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1Cental, IL&C, Université catholique de Louvain (UCL), Belgium
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Abstract
Text-to-speech has long been centered on the production of an intelligible message of good quality. More recently, interest
has shifted to the generation of more natural and expressive speech. A major issue of existing approaches is that they
usually rely on a manual annotation in expressive styles, which tends to be rather subjective. A typical related issue is
that the annotation is strongly influenced – and possibly biased – by the semantic content of the text (e.g. a shot or a
fault may incite the annotator to tag that sequence as expressing a high degree of excitation, independently of its acoustic
realization). This paper investigates the assumption that human annotation of basketball commentaries in excitation levels
can be automatically improved on the basis of acoustic features. It presents two techniques for label correction exploiting
a Gaussian mixture and a proportional-odds logistic regression. The automatically re-annotated corpus is then used to train
HMM-based expressive speech synthesizers, the performance of which is assessed through subjective evaluations. The
results indicate that the automatic correction of the annotation with Gaussian mixture helps to synthesize more contrasted
excitation levels, while preserving naturalness.
Keywords: speech synthesis, expressive style annotation, machine learning

1. Introduction

Text-to-speech has long been centered on the produc-
tion of an intelligible message of good quality. How-
ever, as early as the 90’s, some early work already
investigated the issue of generating more natural and
expressive speech (Murray and Arnott, 1993). Today,
this has become a major goal in the field as it comes
as an answer to the widespread criticism towards cur-
rent speech synthesizers, which have been said to be
unnatural and to lack fundamental human components
(Kim et al., 2004; Campbell, 2006).
In this framework, a large body of research has fo-
cused on the synthesis of basic emotions like happi-
ness or anger (Yamagishi et al., 2004; Hirose et al.,
2005; Qin et al., 2006), which can be seen as a sim-
plistic reduction of the expressive naturalness lacking
in speech synthesizers (Campbell, 2006). Conversely,
we believe that synthesizers should include other types
of expressiveness, such as various speaking styles (e.g.
TV speech, sports commentaries, political discourse)
or attitudes.
Surprinsingly, this topic has raised much less inter-
est. Lorenzo-Trueba et al. (2013) and Obin et al.
(2011) targeted HMM-based speech synthesis of var-
ious speaking styles like broadcast news or political
speech. In the same vein, Eyben et al. (2012) pro-
posed modeling different speaking styles found in au-

diobooks. The synthesis of sports commentaries has
also aroused some interest (Krstulović et al., 2007;
Picart et al., 2013; Brognaux et al., 2013). Specif-
ically, it is proposed in Picart et al. (2013), to anno-
tate basketball commentaries in various excitation lev-
els like “Negative tension”, “Excited” or “Neutral” to
train style-specific synthesizers.
A major issue of such studies, is that they rely on
a manual annotation which is usually rather subjec-
tive. In the framework of sports commentary syn-
thesis (Brognaux et al., 2013), for instance, the man-
ual macro-prosodic annotation of the corpus in terms
of excitation level and valence was shown to achieve
low inter-annotator agreement scores, with a Cohen’s
kappa of 0.38. It is likely that the manual annotation
of excitation levels is strongly influenced by the se-
mantic content of the corresponding speech segments.
A successful shot, for instance, may have been consid-
ered as expressing a high degree of excitation by the
annotators, while a section describing a player biogra-
phy would be annotated as neutral1, even if the corre-
sponding speech segments did not display the charac-
teristic acoustic features of the corresponding excita-

