and with corre-
sponding ‘companion’ syntactic analyses from a broad vari-
ety of frameworks and sources, comprising gold-standard
annotations as well as analyses delivered by state-of-the-art
statistical parsers.

1Domain- and application-independence and lexicalization set
these target representations apart from other strands of seman-
tic parsing, into immediately actionable query languages in the
tradition of Zelle & Mooney (1996), on the one hand, or into rep-
resentations whose primitives need not be surface lexical units,
on the other hand, as for example English Resource Semantics
(Copestake & Flickinger, 2000; Flickinger et al., 2014), the Dis-
course Representation Structures of Bos (2008), or Abstract Mean-
ing Representation (Banarescu et al., 2013).

Furthermore, the release package includes system submis-
sions and scores from two parsing competitions against sev-
eral of our target representations, viz. the Broad-Coverage
Semantic Dependency Parsing (SDP) tasks at recent Seman-
tic Evaluation Exercises (Oepen et al., 2014, 2015), together
with Java and Python tools to read, manipulate, and score
these graphs. We intend this overview paper to document rel-
evant formal and (some of the) linguistic properties of these
graph banks and to encourage broader use of this standard-
ized collection for improved comparability and replicability;
we refer to this new public resource as SDP 2016.

2. Varieties of Semantic Dependency Graphs
The earlier SDP tasks comprised three distinct target repre-
sentations, dubbed DM, PAS, and PSD (see below for de-
tails). SDP 2016 derives an additional collection of semantic
dependency graphs, which we term CCD, from CCGbank
(Hockenmaier & Steedman, 2007). Dependencies of this
type have been used as the target representations in some
recent parsing work (Auli & Lopez, 2011; Du et al., 2015;
Kuhlmann & Jonsson, 2015), but the exact procedure of
extracting these graphs from CCGbank has yet to be stan-
dardized. The following paragraphs briefly summarize the
linguistic genesis of each representation, with particular em-
phasis on CCD, because the other three have already been
introduced by Oepen et al. (2014) and Miyao et al. (2014).
With the exception of the DM graphs, all representations for
English, to some degree, build on the venerable Penn Tree-
bank (PTB; Marcus et al., 1993), though the connection is
arguably more direct for CCD and PAS than for PSD (where
substantial additional manual annotation was performed).

CCD: Combinatory Categorial Grammar Dependencies
Hockenmaier & Steedman (2007) construct CCGbank from
a combination of careful interpretation of the syntactic anno-
tations in the PTB with additional, manually curated lexical
and constructional knowledge. In CCGbank, the strings of
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the PTB Wall Street Journal (WSJ) Corpus are annotated
with pairs of (a) CCG syntactic derivations and (b) sets of
semantic bi-lexical dependency triples. The latter “include
most semantically relevant non-anaphoric local and long-
range dependencies” and are suggested by the CCGbank
creators as a proxy for predicate–argument structure. While
these have mainly been used for contrastive parser evalu-
ation (Clark & Curran, 2007; Fowler & Penn, 2010; inter
alios), recent parsing work as mentioned above views each
set of triples as a directed graph and parses directly into
these target representations. Our CCD graphs combine the
CCGbank dependency triples with information gleaned from
the CCG syntactic derivations, notably the part of speech
and lexical category associated with each token (interpreted
as its argument frame), and the identity of the lexical head
of the derivation, which becomes the semantic top node.

DM: DELPH-IN MRS Bi-Lexical Dependencies These
semantic dependency graphs originate in a manual re-
annotation, dubbed DeepBank2, of Sections 00–21 of the
WSJ Corpus with syntactico-semantic analyses from the
LinGO English Resource Grammar (ERG; Flickinger, 2000;
Flickinger et al., 2012). Native ERG semantics take the
form of underspecified logical forms, which Oepen et al.
(2002); Oepen & Lønning (2006); and Ivanova et al. (2012)
map onto the DM bi-lexical semantic dependencies in a two-
step conversion pipeline.3 For this target representation, top
nodes designate the highest-scoping (non-quantificational)
predicate in the graph, e.g. the scopal adverb almost in Fig-
ure 1 below.

