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Abstract
Despite the recent success of distributional semantic models (DSMs) in various semantic tasks they remain disconnected with real-world
perceptual cues since they typically rely on linguistic features. Text data constitute the dominant source of featuresfor the majority
of such models, although there is evidence from cognitive science that cues from other modalities contribute to the acquisition and
representation of semantic knowledge. In this work, we propose the crossmodal extension of a two-tier text-based model, where
semantic representations are encoded in the first layer, while the second layer is used for computing similarity betweenwords. We
exploit text- and image-derived features for performing computations at each layer, as well as various approaches for their crossmodal
fusion. It is shown that the crossmodal model performs better (from 0.68 to 0.71 correlation coefficient) than the unimodal one for the
task of similarity computation between words.
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1. Introduction

Distributional semantic models (DSMs) (Baroni and
Lenci, 2010) constitute a widely-used paradigm for ex-
tracting, representing and learning semantics from lin-
guistic data. DSMs are based on the distributional hy-
pothesis of meaning (Harris, 1954) assuming that seman-
tic similarity between words is a function of the overlap
of their linguistic contexts. Despite their success in vari-
ous semantic tasks (e.g., semantic classification and com-
putation of semantic similarity) these models have been
criticized as “disembodied”, since they rely solely on lin-
guistic information without being grounded in perception
and action including other modalities, e.g., color (Barsa-
lou et al., 2008). This disconnection is also referred to as
thesymbol grounding problem(Harnad, 1990). Ground-
ing refers to the mapping of the semantics of natural lan-
guage to the physical world. This is supported by exper-
imental findings indicating that real-world experiences
also play a role for the acquisition of lexical semantics
(Landau et al., 1998). For example, the naming of ob-
jects from pictures was found to be faster for color im-
ages vs grayscale (Therriault et al., 2009). Recently, fo-
cus has been given to the incorporation of features from
modalities other than text in order to augment the text-
based DSMs, e.g., see (Bruni et al., 2014) for image-
derived features, and for audio-based features (Kiela and
Clark, 2015). For additional insight into computation
models that map data-derived low-level features to high-
level knowledge (including cognitive and social aspects)
see (Potamianos, 2014).
The proposed approach is an alternative framework for
integrating textual and visual features for the task of se-
mantic similarity computation between words. This is
motivated by the cognitive evidence indicating the multi-

modal character of semantic representations utilized for
various semantic tasks. This work, extends the unimodal
(lexical-only) approach of network-based DSMs that has
been successfully applied for the task of word similarity
achieving state-of-the-art results (Iosif and Potamianos,
2015). The key idea behind network DSMs is a two-
tier system, motivated by cognitive considerations such
as network activation and priming. The first layer, en-
codes the semantics of words via the creation of lexi-
cal neighborhoods. In the second layer, similarity met-
rics are defined that operate on these semantic neighbor-
hoods. In this paper, we investigate the integration of vi-
sual and lexical features for network-based DSMs. The
integration is achieved by alternating visual and lexical
information in the two layers.

2. Related Work
One of the first approaches for the creation of multimodal
DSMs was proposed in (Feng and Lapata, 2010) where
a text corpus associated with images was exploited for
building mixture models of latent topics based on Latent
Dirichlet Allocation (LDA). Textual and visual features
were jointly modeled using LDA via early fusion. The
proposed method was evaluated on a semantic similar-
ity task (WS353 dataset), where the multimodal model
was found to yield higher performance compared to the
textual one. However, the best performance was mod-
erate (0.32 correlation coefficient). Another example of
early fusion is (Bruni et al., 2011) where, unlike (Feng
and Lapata, 2010), two modality-specific corpora were
used. Vectorial representations were independently built
for each modality and combined via vector concatena-
tion. For the same task –although a different subset of
WS353 was used– significantly higher correlation (0.52)
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was achieved demonstrating how the corpus used to esti-
mate DSM features can significantly affect performance.
A common technique for the late fusion of textual and vi-
sual models is the combination of similarity scores esti-
mated via the unimodal models. For example, in (Leong
and Mihalcea, 2011) the sum and the harmonic mean
of similarities were used achieving 0.59 correlation for
a small subset of WS353. In (Bruni et al., 2014), both
early and late fusion schemes were applied. The early
fusion was implemented as a linear weighted combina-
tion of the features vectors, while a similar combination
was adopted for the late fusion based on the unimodal
similarity scores. Both schemes were found to obtain
high correlation (up to 0.78) for a subset of WS353, how-
ever, there is no clear winner since their relative per-
formance vary with respect to the experimental param-
eters, e.g., the size of the context window used for ex-
tracting the textual features. Overall, cross-modal DSMs
appear to exceed the performance of their respective uni-
modal baselines for the computation of word-level se-
mantic similarity.