1By the term ’neutral’, we refer in this work to the stan-
dard level of excitation in sports commentaries, which may
appear more excited than the standard level in other types
of speech.
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tion level.
An interesting feature of the annotation in terms of
level of arousal/excitation is that acoustic features
(e.g. pitch, timing, energy and voice quality) of the
speech signal seem to be highly correlated with the
excitation level, which allows for a highly accurate
automatic classification between high-activation and
low-activation segments (Tato et al., 2002; Liscombe
et al., 2003). Schröder et al. (2001) also found that
activation is the emotional dimension that is most
correlated with specific acoustic realizations. They
showed, for example, that activated speech displays
higher F0 mean and range, longer and faster increases
and decreases in F0, and increased intensity. By
capturing long-term dependencies between the acous-
tic observations derived from hierarchical function-
als of prosodic, spectral, and voice quality features,
Wöllmer et al. (2008) also highlighted that it is pos-
sible to predict the level of arousal with an accuracy
similar to human performance.
Drawing from these findings, we propose to investi-
gate, in this work, the possibility of using an auto-
matic labeling of excitation levels, based on acoustic
features only, to correct semantically-driven “outliers”
in the manual annotation, that is, word segments that
were wrongly annotated as neutral or excited due to
their semantic content. More precisely, our objective
is to determine whether the homogeneity of human an-
notations can be improved thanks to an automatic re-
classification system, thereby providing a more acous-
tically consistent annotation. This is in line with previ-
ous studies by Brognaux et al. (2012), in which the au-
thors proposed a post-processing technique to reduce
the number of prosody labeling errors. It was shown
that a predictor trained on a (partially erroneous) man-
ual annotation could be used to check existing labels,
generalize global tendencies and improve the annota-
tion quality. Such an approach amounts to leveraging
the existing manual annotation to generalize global
tendencies and then automatically correct outliers.
This paper is organized as follows: Section 2. presents
our corpus and its manual annotation. In Section 3.,
we discuss the level at which the excitation level an-
notation should be provided. Section 4. investigates
two automatic classification methods to predict labels
for excitation level and correct the manual annotation
of the corpus. Finally, Section 5. evaluates the inte-
gration of the corrected macro-prosodic annotation in
HMM-based speech synthesis.

2. Corpus design
This study is based on the Sportic corpus (Brognaux
et al., 2013), which contains the commentaries of two

basketball matches by a professional French commen-
tator, recorded in sound-proof conditions. The speaker
watched the games and commented them without any
prompting. Both matches star the Spirou, a popu-
lar Belgian team, and are characterized by very tight
final scores, which induced a high level of excita-
tion. The issue with sport commentary corpora is usu-
ally the high level of background noise that precludes
their precise acoustic analysis (Trouvain, 2011). Con-
versely, our corpus exhibits the advantage of being
spontaneous and of high acoustic quality, therefore be-
ing suitable for speech synthesis.
The total corpus duration is 162 minutes, with a high
proportion of silences. Several processes were ap-
plied. First, the corpus was transcribed into a text
version whose phonetization was automatically pro-
duced by the eLite-HTS system (Beaufort, 2008).
The phonetic transcription was manually corrected
and then automatically aligned with the sound with
the Train&Align tool (Brognaux et al., 2012). This
alignment took advantage of the bootstrap option of
Train&Align to reach alignment rates higher than
80 % with a 20ms tolerance threshold. The eLite NLP
system produced other required annotation tiers (e.g.
syllables, parts of speech, rhythmic groups). For the
detection of sentence boundaries, which is a rather
complex task as we do not have access to punctuation,
the corpus was manually annotated to define segments
corresponding to both a prosodic and a semantic com-
pleteness.
As regards the speaking style annotation of the cor-
pus, which we refer to as the macro-prosodic annota-
tion, we followed the method described in Brognaux
et al. (2013). In short, groups of words were assigned
an excitation level, based on a dimensional analysis of
emotions in terms of valence and arousal (Mehrabian
and Russel, 1974; Russell, 1980). A unique annota-
tor took care of the whole corpus, but another expert
also annotated 20% of the data already seen in order to
evaluate agreement on this task. Inter-annotator agree-
ment was low (kappa = 0.38), mainly due to logical
confusion between contiguous levels. For the current
study, we relied on a simplified version of the origi-
nal annotation that results from a discretization of the
arousal (excitation) level into three degrees: Neutral,
Excited and ExMax. The distribution of the corpus
across these three levels is as follows (with silences
longer than 1 second excluded): Neutral (2955 sec.),
Excited (1032 sec.) and ExMax (475 sec.).