PAS: Enju Predicate–Argument Structures The Enju
Treebank4 is derived from automatic HPSG-style re-
annotation of the PTB (Miyao, 2006). Our PAS graphs
stem from the Enju Treebank, without contentful conver-
sion, and from the application of the same basic techniques
to the Penn Chinese Treebank (CTB; Xue et al., 2005). Top
nodes in this representation denote semantic heads.

PSD: Prague Semantic Dependencies The Prague
Czech-English Dependency Treebank (PCEDT; Hajič et
al., 2012)5 is a set of parallel dependency trees over the
WSJ texts from the PTB, and their Czech translations. Our
PSD dependencies have been extracted from the tectogram-
matical annotation layer (so-called ‘t-trees’).6 Top nodes
are derived from t-tree roots; i.e. they mostly correspond to
matrix verbs; in case of clausal coordination, there can be
multiple top nodes.

2See http://www.delph-in.net/deepbank/.
3The original logical forms and intermediate variable-free se-

mantic networks (dubbed Elementary Dependency Structures by
Oepen & Lønning, 2006) are included as background material in
the SDP 2016 package.

4See http://kmcs.nii.ac.jp/enju/.
5See http://ufal.mff.cuni.cz/pcedt2.0/.
6Again, the original tectogrammatical trees from which the

PSD bi-lexical semantic dependencies derive (through the elimina-
tion of empty ‘generated’ nodes and propagation of dependencies
into paratactic constructions, as described by Miyao et al., 2014)
are included in the released data.

3. A Contrastive Example
Figure 1 shows example target representations from the
above four sources (not showing CCD frame identifiers, for
layout reasons) for the WSJ sentence:

(1) A similar technique is almost impossible to apply to other crops,
such as cotton, soybeans, and rice.

Semantically, technique arguably is dependent on the deter-
miner (the quantificational locus), the comparative modifier
similar, and the predicate apply. Conversely, the predica-
tive copula, infinitival to, and the preposition marking the
deep object of apply can be argued to not have a semantic
contribution of their own. Thus, where common syntactic
dependency representations take the form of fully connected
trees, semantic dependency graphs are characterized by node
re-entrancies and partial connectivity.

It is evident from this example alone that there are content-
ful differences between the four representations—as would
be expected given stark differences in their linguistic pedi-
gree. The different representations exhibit between twelve
and twenty dependencies for (1), of which only five (high-
lighted in red in Figure 1) are shared across all represen-
tations, albeit at times with inverse directionality in PSD.
Besides our technical goal of advancing semantic parsing
research, we also hope that the parallel SDP 2016 collec-
tion will facilitate qualitative linguistic comparison of these
representations (and possibly others).

For example, (1) invokes the so-called tough construction,
where a restricted class of adjectives (impossible in our case)
select for infinitival verb phrases containing an object gap
and, thus, create a long-distance dependency (Rosenbaum,
1967; Nanni, 1980; inter alios). All four representations
correctly capture this dependency (making technique a se-
mantic argument of apply), but only DM and PSD further
analyze impossible as an expletive predicate—recognizing
the close paraphrase of (1) as It is almost impossible to ap-
ply a similar technique . . . Therefore, in contrast to CCD
and PAS, the latter two abstain from marking technique as a
subject-like argument to the predicative adjective.

Similarly, DM and PSD pattern largely alike in consid-
ering the infinitival particle and argument-marking use of
the preposition to as not meaning-bearing, but only DM fur-
ther treats the predicative copula as vacuous, leading to a
different choice of top node (see below). Finally, the repre-
sentations also differ widely in their analysis of coordination,
where CCD and PSD project the incoming argument depen-
dency onto all conjuncts (and, for PSD, transitively also
through the apposition established by such as), while DM
and PAS apply different group forming mechanisms: the
‘chaining’ analysis of Mel’čuk (1988) and recursive binary
nesting, respectively.