In addition to the area of lexical semantics textual and vi-
sual features have been also exploited for tasks related to
the indexing and retrieval of multimedia documents, es-
pecially images. The most common approach is the de-
velopment of retrieval models for each modality, which
are fused in a late phase for combining and re-ranking
the modality-specific results, e.g., (Besancon and Mil-
let, 2005). Another example of late fusion was pre-
sented in (Vreeswijk et al., 2011) dealing with the classi-
fication of images into semantically abstract categories.
Early fusion of features was proposed in (Escalante et
al., 2008) for enhancing the search over collections of
images. LDA is popular when investigating the relation
between images and text annotations. Examples include
the use of probabilistic LDA for the multimodal index-
ing of images (Monay and Gatica-Perez, 2007) and the
generation of (text) captions for images (Barnard et al.,
2003). In addition, matrix factorization has been investi-
gated, e.g., singular value decomposition (SVD) (Hare et
al., 2008) and non-negative matrix factorization (NMF)
(Caicedo et al., 2012). The recent advances on deep
neural networks enabled the application of several archi-
tectures and configurations for linking textual and visual
data. Examples included the mapping between the rep-
resentation space of images and the space of word em-
beddings for the task of image classification (Socher et
al., 2013). The scalability of this approach was enhanced
in (Frome et al., 2013) for the ImageNet challenge on
object recognition covering 1000 classes. The idea of
linking visual features with word embeddings was also
followed in (Karpathy and Li, 2014) for the generation
of image descriptions.

3. Features and Similarity Metrics

Textual: Co-occurrence-based (CC).The assumption
here is that the co-existence of words within a speci-
fied context serves as indicator for their semantic re-
latedness. In this work, we employ a common met-
ric, namely, Google-based semantic relatedness,G, pro-
posed in (Gracia et al., 2006), considering word co-
occurrence at the sentential level.

Textual: Context-based (CT). The fundamental as-
sumption here is thatsimilarity of context implies simi-
larity of meaning(Harris, 1954). Given a target wordwi,
a contextual window of size2H+1 words is centered on
it and lexical features are extracted. TheH words left
and right ofwi are extracted for every instance ofwi in
the corpus formulating a feature vector. For a given value
of H the context-based semantic similarity between two
words,wi andwj , is computed as the cosine of their
feature vectors. This approach is also referred to as the
“Bag-of-Words” (BoW) model.

The Visual Analogue of Bag–of–Words Model (VS).
The notion of “Bag-of–Visual–Words” (BoVW) model
was inspired by the BoW model in an attempt to repre-
sent images with respect to a common “visual lexicon”
(Sivic and Zisserman, 2003; Csurka et al., 2004; Bruni et
al., 2011). Given an image collection the following steps
are followed for the construction of the BoVW model
(Bruni et al., 2011): 1) Salient local regions, e.g.,10×10
pixels, are identified and represented as vectors. 2) The
identified regions are projected into a space that is shared
between the images of the collection. Next, the projec-
tions are clustered. Each cluster is assumed to corre-
spond to a visual word. 3) Every image is represented as
a vector of visual words. The most widely-used similar-
ity metric for this representation is the cosine similarity.