3. Choice of a minimal unit
An excitation level, or macro-prosodic unit, must be
assigned to a group of words. The main challenge is
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therefore to determine where an excitation level be-
gins and where it ends.

3.1. Minimal unit in the literature

This issue has been overlooked in the literature, no-
tably because most studies are based on acted speech
in which each sentence is pronounced with a prompted
emotion (Amir et al., 2001). Even for more realistic
data, classification is often related to pre-segmented
chunks, based on the manual annotation of emotions
(Schuller et al., 2003).
The question of the minimal unit of analysis has also
been investigated by Schuller et al. (2011). They
point out that the speaking turn is often considered
in conversational speech, but highlight the fact that
turns can sometimes be rather long and contain sev-
eral shorter emotional episodes. They distinguish two
strategies to cope with this problem: i.e. the use of
‘technical units’, which simply corresponds to either
time windows or fixed proportions of longer units;
and the use of ‘meaningful units’, which are linguis-
tically and semantically well-defined (e.g. syllables,
words, or phrases). Batliner et al. (2010) investigated
three different units: the word level or ememe (consid-
ered as the smallest meaningful emotional unit), the
syntactic chunk, or the ememe chunks (cluster of ad-
jacent ememes belonging to the same arousal class).
The latter relies on a manual annotation of the cor-
pus and is hardly automatizable, but their performance
was shown to outperform that obtained with syntactic
chunks. The authors indicate that the best compromise
between automation and performance seems to rely on
the use of word units.
Automatic clustering of various speaking styles in au-
diobooks has also pointed out the need for defining a
minimal unit. Eyben et al. (2012) propose to work
at the sentence level, which they consider to be the
longest possible chunk in that respect. It is worth men-
tioning that segmenting sentences is more straightfor-
ward in the case of audiobooks as it can rely on the
punctuation of the text, while we have no punctua-
tion information in spontaneous speech. In a similar
study, Székely et al. (2011) pointed out that signifi-
cant reading style changes may occur within a single
sentence. This was an incentive to choose interpausal
units instead, which avoided abrupt changes of voice
style within a speech segment.

3.2. Experimenting with the minimal unit

Facing this divergence in the literature, we carried out
an analysis, based on the manual prosodic annotation
of the Sportic corpus, to determine the best linguis-
tic unit to use. We compared five different unit lev-

els, namely interpausal units (IPU), rhythmic groups
(RG), accentual phrases, words, and sentences2. IPU
and RG are middle-sized chunks that should provide
a good compromise of being short enough to ensure
emotion stability, but of sufficient duration to compute
global prosodic measures, such as articulation rate or
accentual density, which have been shown to be cor-
related with the activation level (Murray and Arnott,
1993; Schröder et al., 2001). IPU relies on the man-
ually checked phonetization of the corpus in which
silences are indicated. The segmentation of RGs is
provided by eLite-HTS, which proposes a phrasing al-
gorithm based on an improved version of Liberman’s
chinks & chunks (Liberman and Church, 1992; Beau-
fort, 2008). As regards accentual phrases, we defined
two variants of this unit. On the one hand, they were
simply considered as sequences of words ending with
a boundary tone (i.e. H, L, LL, HH or E as defined in
(Brognaux et al., 2013)). On the other hand, we de-
fined a specific type of accentual phrase (which could
be considered as closer to intonational phrases) that
only considers groups of words ending in higher level
boundaries (i.e. LL and HH tones).
In our experiments, we computed the percentage
of manually-annotated boundaries of excitation level
segments in our corpus that corresponded to bound-
aries of each of the six minimal units considered. Re-
sults are shown in Figure 1. Bars with a red border (i.e.
accentual phrases and sentences) correspond to infor-
mation that can only be obtained with the help of a
manual annotation. Ideally, our study should be based
on automatically segmented units (in green) such as
RGs or IPUs.
Our study shows that 91.5 % of the boundaries of ex-
citation level segments also correspond to RG bound-
aries, while it is only the case for 82.8% of the IPU
boundaries. Other types of considered units get an
even lower correspondence percentage, which makes
RG the best segmentation level for our purposes.