4. A Unified Graph Representation
The SDP target representations can be uniformly character-
ized as node-ordered, labeled, directed graphs, i.e. as pairs
G = (V,E) where V is a set of nodes, E ⊆ V × V is a
set of edges, and there is a strict total ordering on V (corre-
sponding to the surface token sequence). Nodes in the SDP
graphs can be labeled with up to five pieces of information:
word form, optional lemma, part of speech, a Boolean flag
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A similar technique is almost impossible to apply to other crops , such as cotton , soybeans and rice .
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(a) CCGbank word–word dependencies (CCD; omitting lexical categories for space reasons).
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(b) DELPH-IN Minimal Recursion Semantics–derived bi-lexical dependencies (DM).
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(c) Enju Predicate–Argument Structures (PAS).
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(d) Parts of the tectogrammatical layer of the Prague Czech-English Dependency Treebank (PSD).

Figure 1: Sample parallel dependency graphs for Example (1).

indicating whether the node represents a top predicate, and
an optional frame (or sense) tag—for example the distinction
between causative vs. inchoative predicates like increase.
Edges are labeled with semantic relations that hold between
their source and target nodes. In contrast to the unique root
node in trees, graphs can have multiple (structural) roots,
i.e. nodes with in-degree zero; in this sense, the majority
of graphs are multi-rooted in all SDP graph banks. Thus,
our format designates one (or more) top node(s) per graph
to reflect notions like semantic headedness, top-level focus,
or generally the most central semantic entities in the graph.
All data in the SDP collection uses a column-based file for-
mat that conservatively extends the format of the Shared
Task of the 2009 Conference on Natural Language Learning
(CoNLL).

5. Facts and Figures
The bulk of the English SDP data is in-domain training and
test data drawing on the WSJ Corpus; our collection only
includes sentences for which gold-standard annotations are
available in all representations and where sentence and to-
ken alignment was successful, in total some 80% of the
WSJ segment of the PTB. Table 1 shows sentence (graph)
and token (node) counts for the various segments of the
SDP 2016 release. For DM and PSD, additional English
out-of-domain test data was constructed by fresh manual
annotation of a balanced sample of twenty files from the

sentences tokens

EN in-domain train 35,657 802,717
EN in-domain test 1,410 31,948
CS in-domain train 42,076 985,302
CS in-domain test 1,670 38,397
ZH in-domain train 31,113 649,036
ZH in-domain test 8,976 214,454
EN out-of-domain 1,849 31,583
CS out-of-domain 5226 214,454

Table 1: Sentence and token counts in SDP 2016.

Brown Corpus (Francis & Kučera, 1982), and for PAS paral-
lel annotations were obtained by applying the Enju converter
to the corresponding parts of the PTB. CCD and DM use
theory-specific argument frame identifiers, whereas PSD
draws on the (much larger inventory of) sense identifiers
from the PCEDT valency lexicon.

The focus in much recent semantic dependency parsing
work has been on English, but our SDP 2016 collection also
includes some additional languages, albeit only for select
target representations. Chinese in-domain training and test
data for PAS is derived by conversion from Release 7.0 of
the CTB. Czech in- and out-of-domain PSD graphs draw on
the translations of the WSJ Corpus in PCEDT 2.0, and on
the Prague Dependency Treebank 3.0 (PDT; Hajič, 1998).
Again, see Table 1 for sentence and token counts.

To guide cross-framework comparison, Table 2 quantifies
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EN i-d CS i-d ZH i-d EN o-o-d CS o-o-d

CCD DM PAS PSD PSD PAS DM PAS PSD PSD

(1) # labels 6 59 42 91 61 32 47 41 74 64
(2) # frames 1263 297 – 5426 – – 172 – 1208 –
(3) % nodes that are singletons 12.10 22.97 4.38 35.76 28.91 0.11 25.40 5.84 39.11 29.04
(4) % graphs that are trees 1.45 2.30 1.22 42.19 37.66 3.49 9.68 2.38 51.43 51.49
(5) edge density 1.07 1.02 1.07 1.07 1.07 1.02 0.95 1.02 0.99 1.00
(6) % nodes with reentrancies 28.09 27.44 29.36 11.42 11.80 24.96 26.14 29.36 11.46 11.44