4. Network-based DSMs

In this section, we briefly present the two-tier DSMs that
were proposed in (Iosif and Potamianos, 2015) for build-
ing semantic networks using features extracted from text
corpora. Here, this model is extended by exploiting both
textual and visual features aiming to alleviate the symbol
grounding problem of DSMs. The network consists of
two layers, namely, activation and similarity layer. Given
a target word,wi, a set of other words that are semanti-
cally similar withwi are identified in the first layer for-
mulating the activation area (also referred to as the se-
mantic neighborhood) ofwi. The second layer computes
the semantic similarity between pairs of words exploit-
ing their respective activation layers. The computations
that take place in the two layers can be performed using
textual (CC or CT) or visual (VS) features.
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4.1. Layer 1: Activation Model
The activation layer constitutes a network that can be de-
fined as an undirected (under a symmetric similarity met-
ric) graphF = (A,E), whereA are the entries of a lex-
iconL, whileE contains the links between the vertices.
The links (edges) between words in the network are de-
termined and weighted according to the pairwise seman-
tic similarity of the vertices. The semantic neighborhood
of a targetwi ∈ L is a sub-graph ofF , Fi = (Ai, Ei),
where the set of verticesAi includes in totaln members
of L, which are linked withwi via edgesEi. This is
motivated by theories of semantic priming (McNamara,
2005) according to which stimulus facilitates the cogni-
tive processing of related entities present in the human
semantic memory. The theory of priming applies to any
perceptual entities regardless of modality. Thus, the use
of lexical and visual features as priming cues is cogni-
tively valid (Stenberg et al., 1995). For example, in (Iosif
et al., 2012) lexical features and corpus statistics were
used for the classification of lexical relations with respect
to two broad types of priming.

4.2. Layer 2: Similarity Model
In this section, we present two metrics of semantic sim-
ilarity proposed in (Iosif and Potamianos, 2015) that are
defined with respect to the activation areas computed in
the first network layer.
Maximum Similarity of Neighborhoods. This under-
lying hypothesis that the similarity of two words,wi and
wj , can be computed as the maximum similarity of their
respective activation areas:

Mn(wi, wj) = max{αij , αji}, (1)

αij = max
x ∈ Nj

S(wi, x), αji = max
y ∈ Ni

S(wj , y),

whereαij denotes the maximum similarity betweenwi

and the neighbors ofwj estimated according to a simi-
larity metricS. In this work,S was computed using the
feature types (CC or CT or VS) and metrics presented in
Section 3.αji is computed in similar fashion.Ni andNj

stand for the set of neighbors ofwi andwj , respectively.
This metric was motivated by the maximum sense sim-
ilarity assumption (Resnik, 1995) under the assumption
that the neighbors serve as semantic features represent-
ing the sense(s) of the corresponding word.
Attributional Neighborhood Similarity. Unlike Mn

where a single neighbor from each activation area is
used, in this metric the entire areas are taken into account
in the computation of the similarity score:

Rn(wi, wj) = max{βij , βji}, (2)

βij = ρ(CNi

i , CNi

j ), βji = ρ(C
Nj

i , C
Nj

j ).

CNi

i = (S(wi, x1), S(wi, x2), . . . , S(wi, xn)) andNi =

{x1, x2, . . . , xn}. The vectorsCNi

j , CNj

i , andCNj

j are

defined similarly asCNi

i . The ρ function denotes the
Pearson’s correlation coefficient.Ni andNj are the sets
of neighbors ofwi andwj , respectively.S stands for a
similarity metric – in this work it was computed using the
feature types (CC or CT or VS) and metrics presented in
Section 3. The motivation behindRn was attributional
similarity based on the hypothesis that the neighbors that
live in the activated areas encode semantic attributes (or
features) of the respective target words.

5. Fusion of Multimodal Representations

In this section, we present two schemes, namely, local
and global, for the fusion of textual and visual represen-
tations at the first layer of the network. Each scheme is
meant to formulate an activation area for a target wordwi

either by local set operations on unimodal activation ar-
eas (from text and image-derived data) or by global alge-
braic operations on normalized unimodal semantic sim-
ilarity scores. Specifically, the local fusion scheme se-
lects for each targetwi two unimodal neighborhoods of
a small fixed size (e.g., 100 neighbors) and then performs
set operations (e.g., union, intersection) on these neigh-
borhoods to obtain a crossmodal activation area. The
global scheme combines the semantic similarity scores
computed between the targetwi and everywj ∈ L with
respect to the two modalities and then selects the neigh-
borhood of targetwi.
Local fusion. Let the semantic neighborhoods of a tar-
get wordwi computed based on textual and visual fea-
tures be represented as ordered sets (according to simi-
larity) denoted asTi andVi, respectively. The bimodal
neighborhood ofwi can be computed via: 1) union
F∪

i = Ti ∪ Vi , and 2) intersectionF∩

i = Ti ∩ Vi. As-
sume a bimodal neighborhood of fixed sizen. For the
case of union, half the neighbors are selected fromTi