4. Automatic prediction of macro-prosodic
labels

The experiments described in the previous section
convinced us to use a segmentation of our corpus
in rhythmic groups for our study. The next step
consisted in automatically reclassifying all rhythmic
groups of the corpus in terms of excitation levels based
on acoustic features. To this aim, we defined and ex-
tracted a large set of acoustic features (see Section

2Dialog acts is another unit that could have been con-
sidered, but we did not do so as our corpus only includes
commentaries which are soliloquies .
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Figure 1: Connection between linguistic segmentation and prosodic macro changes.

4.1.). Then, we compared two classification algo-
rithms: a Bayes classifier based on a simple Gaussian
mixture and an ordinal logistic regression (see Section
4.2.).

4.1. Feature extraction

A set of 27 global acoustic features was automatically
extracted at the rhythmic group level (3,999 RGs were
considered). The set includes the following continu-
ous features:

• Pitch : mean, median, mode, min, max, inter-
quartile range, and variance.

• Energy : mean, median, mode, min, max, inter-
quartile range, and variance.

• Duration : mean phone duration, mean syllable
duration, mean vocalic nucleus duration, mean
normalized syllable duration, and their variance.

• Pauses : length of the preceding and following
silence. If the RG is not preceded and/or fol-
lowed by a silence, this parameter is set to 0.

• Complex values : percentage of prominent sylla-
bles (as detected by Prosoprom (Goldman et al.,
2007)), average difference of pitch between a syl-
lable and the preceding syllable (delta pitch), in
absolute value (as a measure of pitch dynamism).

• Speaking rate : number of syllables per second
(silences do not need to be considered/excluded
here as RGs never include silences).

Three post-processing operations were applied in se-
quence to the raw computed values: (1) a mean im-
putation of missing values, (2) the normalization of
all values as z-scores, and (3) a dimensionality reduc-
tion with a principal component analysis (PCA) from
which only the first 6 components were kept3. We em-
phasize the fact that no linguistic features were inte-
grated into our feature set as our motivation was to au-
tomatically distinguish segments of speech that were
acoustically different in order to improve the training
of the synthesizer. Linguistic contexts that may have
erroneously influenced the manual annotators should
therefore be discarded.

4.2. Classification methods
To automatically predict the level of excitation based
on the six features resulting from the PCA, we com-
pared two classification algorithms: (1) a Bayesian ap-
proach based on a simple Gaussian mixture and (2) an
ordinal logistic regression model, also called propor-
tional odds model (Agresti, 2002).
The Bayesian approach re-assigned to each rhythmic
group the excitation level (enew(v)) that maximizes
the following a posteriori probability:

3To select the n-relevant first dimensions, we used a
popular rule of thumb, namely keeping the dimensionality
accounting for 70% of the total variance.
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enew(v) = arg max
e
P (e | v) =

P (v | e) · P (e)

P (v)
(1)

where e ∈ E = {Neutral, Excited, and ExMax}
and v is the feature vector with the 6 PCA-reduced
dimensions. As we are interested in the argmax val-
ues, the quantity P (v) may be neglected. The a priori
probability P (e) of each level of excitation e in the
initial data is computed as:

P (e) =
nb(e)∑
∀e∈E nb(e)

(2)

where nb(e) is the number of occurrences of level e
in the corpus. As regards the conditional probability
P (v|e), it is computed as follows:

P (v | e) = f(v, µe,Σe)

=
1√

|Σe|(2π)d
e−

1
2

(v−µe)T Σ−1
e (v−µe)

where d is the dimensionality of v (6, in our case);
µe is a 1-by-6 vector, containing average values of the
6 components for the level of excitation e. Σe is the
corresponding 6-by-6 covariance matrix. This allows
considering the mean and variance of each class. It
should however be noted that the variance-covariance
matrices of all three classes are rather similar and
should not greatly influence the classification task.
For the logistic regression approach, we trained an
ordinal logistic regression model (Agresti, 2002) that
takes advantage of the natural ordering across the re-
sponse categories. Based on that model, a level of ex-
citation is also predicted for each vector.
Tables 1 and 2 show the contingency matrices result-
ing from the reclassification of the 3,999 RGs by both
models4. We see that the logistic model is biased to-
wards Neutral, with a high reclassification of manual
ExMax labels. The Bayesian approach is more bal-
anced, but also tends to reclassify Excited RG as Neu-
tral.
For each model, a Krippendorf alpha (Hayes and Krip-
pendorff, 2007) for ordinal data was computed be-
tween the model’s predictions and the manual labels
to assess the proportion and degree of reclassification.
We obtained an alpha of 0.4016 for the Bayes ap-
proach and of 0.3030 for the logistic regression, which

4As we are primarily interested in automatically re-
annotating the corpus rather than defining a maximally ac-
curate model, results are reported on all data.

seems to indicate that the Bayes model remains closer
to the original annotation.
As the results provided by both methods tend to go
in the same direction, we also compared the classes
they predict for each rhythmic group (RG). The com-
parison indicated that both predictors assign an iden-
tical label in 70.48% of the cases. Interestingly, the
adjacent accuracy, defined as the proportion of predic-
tion with maximum one level of error (Heilman et al.,
2008), reaches 99.02%, which shows their high con-
sistency.

5. Perception evaluation
The main goal of this paper is to test whether auto-
matically re-annotating a corpus manually annotated
in terms of excitation levels can improve the quality
of speaking style-adapted HMMs for speech synthesis
(here one for each excitation level). To this aim, we
built three synthesizers of a male voice, respectively
based on the manual annotation (Baseline), the auto-
matic re-annotation with Bayes (Auto1) and the auto-
matic re-annotation with logistic regression (Auto2).
All implementations were done with the HTS toolkit
(version 2.1) (Zen et al., 2007). The training of each
synthesizer followed the same protocol: an average-
voice model, trained on the whole corpus, was adapted
with Constrained Maximum Likelihood Linear Re-
gression (CMLLR) (Gales, 1998) to the sub-part of the
corpus corresponding to each excitation degree. The
linearly transformed models were further optimized
using MAP adaptation (Yamagishi et al., 2009). This
method was shown in Picart et al. (2013) to produce
the best results in contrast to other training and adap-
tation approaches. The synthesis set is made of rhyth-
mic groups (RG) or sequences of rhythmic groups
which are assigned an identical label in the manual an-
notation and are not separated by a silence. For each
synthesizer, 90% of the corresponding data was used
for the training, leaving around 10% for the test.
Based on this test set, two perception tests were car-
ried out: the first assessed the synthesis naturalness,
whereas the second evaluated whether the three levels
of excitation were better discriminated by one of the
three synthesizers. 20 native French speakers, mainly
naive listeners, participated in the evaluation. Each of
them was provided with 18 items (consisting in pairs
of sentences) for each test, selected from the test set
with a stratified sampling, in order to balance excita-
tion levels and synthesizers.
In the first test, which focused on voice quality, the
two sentences forming an item were generated with a
different synthesizers. Listeners were then asked to in-
dicate which version seemed more natural in the con-
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Automatic annotation
Neutral Excited ExMax Total

Manual annotation

Neutral 2,018 338 101 2,457
Excited 627 315 118 1,060
ExMax 129 112 239 480
Total 2,774 765 458 3,997

Table 1: Contingency table between manual annotation and automatic reclassification with Gaussian mixture
models.