Table 2: High-level graph statistics across target representations, languages, and domains.

a number of structural properties for each graph bank and
segment. Again, there is great variation across the various
representations. The granularity of dependency labels (1) is
much greater in PSD than in CCD, for example; CCD labels
merely are positional indices into argument slots of the lexi-
cal frame. A similar observation applies to the granularity
of ‘frames’ (2), where CCD and DM encode more general
‘linking patterns’, i.e. unlexicalized mappings from syntactic
to semantic arguments; PSD, on the other hand, employs
actual sense identifiers and would, thus, show different val-
ues for distinct lexemes.7 Conversely, PSD only annotates
senses on verbal predicates, whereas CCD and DM provide
frame identifiers for all semantically contentful nodes (as
seen in Figure 1).

Oepen et al. (2014) call unconnected (with in- and out-
degree zero) non-top nodes singletons, and by construction
these nodes correspond to semantically vacuous lexical units
in the SDP graphs. As observed in Figure 1 above, differ-
ences in the analysis of function words and punctuation
marks largely account for the much smaller proportions of
singletons in CCD and PAS (3); these trends are stable across
languages and the in- vs. out-of-domain splits. Subsequent
statistics in Table 2 discard singletons, and measures (5) and
(6) quantify structural properties in each graph bank that
transcend simple, rooted trees (4)—or, informally speaking,
degrees of graph complexity: edge density (5) is the ratio
of edges to nodes; nodes with reentrancies (6) are nodes
with more than one incoming edge. Presumably owing to
its roots in the PCEDT tectogrammatical trees, PSD stands
out in this comparison with the highest proportion of actual
trees and smallest percentage of reentrant nodes. In future
work, we plan to further correlate quantitative observations
and differences in linguistic design.

6. Outlook: Connecting the Dots
The SDP 2016 collection of graph banks becomes avail-
able through the Linguistic Data Consortium (LDC) in
May 2016 with catalogue number LDC2016 T10; please see
http://sdp.delph-in.net/ for further information.
We envision that general availability of a standardized and
comprehensive set of semantic dependency graphs and as-
sociated tools will stimulate more research in this sub-area
of semantic parsing. To date, reported ‘parsing success’

7To seek to relate these different approaches to the encoding of
lexical valency, one can multiply out the DM frame identifiers with
verb lemmata, which yields a count of some 4,600 distinct combi-
nations, i.e. slightly less than the set of observed sense distinctions
in PSD.

measures in terms of dependency F1 range between the high
seventies for PSD (Martins & Almeida, 2014) and high
eighties to low nineties for CCD, DM, and PAS (Du et al.,
2015; Miyao et al., 2014). Such variation may in principle
be owed to differences in the number and complexity of lin-
guistic distinctions made, to homogeneity and consistency
of training and test data, and of course to the cumulative
effort that has gone into pushing the state of the art on in-
dividual target representations. A deeper understanding of
these parameters, as well as of contentful vs. superficial
linguistic differences across frameworks, will be a prerequi-
site to judging the relative suitability of different resources
and approaches. At the same time, we expect that a more
in-depth analysis of the algebraic properties of various sub-
classes of semantic dependency graphs will aid the design
of specialized parsing algorithms and probability models.

While the SDP 2016 collection of target representations
limits itself to bi-lexical semantic dependency graphs, i.e.
graphs whose nodes correspond one-to-one with surface
tokens, we plan to extend the quantitative and qualitative
comparison across frameworks and representations to addi-
tional graph-structured meaning representations that tran-
scend bi-lexical dependencies. Closely related but formally
somewhat different (non-lexicalized and unordered) seman-
tic graphs include, for example, some of the underlying
representations from which the SDP graphs derive (Elemen-
tary Dependency Structures for DM; tectogrammatical trees
for PSD), as well as semantic networks in the framework of
Abstract Meaning Representation.
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Francis, W. N., & Kučera, H. (1982). Frequency analysis of En-
glish usage. Lexicon and grammar. New York, USA: Houghton
Mifflin.
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