and the rest fromVi, i.e., | Ti |=| Vi |= n
2

. Regard-
ing intersection, the cardinality ofTi andVi is not fixed
since the goal is to haven neighbors withinF∩

i . For
this purpose, we allow the gradual increment of|Ti| and
|Vi| until the satisfaction of this criterion. This relaxation
was adopted in (Georgiladakis et al., 2015) where it was
applied for the computation of neighborhoods for short
phrases based on the neighborhoods of the constituent
words. The intersection-based fusion adheres to findings
from the literature of psycholinguistics suggesting that
the crossmodal neighborhoods should be more specific
than the respective unimodal ones (Osherson and Smith,
1981).
Global fusion. Given a target wordwi, let Ti andVi be
the vectors containing the semantic similarities between
wi and the words of lexiconL computed with respect to
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text and visual features, respectively. The fusion was im-
plemented via the algebraic operations defined in Table
1 using the normalized1 Ti andVi vectors. According to

Fusion scheme Definition

Additive F add
i = Ti + Vi

Weighted additive Fwadd
i = λiTi + (1− λi)Vi

Multiplicative Fmul
i = Ti · Vi

Table 1: Definition of global fusion schemes.

theF add
i scheme, both modalities contribute equally to

the combination of similarities. This is relaxed by the
Fwadd
i scheme where the contribution of each modal-

ity is weighted. The0 ≤ λi ≤ 1 weight is defined as:

λi =
ZT

i

ZT
i +ZV

i

, whereZT
i andZV

i are the coefficients of

variation forTi andVi, respectively.ZT
i is defined as

the ratio of the standard deviation and the mean ofTi’s
similarity scores (Everitt, 1998).ZV

i is defined in similar
fashion. The weights assigned toTi andVi are propor-
tional to the respective variation coefficients.

6. Experiments and Evaluation Results
Textual features (CC, CT). A lexicon consisting of
8752 (single-word) English nouns was extracted from
the SemCor32 corpus. For the extraction of the textual
features (i.e., CC and CT) a web harvested corpus was
created as follows. For each lexicon entry an individ-
ual query was formulated and the1, 000 top ranked re-
sults (document snippets) were retrieved using the Ya-
hoo! search engine and aggregated.
Visual features (VS). We used a feature set that was
computed as part of the work described in (Bruni et al.,
2011). Here, we outline the basic steps of feature ex-
traction, while more details can be found in (Bruni et
al., 2011). The ESP-Game dateset was used (von Ahn
and Dabbish, 2004) that contains images annotated with
textual descriptions (set of tags/words). For the extrac-
tion of visual features, the VLFeat system was used
(Vedaldi and Fulkerson, 2013) through a process sum-
marized as follows: The Difference of Gaussian (DoG)
(Lowe, 2004), was employed for identifying local re-
gions, which they were assigned to visual words. The
Scale-Invariant Feature Transform (SIFT) (Lowe, 1999)
was applied for deriving a a 128-dimensional represen-
tation for each region. Thek-means algorithm was ap-
plied for clustering the regions into a number of clusters
serving as visual words. This way each image was repre-
sented by a vector of visual words according on the clus-
tering of its regions. Last, each word was represented