Automatic annotation
Neutral Excited ExMax Total

Manual annotation

Neutral 2,253 191 13 2,457
Excited 813 229 18 1,060
ExMax 184 200 96 480
Total 3,250 620 127 3,997

Table 2: Contingency table between manual annotation and automatic reclassification with logistic regression.

text of sports commentaries. The voice quality scale
ranged from -3 (sentence A is much less natural than
sentence B) to 3 (sentence A is much more natural
than sentence B). If both versions sounded equally
natural (or if they both sounded mediocre), subjects
could rate them as ”equivalent”. The preferences ex-
pressed by the subjects during this first test were very
slight. Significance measures were computed, with a
unilateral signed rank sum test comparing the aver-
age percentage of preferences on the 20 testers, and
no preference was shown to be significant (p = 0.10,
p = 0.06 and p = 0.36 for pairs Auto1/Baseline,
Auto2/Baseline and Auto1/Auto2 respectively). This
indicates that using the corrected annotation does not
enhance the naturalness of the synthesized speech.

In the second test, the task was to discriminate be-
tween different levels of excitation for a given syn-
thesizer. The test also consisted in 18 pairwise
comparisons between combination of sub-genres, i.e.
Neutral/Excited, Excited/ExMax and Neutral/ExMax.
The two synthesized sentences, in each pair, were this
time synthesized with the same synthesizer, but with a
different level of excitation. For each pair, the listener
was asked in which version the commentator sounded
more excited. The scale ranged from -3 (sentence A
sounds much less excited than sentence B) to 3 (sen-
tence A sounds much more excited than sentence B).
In case of similar level of excitation, the ”equivalent”
label could be chosen.

Results of the second perception test offered more in-
sightful results. Figure 2 indicates the percentage of
cases in which the synthesis of each excitation level
(i.e. Neutral, Excited and ExMax) was considered as
the most excited, in the pairwise comparison. Ide-

ally, Neutral should be assigned 0%, Excited 50% (i.e.
more excited than neutral, but less excited than Ex-
Max), and ExMax 100%. The results clearly indicate
that the baseline suffers from a lack of discrimina-
tion between Neutral and Excited syntheses (p = 0.09
with a one-sided signed rank sum test). The logistic
model (Auto2) tends to discriminate more effectively
between Neutral vs. Excited and ExMax, but has trou-
ble distinguishing between the two latter ones. The
Auto1 model (Bayes) offers the best discrimination be-
tween the three levels of excitation, being close to the
optimal situation.
These observations indicate that the automatic correc-
tion of the manual annotation of the corpus, based on
simple Gaussian mixture, clearly allows for better dis-
crimination between the synthesis of the three excita-
tion levels, while offering a perceived naturalness sim-
ilar to the baseline.

6. Conclusion
In this paper, we have investigated the assumption that
human annotation of basketball commentaries for ex-
citation levels can be automatically improved on the
basis of acoustic features. We presented two tech-
niques for label correction, using Gaussian mixture
models and a proportional-odds logistic regression.
Our perception evaluation showed that the corpus re-
annotated with the Gaussian mixture models helps to
synthesize more contrasted excitation levels while pre-
serving similar naturalness.
Further studies on this topic could investigate the in-
tegration of contextual information into the models,
i.e. by considering the sequential aspect of the units to
better predict the excitation level. To this aim, the ap-
proach based on Gaussian mixture models could be in-
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Figure 2: Percentage of cases in which each excitation level is perceived as the most excited

tegrated into an HMM framework, in which the emis-
sion probabilities would be extracted from the model.
We could also investigate the integration of linguistic
features into the model although we tend to believe
that integrating non-acoustic predictors might degrade
the quality of the resulting synthesizers.
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