1In this work, we usedZ-normalization.
2http://www.cse.unt.edu/ ˜ rada/

downloads.html

by a vector created by summing the vectors of the corre-
sponding images (i.e, images having this word in the cor-
responding annotation tags). For the creation of a mul-
timodal network, we used the intersection between the
8752 nouns and the nouns covered by the image annota-
tions resulting into a set of3450 nouns.
Network. The network creation consisted of two main
steps: 1) computation of semantic neighborhoods, and
2) computation of similarity scores. For each step three
types of similarity metrics (in conjunction with the re-
spective features) were applied: co-occurrence-based
(CC), context-based (CT), and visual (VS).
Evaluation. For evaluation purposes, we used the noun
pairs of (i) Rubenstein-Goodenough (RG) (Rubenstein
and Goodenough, 1965) and (ii) WordSim353 (WS353)
(Finkelstein et al., 2002) datasets which were included
in the network of3450 nouns: 35 and 175 pairs3 , re-
spectively. The Pearson’s correlation coefficient against
human ratings was as evaluation metrics. For the case of
CC the Google-based Semantic Relatedness was applied,
while the cosine similarity was used for CT (with context
windowH=1) and VS.
The performance ofMn and Rn neighborhood-based
metrics (defined in Section 4) for various number of
neighbors with respect to the subsets of RG and WS353
datasets along with the respective baselines is presented
in Table 6. We consider as baseline the computation of
semantic similarity in the absence of network, i.e., by
directly applying the bag-of-word metrics described in
Section 3. The performance is shown for various combi-
nations of textual (CC or CT) and visual (VS) features
used for neighbor selection and similarity computation.
The focus is to investigate the performance potential of
the crossmodal network, that is, when the visual features
are used either for neighbor selection or computation of
the final similarity score. Regarding theMn metric, the
highest performance (0.79 and0.70 for RG and WS353,
respectively) is achieved by the CC/VS combination,
which outperforms the baseline for the case of WS353.
Regarding theRn metric, the highest performance (0.89
and0.67 for RG and WS353, respectively) is achieved
by the VS/CC combination, exceeding the baseline per-
formance for all datasets. In addition, it seems that small
neighborhood sizes yield better results when visual fea-
tures are used for neighbor selection. The overall lowest
performance is obtained by the VS/VS combination,
In Figure 1(a), we present the performance yielded by
the global fusion schemes as a function of the number of
neighborsn exploited in the first layer of the network.
The results are shown for the correlation-based metric

3Although RG and WS353 are standard datasets, the lack
of visual features for some word pairs makes difficult the direct
comparison (in terms of performance) with other approaches
proposed in the literature, see also (Bruni et al., 2011).
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Type of feature for Number of neighbors (n)
Selection Similarity Mn metric Rn metric

of neighbors computation 10 50 100 150 10 50 100 150

Subset of RG dataset (35 pairs).Unimodal baselines: CC:0.85, CT:0.67, VS: 0.47.
Textual (CC) Visual (VS) 0.64 0.79 0.79 0.70 0.44 0.34 0.33 0.35
Textual (CT) Visual (VS) 0.78 0.76 0.69 0.66 0.29 0.37 0.35 0.33
Visual (VS) Textual (CC) 0.58 0.55 0.29 0.36 0.73 0.86 0.89 0.88
Visual (VS) Textual (CT) 0.48 0.42 0.25 0.33 0.64 0.67 0.61 0.59
Visual (VS) Visual (VS) 0.43 0.40 0.23 0.27 0.40 0.45 0.44 0.35

Subset of WS353 dataset (175 pairs).Unimodal baselines: CC:0.61, CT:0.25, VS: 0.33.
Textual (CC) Visual (VS) 0.44 0.59 0.66 0.70 0.18 0.24 0.21 0.22
Textual (CT) Visual (VS) 0.44 0.47 0.38 0.32 0.21 0.28 0.27 0.25
Visual (VS) Textual (CC) 0.47 0.41 0.37 0.32 0.62 0.67 0.67 0.65
Visual (VS) Textual (CT) 0.34 0.33 0.34 0.28 0.33 0.26 0.22 0.20
Visual (VS) Visual (VS) 0.37 0.30 0.31 0.27 0.17 0.34 0.33 0.31

Table 2: Performance ofMn andRn metrics for various combinations of textual (CC or CT) and visual (VS) features.
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Figure 1: Correlation as a function of the number of neighbors for the fusion of multimodal representations: (a)
globally, and (b) locally.

Rn only4 with respect to the largest dataset (WS353).
Both textual and visual modalities were fused in the first
layer, while the textual modality was used for the com-
putation of similarity in the second layer. Specifically,
the CC feature type was employed for computing sim-
ilarities computation (instead of CT) based on the very
good performance of the VS/CC approach. For compari-
son purposes, the performance of the crossmodal VS/CC
approach is also depicted in the same figure, which can
be regarded as a baseline since no fusion is performed
in the first layer. We observe that for small seman-
tic neighborhoods (e.g., 10 neighbors) the baseline ap-
proach yields higher correlation scores compared to the
fusion schemes. However, for larger neighborhoods (>

50 neighbors) the fusion-based approaches perform con-

4For the case of theMn metric no statistically significant
improvements were gained.

sistently better than the baseline. The best results (up
to 0.70) are obtained by the weighted additive fusion
scheme for 50-100 neighbors. Regarding fusion, the
multiplicative scheme appears to perform better than the
other schemes for neighborhoods including 10-30 neigh-
bors. For larger neighborhoods all schemes exhibit com-
parable performance. In addition, the weighted addi-
tive fusion scheme seems to yield slightly higher perfor-
mance compared to the respective unweighted scheme.
The performance of the local fusion schemes is depicted
in Figure 1(b), along with the baseline also plotted in
Figure 1(a). As in the case of global fusion, the base-
line obtains higher correlation when few neighbors are
exploited. Both fusion types yield higher performance
than the baseline for neighborhoods containing more the
50 neighbors5. The top correlation scores (0.71) are

5The differences between the similarity scores estimated via
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Rank Textual (CC) Visual (VS)

Within auto, accident,truck , race,tire , wheel,
top 10 seat,vehicle, . . . drive, truck , . . .
Within wheel, drift , tire , fun, police,vehicle,
40-50 wreck, transport, . . . drift , mountain, . . .

Table 3: Neighbors of “car” wrt CC and VS features.

achieved by the intersection-based fusion scheme for
110-120 neighbors. This scheme appears to perform bet-
ter than the union-based one except for 60-80 neighbors.
In Table 3, we present a number of indicative neighbors
for the target word “car” when using CC and VS, while
the common neighbors are shown in bold. This is per-
formed for two zones of the respective activations. Re-
garding the top 10 zone, both CC and VS capture neigh-
bors highly related to “car”. For broader activations,
(e.g., see 40-50 zone) less semantically relevant words
(e.g., fun, mountain) are identified by VS compared to
CC.

7. Conclusions
The main finding of this work is that the network ap-
proach is an appropriate representation and integration
framework for textual and visual features. This was ver-
ified for the problem of word semantic similarity, for
which the network metrics exceeded the performance
of baseline metrics. This observation agrees with the
cognitive evidence regarding the multimodal character
of semantic representations. In addition, both modali-
ties were successfully fused in the representation layer
when exploiting more than 50 neighbors. The highest
performance was achieved by the intersection-based fu-
sion scheme supporting the idea that the commonality of
features across modalities is a good criterion for build-
ing semantically more accurate representations. Regard-
ing future work, we aim to apply the proposed model
to datasets in other languages. Our long term goal is to
extend the presented network with audio-based features,
including the investigation of modality-specific metrics
of semantic similarity.

8. Acknowledgments
This work has been partially funded by the SpeDial
project supported by the EU FP7 with grant num.
611396, BabyRobot project supported by the EU Hori-
zon 2020 Programme with grant num. 687831, and the
BabyAffect project supported by the Greek General Sec-
retariat for Research and Technology with grant num.
3610. The authors wish to thank Prof. Marco Baroni and

both fusion schemes and the baseline (i.e., no fusion) were
found to be statistically significant at 95% level accordingto
paired-samplet-test.

Dr. Elia Bruni for proposing the incorporation of visual
features in our two-tier model, as well as for providing
the visual features used for experiments.

9. References
Barnard, K., Duygulu, P., Forsyth, D., de Freitas, N.,

and Blei, D. M. (2003). Matching words and pictures.
Machine Learnaning Research, 3:1107–1135.

Baroni, M. and Lenci, A. (2010). Distributional mem-
ory: A general framework for corpus-based semantics.
Computational Linguistics, 36(4):673–721.

Barsalou, L. W., Santos, A., W, K. S., and Wilson, C. D.
(2008). Language and simulation in conceptual pro-
cessing. In M. De Vega, et al., editors,Symbols, Em-
bodiment, and Meaning, pages 245–283. Oxford Uni-
versity Press.

Besancon, R. and Millet, C. (2005). Merging results
from different media: Lic2m experiments at Image-
CLEF 2005. InWorking notes of the CLEF.

Bruni, E., Tran, G. B., and Baroni, M. (2011). Distri-
butional semantics from text and images. InProc. of
the Workshop on Geometrical Models of Natural Lan-
guage Semantics (GEMS), pages 22–32.

Bruni, E., Tran, N. K., and Baroni, M. (2014). Multi-
modal distributional semantics.Journal of Artificial
Intelligence Research, 49(1):1–47.

Caicedo, J., Ben-Abdallah, J., González, F., and Nas-
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